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Viscorotational shear instability of Keplerian granular flows
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The linear stability of viscous Keplerian flow around a gravitating center is studied using the rheological gran-
ular fluid model. The linear rheological instability triggered by the interplay of the shear rheology and Keplerian
differential rotation of incompressible dense granular fluids is found. Instability sets in in granular fluids, where the
viscosity parameter grows faster than the square of the local shear rate (strain rate) at constant pressure. Found in-
stability can play a crucial role in the dynamics of dense planetary rings and granular flows in protoplanetary disks.
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A disk of solid particles rotating around a central gravitating
object is an important class of granular flows widely occurring
in nature. Among those are planetary and exoplanetary
rings, debris disks around young stars, or even areas of
protoplanetary disks where dust particles accumulate and form
dense granular material. These flows, occurring at different
scales, often have several common features: solid particles
rotate on nearly Keplerian orbits, highly inelastic particle
collisions can easily dissipate kinetic energy, and self-gravity
of granular material can be neglected in comparison to the
gravitational potential of the central object. Granular flows
normally collapse into thin disks, where particle number
density increases and in some cases the flow can be described
using a fluid model with “granular viscosity.”

It is known from the accretion disk theory that differentially
rotating viscous flows can be unstable [1,2]. Indeed, it
has been shown that viscous instability sets in when the
increase of surface density leads to the decrease of the local
viscosity [3–5]. In this case, the smallest density bump leads to
the enhanced angular momentum transfer and corresponding
accretion process. Hence, mass accumulation at the outer edge
of the perturbation leads to further increase of density. Viscous
instability can operate in optically thick disks, where the
viscous stress is proportional to radiation pressure. However,
phenomenological tests reveal the somewhat uncommon char-
acter of the instability, which even when occurred, provides
insignificant growth rates for linear perturbations.

The second alternative energy source in Keplerian granular
flows is the viscous overstability [6,7] that is thought to
be a primary mechanism for the development of some
of the observed structures in dense planetary rings. This
axisymmetric pulsational instability occurs in granular flows,
where the derivative of kinematic viscosity with respect to
the surface density is positive and exceeds some critical
value [4,8,9]. Thus, compressible epicyclic response leads to
viscous overcompensation and growth of density-spiral waves
due to an increase of the viscous stress in the compressed
phase. Later, viscous overstability has attracted considerable
interest including its nonaxisymmetric [10–14] as well as
nonlinear saturation properties [15–17].
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The key to the investigation of granular flows around
gravitating objects is a proper account for the particle collision
effects. A kinetic description of particle collisions has been
successful in modeling properties of rapid and dilute granular
flows. Still, a kinetic approach may fail due to the scale
separation problem between granular and flow time scales
and inelasticity of particle collisions. In fact, it is known that
a detailed theoretical description of granular flows should
deal with a number of specific features: granular gases are
intrinsically nonequilibrium systems with non-Maxwellian
distribution functions that in some cases can reveal nonlocal
structures of even non-Markovian character (see Ref. [18],
and references therein). Still, granular flows can be studied
using hydrodynamic equations that can describe collective
phenomena including different types of instabilities, thermal
convection [19,20], behavior of granular gas mixtures, or
clustering [21–24].

Significant advances in the understanding of the dense
granular fluids have been made recently. It seems that a wide
range of dense granular flows can be unified into a rheological
model that permits the formulation of a local constitutive
equation [25–27]. In this local rheological model granular
phenomenology is employed to define how fluid viscosity
depends on pressure, as well as strain tensor of the flow.
Thus, granular flow can be described by an incompressible
non-Newtonian fluid model, where the strain tensor is solely
due to the velocity shear of the flow. We employ this model for
the description of astrophysical flows, where individual dust
granules can be highly porous particles colliding with low
restitution parameters. In this limit dense granular flow can
exhibit “fluid” properties even at moderate values of particle
volume fraction.

In the present Rapid Communication, we study the linear
stability of viscous Keplerian flow around a gravitating center,
taking into account the rheological aspects of the viscous stress
tensor. Our incompressible model includes pressure and shear
rheology since they both affect the linear stability of spiral
waves. We identify unstable axisymmetric modes analytically
and analyze nonaxisymmetric instability numerically.

Physical model. The dynamics of an incompressible vis-
cous flow rotating around a central gravitating object can be
described by the Navier-Stokes equation:
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where ρ, P , and Vi are density, pressure, and velocity of the
flow, respectively. We neglect self-gravity and assume that �

is the gravitational potential of the central object. The viscous
stress tensor τik can be calculated using the strain rate tensor

τik = ηγ̇ik, γ̇ik = ∂Vk/∂xi + ∂Vi/∂xk; (2)

in incompressible limit it is reduced to a shear strain tensor:

∂Vk/∂xk = 0. (3)

To describe the dissipative properties of the dense granular
flow we employ rheological fluid description implying the
existence of a local constitutive equation. Indeed, it has been
shown recently that granular fluids can be described using the
specific form of the non-Newtonian fluids (see Ref. [25], and
references therein). In this limit viscosity of granular fluid η

depends on both pressure as well as the second invariant of the
strain rate tensor ξ :

η = η(P,ξ ), ξ =
√

γ̇ikγ̇ik/2. (4)

This frictional viscoplastic constitutive law has been tested
successfully in laboratory experiments and is thought to be
a general model describing dense granular flows in “fluid”
regime [26]. The “fluid” regime of dense granular flows in the
laboratory is realized for a narrow range of granular volume
fraction, defined as the ratio of the volume occupied by the
grains to the total volume. Still, the granular rheology used here
may also work for lower density systems where the coefficient
of restitution is low.

An alternative interpretation of the rheological model set by
Eq. (4) can be obtained within the assumption of microscopic
turbulence. Indeed, Boussinesq eddy viscosity hypothesis
assumes that a turbulent viscosity parameter can be calculated
using the strain rate tensor [see Eq. (2)]. In such limit, eddy
viscosity can vary due to the variation of the intensity of
microscopic turbulence, depending on the pressure or local
velocity shear of the flow.

Steady state. Let us consider axisymmetric stationary dif-
ferentially rotating viscous flow in the cylindrical coordinates
with constant pressure P̄ and density ρ̄. Azimuthal velocity
of the background depends on the angular velocity of the
differential rotation V̄φ = r
(r). The radial and azimuthal
components of the Navier-Stokes equation of the stationary
state in polar frame reads as
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where

�(r,z) = GM

(r2 + z2)1/2
(7)

is the gravitational potential of the central object with mass
M . Assuming a thin disk model (z2/r2 � 1) we derive a
rotationally supported steady state where the gravitational
potential of a central object sets the Keplerian profile of the

angular velocity:
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Here r0 is some fiducial radius used to parametrize the steady
state and q = 3/2. Hence, by using Keplerian angular velocity
in Eq. (6) we can derive a radial profile of the viscosity
parameter in equilibrium:

∂ ln η̄

∂ ln r
= q − 2. (9)

Interestingly, Rayleigh’s stability criterion in rotating fluids
∂r [r2
(r)] > 0, or q < 2, indicates that in steady state, the
viscosity parameter should be a decreasing function of radius:
∂r η̄ < 0. Hence, Eqs. (8) with radially homogeneous pressure
and density form the globally stable granular Keplerian flow
that can be used for the local linear stability analysis.

Local linear analysis. To study the linear dynamics of dense
granular flows we split the velocity, pressure, and viscosity
parameters into the background and perturbation components:

V = V̄ + V′, P = P̄ + P ′, η = η̄ + η′. (10)

We employ local shearing sheet approximation, where the flow
curvature effects can be neglected and the differential rotation
is reduced to the plane shear flow [28–30].

In this limit we expand azimuthal velocity

V̄φ(r) = r0
0 + ∂(r
)

∂r

∣∣∣∣
r0

(r − r0) + · · · (11)

and use local approximation to neglect higher order terms with
respect to (r − r0)/r0. Hence, introducing the local Cartesian
frame corotating with the disk matter at the fiducial radius r0,

x = r − r0, y = r0(φ − 
0t), (12)

and using the standard form of the Oort constants

A = r0

2

∂
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, B = −
0 − A, (13)

we can calculate the steady state velocity

V̄y(x) = 2Ax (14)

that describes the radial shear of the azimuthal velocity due to
the differential rotation of the flow.

Hence, the equations governing the linear dynamics of the
perturbations in the local shearing sheet frame can be reduced
to the following:
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where ν = η̄/ρ, D/Dt ≡ ∂/∂t + 2Ax∂/∂y, and � = ∂2/

∂x2 + ∂2/∂y2 + ∂2/∂z2, and the radial gradient of viscosity
parameter is neglected in the local approximation: ∂η̄/∂x = 0.
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To describe the rheological properties of the flow we employ
a general form of the local constitutive equation and introduce
pressure GP and shear GS rheology parameters as follows:

GP ≡
(

∂η

∂P

)
ξ

, GS ≡ 1

ρ

(
∂η

∂ξ

)
P

. (18)

Assuming that the rheological parameters of the granular fluid
can be considered to be local constants we can calculate the
linear perturbation of the viscosity as follows:

η′

ρ
= GP

P ′

ρ
+ GS

(
∂V ′

y

∂x
+ ∂V ′

x

∂y

)
. (19)

Introducing Fourier expansion of the spatial variables in
shearing sheet frame⎛

⎜⎝
V′(r,t)

P ′(r,t)/ρ
η′(r,t)/ρ

⎞
⎟⎠ ∝

⎛
⎜⎝

u(k,t)

−ip(k,t)

−iμ(k,t)

⎞
⎟⎠ exp[ir·k(t)], (20)

where k(t) = [kx(t),ky,kz] and kx(t) = kx(0) − 2Akyt , we can
derive the system of equations governing the linear dynamics
of incompressible perturbations in time:

u̇x(t) = 2
0uy(t) − kx(t)p(t) − νk2(t)ux(t) + 2Akyμ(t),

u̇y(t) = 2Bux(t) − kyp(t) − νk2(t)uy(t) + 2Akx(t)μ(t),

u̇z(t) = −kzp(t) − νk2(t)uz(t), (21)

0 = kx(t)ux(t) + kyuy(t) + kzuz(t),

μ(t) = GP p(t) − GS[kx(t)uy(t) + kyux(t)],

where ψ̇(t) stands for the time derivative of the variable ψ(t)
and k2(t) = k2

x(t) + k2
y + k2

z . Equations (21) pose a complete
initial value problem that can be solved numerically. However,
to get more insight into the stability properties of the system
we derive an approximate dispersion equation.

Stability analysis. A dispersion equation of the ordinary
differential equation system (21) can be derived in the case
of rigid rotation (A = 0). However, we employ adiabatic
approximation when time-dependent mode frequency can be
introduced and linear perturbations can be expanded in time as
ψ(t) ∝ exp[−iω(t)t]. In this limit we assume that frequency
depends on time only through the shearing variation of wave
numbers: ω(t) = ω[k(t)]. Thus, the dispersion equation leads
to

ω = ±(κ̄2 − W 2)1/2 + i(W − νk2), (22)

where κ̄ sets epicyclic frequency in rheological flows:

κ̄2 = (−4B
 − 4A2Gγ kxky)
k2
z

k2 − 4AGP kxky

, (23)

and W = σA + σP + σS with

σA = Akxky

k2 − 4AGP kxky

, (24)
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x + Bk2
y

)
k2 − 4AGP kxky

, (25)

σS = −AGS

(
k2
x − k2

y

)2 + k2
⊥k2

z

k2 − 4AGP kxky

. (26)

Here σA describes the shear flow transient amplification due to
the differential rotation of the flow, while σP and σS describe
the effects of pressure and shear rheology, respectively.

In the rigidly rotating Newtonian fluids (GP = GS = 0)
solution reduces to the classical spiral wave dumped by
constant viscosity: ω = ±2
0|kz/k| − iνk2.

The existence of growing modes can be seen in the case
of differentially rotating flows. Equation (22) shows that the
necessary condition for the growth of linear perturbations in
differentially rotating granular fluids is W > 0. Therewith,
the character of the perturbation growth depends on whether
rheological stress can destabilize epicyclic balance or not:

κ̄2 > W 2, W > νk2 : overstability, (27)

κ̄2 < W 2, W +
√

W 2 − κ̄2 > νk2 : instability. (28)

Axisymmetric perturbations. Equation (22) is rigorous in
describing the stability of axisymmetric modes with ky = 0.
In this limit transient amplification is absent (σA = 0), and we
can analyze rheological modifications of the spiral waves.

For the purpose of direct comparison with the viscous
instabilities we neglect shear rheology (GS = 0) and analyze
the effect of the pressure rheology parameter. Then the
necessary condition of the perturbation growth reduces to

GP < 0. (29)

This in turn indicates that the viscous overstability developing
at ∂η/∂ρ > 0, i.e., GP > 0, is an intrinsically compressible
mechanism that is absent in the incompressible limit.

In the opposite limit, when pressure rheology can be
neglected (GP = 0), we recover another type of growth
mechanism that originates from the shear rheology of the
granular fluid:

GS > 0. (30)

For better understanding we reformulate the growth criteria
as σS = −AGSk

2
x > ν(k2

x + k2
z ). Hence, unstable modes are

nearly uniform in the vertical direction |kz/kx | � 1. Using
Eqs. (4), (13), and (18) and the local value of incompressible
strain rate ξ (r0) = −2A we may rewrite the shear rheology
instability condition in a more general form:(

∂ ln η

∂ ln ξ

)
P

> 2. (31)

Thus, the shear rheology of the fluid leads to the viscorotational
instability when the granular viscosity parameter increases
faster than the square of the shear (strain) rate.

In general, when pressure and shear rheology effects are
comparable, the necessary condition of instability can be
reduced to the following: σP + σS > νk2. Here we introduce
the viscous cut-off wave number kν that defines length scales
that normally dissipate during one rotation period: 
0 = νk2

ν .
Hence, dynamically active modes are located in the k/kν < 1
area of the spatial spectrum.

The growth rates of linear axisymmetric perturbations are
shown in Fig. 1. The growth mechanism due to pressure rhe-
ology favors large-scale perturbations [kx/kν � 1, panel (a)],
while shear rheology instability operates at small radial scales
[kx ∼ kν , panel (b)]. In all cases most unstable modes are
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FIG. 1. Normalized growth rate of axisymmetric perturbations
in granular fluids under the influence of rheological viscous stress
Im[ω(kx,kz)]/
0 for different values of nondimensional pressure
gp = 
0GP and shear gs = 
0GS/ν rheology parameters: (a) gP =
−0.1, gS = 0; (b) gP = 0, gS = 1; (c) gP = −0.1, gS = 1; and
(d) gP = 0.1, gS = 1.

nearly uniform in the vertical direction kz/kν � 1. The growth
rates of the viscorotational instability set by the shear rheology
are asymptotically higher at wave numbers larger than the
cut-off wave number kν . However, at length scales shorter
than the granular dissipative scales the very validity of the
rheological model breaks down leading to the modification of
the viscorotational instability, a process that we do not address
in the current Rapid Communication.

Nonaxisymmetric perturbations. Linear dynamics
of nonaxisymmetric modes can be analyzed through
Eqs. (20)–(24), or numerical solution of the initial value
problem [see Eqs. (21)]. Figure 2 shows the growth rates
in the (kx,ky) plane. Shearing sheet modes are drifting in
this plane due to the background shear [kx = kx(t)]. Thus,
the nonaxisymmetric modes have some finite time before
reaching viscous scale kν , where they are dumped due to
a viscous dissipation. It seems that the pressure rheology
parameter introduces leading-trailing asymmetry of the linear
modes: leading modes grow higher for GP > 0, and trailing

FIG. 2. Normalized growth rate of nonaxisymmetric pertur-
bations in the kx-ky plane: Im[ω(kx,ky)]/
0, kz/kν = 0.01 and
(a) gP = −0.2, gS = 0; (b) gP = −0.2, gS = 1.5. Horizontal arrows
indicate wave-number drift due to the background shear.
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FIG. 3. Evolution of the energy of nonaxisymmetric perturba-
tions with gp = 0, gs = 1.5, kx(0)/kν = −0.8, kz/kν = 0.01, and
different values of azimuthal wave number ky . Modes with higher
ky undergo faster shearing deformation having less time to grow due
to the viscorotational mechanism.

modes for GP < 0. Therewith, positive pressure rheology
decreases the growth rates of the shear rheology instability,
while the negative pressure rheology enhances it. Figure 3
shows results of the numerical calculations of Eqs. (21).
The energy of spiral waves is shown at different values of
azimuthal wave number. The figure illustrates the transient
character of the growth of nonaxisymmetric modes.

To get more insight into the nature of the instability we
derive dynamical equations in the limiting case of vertically
uniform perturbations (kz = 0) and shear rheology (GP = 0).
We can reformulate Eqs. (21) for the horizontal velocity
circulation:

d

dt
{ln[curl(u)z]} = qGS
0

[
kx(t)2 − k2

y

]2

k(t)2
− νk(t)2, (32)

where curl(u)z = kx(t)uy − kyux is the linear perturbation of
the horizontal vorticity and Oort’s constant A = −q
0/2.
Hence we may conclude that viscorotational shear instability
of horizontal vorticity perturbations occurs at GS > 0 in
differentially rotating flows with angular velocity decreasing
outwards, and at GS < 0 if q < 0.

Summary. We present another type of instability in a
rheological viscous dense granular flow rotating around a
central gravitating object. The incompressible viscorotational
instability originates from the shear rheology of the granular
fluid. The instability operates on small scales and differs
in principle from the known viscous instabilities due to the
pressure rheology of viscous Keplerian flows. The mathe-
matical formulation of the problem is set to demonstrate
the fundamental nature of the found instability. We adopt
a minimal model approach, showing that the degrees of
freedom necessary for this instability to develop are three
dimensionality and supercritical shear rheology of the flow.
The instability occurs in flows where the viscosity parameter
has a positive steep gradient with respect to the local shear
velocity. Unstable modes have small radial and large vertical
scales, indicating the possibility of instabilities for narrow
azimuthal rings (ribbons).

The viscorotational shear instability can be simply de-
scribed using the pressure-vorticity balance. For instance,
anticyclonic vorticity perturbations to the Keplerian flow lead
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to local increase of the pressure. When this vorticity increase
leads to the increase of the viscosity and corresponding
accretion rate, pressure will increase even more, setting the
linearly runaway process. A similar process will occur with
cyclonic vorticity at pressure minima, for which a viscosity
decrease will result in furthering the flow pressure decrease.

The viscorotational shear instability may lead to a nonlinear
saturation at higher amplitudes, or to the delocalization of

the local constitutive relation and development of nonlocal
structures due to the specific properties of granular media [31].
We speculate that the instability analyzed here can play a
crucial role in the dynamics of dense planetary rings, as well
as promote structure formation in protoplanetary disks in the
areas of high dust to gas ratios.
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