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Cells exhibit qualitatively different behaviors on substrates with different rigidities. The fact that cells are more
polarized on the stiffer substrate motivates us to construct a two-dimensional cell with the distribution of focal
adhesions dependent on substrate rigidities. This distribution affects the forces exerted by the cell and thereby
determines its motion. Our model reproduces the experimental observation that the persistence time is higher on
the stiffer substrate. This stiffness-dependent persistence will lead to durotaxis, the preference in moving towards
stiffer substrates. This propensity is characterized by the durotaxis index first defined in experiments. We derive
and validate a two-dimensional corresponding Fokker-Planck equation associated with our model. Our approach
highlights the possible role of the focal adhesion arrangement in durotaxis.
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Cells are capable of sensing and responding to the mechan-
ical properties of their external environment. For example,
cytoskeletal stiffness [1], cellular differentiation [2–5], and cell
morphology and motility [6–9] are all strongly influenced by
extracellular matrix stiffness. In particular, it has been shown
experimentally that cells prefer crawling towards the stiffer
parts on substrates with spatially varying rigidity, a property
that is referred to as durotaxis. Durotaxis is a universal property
of motile cells, despite the diverse shapes and structures among
different cell types. It has been proposed that durotaxis is
critical for fine-tuning cell path finding and wound healing
[10,11]. Also, there is increasing evidence showing that
durotaxis is involved in cancer metastasis, since tumors are
usually stiffer than the surrounding materials [12,13].

A standard approach to modeling cell motility is to assume
that cells execute a persistent random walk [14–16]; sometimes
Lévy walks are used instead [17,18]. Recently, Novikova
et al. applied persistent random-walk ideas to understand
durotaxis by relating persistence to substrate stiffness [19].
Their approach did show how this assumption could lead to
durotaxis, but did not propose any direct mechanical reason for
this correspondence; also they did not fully analyze their model
in the relevant case of a two-dimensional (2D) spatial domain.
In this study, we propose a simple intracellular mechanism
that naturally leads to stiffness-dependent persistence that, in
agreement with the above findings, results in durotaxis. Our
approach combines direct simulations with the derivation of a
quantitatively accurate 2D Fokker-Planck equation, for which
the numerical solution matches well with simulation data.

Our basic hypothesis is built on the fact that cells are
observed to be more polarized when they move on stiffer ma-
terials. Cells have sophisticated mechanisms to sense stiffness,
involving various cellular components and subsystems includ-
ing the plasma membrane [20,21], actin filaments [22,23],
actomyosin-based contractility, integrin-based focal adhesions
[24,25], etc. Once cells sense a stiffer substrate, they take on a
more elongated shape [26,27] as a response. Now cells move
by protrusions that occur with the help of focal adhesions that
allow force transmission to the substrate. We will assume that
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the change in shape to being more polarized implies that focal
adhesions (FAs) are formed within a narrower wedge on the
cell front. In other words, we assume that the FA distribution is
correlated with cell polarization; the exact biophysical process
that creates this correlation is not addressed here. It is also
possible that the total number of FAs present at some fixed
time increases on stiffer substrates, as FAs are observed to be
more stable on stiffer substrates [6]. In our model, both the
distribution and the total number of FAs directly control the
variance of deflection angles in cell motion over a short-time
interval. We also consider the possibility that cell speed may
also depend on stiffness. These mechanisms will create the
necessary relationship between stiffness and persistence.

In experiments, the locations of cells moving on a 2D sur-
face are typically recorded at fixed time intervals. Accordingly,
we model the cell as a rigid object moving with velocity v

and rotating its motion direction � (its polarization) by an
angle �� at fixed time intervals �t = ti+1 − ti , which we
take to be our unit of time. To determine ��, we assume
that there are a number Nf of focal adhesions that are
positioned at distances ri from the cell center and angles θi

relative to the current direction of motion; these are chosen
randomly from uniform distributions with ranges (rmin,rmax)
and (−θmax,θmax), respectively. We assume, in line with the
previous arguments, that θmax is determined by local substrate
stiffness k as θmax = A/k, where A is a constant factor. The
basic picture of our cell is given in Fig. 1. Our calculations will
assume that Nf remains constant. The driving force from each
focal adhesion is assumed to have a constant magnitude and to
point in the current moving direction. The net driving force is
canceled by the friction acting on the cell, thereby determining
the velocity. It is worth noting that in reality, FAs are located
at both the front and the back of the cell. The forces applied
by back FAs, which typically operate in a slipping rather than
gripping mode [28], are replaced with friction.

At each time step, the dynamical formation and disruption
of FAs cause a possible imbalance in the driving torque. With
fast relaxation, the cell will rotate by an angle �� at each time
step to satisfy zero net torque

Nf∑
i=1

ri sin(θi − ��) = 0, (1)
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FIG. 1. Sketch of our model. Red circles represent focal adhe-
sions. In our simulation, focal adhesions are randomly generated
within an angular range bounded by red lines in the figure at each step.
(a) For cells on a soft substrate, the distribution of FAs is relatively
wide. (b) Conversely, for cells on a hard substrate, the distribution of
FAs is relatively narrow.

whose solution is

tan �� =
∑Nf

i=1 ri sin(θi)∑Nf

i=1 ri cos(θi)
. (2)

For the purpose of illustration, we typically set ri = 1 for all i

and Nf = 12 in our model.
Clearly, the variance of the induced distribution for ��

determines the persistence of the motion. Here we use a Monte
Carlo sampling method to evaluate this variance. We use 106

sampling steps and have checked that this gives us an accurate
evaluation for the range of parameters we have investigated.
For the case of fixed radii, we obtain

∫
· · ·

∫ θmax

−θmax

⎛
⎝ Nf∏

i=1

dθi

2θmax

⎞
⎠ arctan2

( ∑Nf

i=1 sin(θi)∑Nf

i=1 cos(θi)

)
.

One can also compute the variance for the more general
situation with a distribution for the radii as well. Typical results
of this calculation are shown in Fig. 2(a). For use later on, we
have fitted the data for the case Nf = 12 with fixed radii to a
simple function of k,

σ (k) = 1

αk + β
. (3)

As expected, increasing Nf or decreasing θmax reduces the
variance, whether directly or via more averaging. Thus,
rigidity-dependent changes in the focal adhesion dynamics
can indeed be used to model the mechanism underpinning the
persistence-stiffness correlation.

Since focal adhesions are dynamically formed and de-
stroyed, in our model at each time step the locations of
all focal adhesions θi are reselected with no correlation to
their previous value, hence 〈��(ti)��(ti+1)〉 = 0. Thus, on
a uniform substrate, approximating the distribution of ��

to be Gaussian with the calculated width reduces our model
to a version of the wormlike chain, where the mean-square
displacement is

〈x2〉 = v2τ 2
p

(
t

τp

+ e−t/τp − 1

)
. (4)

FIG. 2. Simulation result of uniform substrates and the variance
of deflected angles. (a) Variance of deflected angles calculated by
Monte Carlo sampling for σ 2 vs stiffness k, with N = 8 and ri = 1
(red), N = 12 and ri = 1 (blue), N = 12 and ri ∈ (0.5,1.5) (yellow)
for all i and the fitted function σ (k) with α = 3.9 and β = −0.645
[Eq. (3)] (purple). (b) Comparison between Monte Carlo sampling
and direct simulation for N = 12 and r = 1 (red), with two lines
overlapping as the purple line; for N = 12 and ri ∈ (0.5,1.5), with
two lines overlapping as the blue line; for N = 8 and ri = 1, shown
by the green line (direct simulation); and for N = 8 and ri = 1, shown
by the red line (Monte Carlo sampling). (c) and (d) Simulation of 1000
time steps with v = 1 (arbitrary units). The initial position of 20 cells
is (0,0) and the initial moving direction is randomly selected. The
black dots are the final positions of each cell. (c) On a soft substrate,
k = 1 and θi ∈ (−0.5π,0.5π ) for all i. (d) On a stiff substrate with
k = 5, the angle range is θi ∈ (−0.1π,0.1π ) for all i.

Here the persistence time is defined as τp = − �t
ln〈cos ��〉 . Since

〈cos ��〉 = e−σ 2�t/2, where σ 2�t = Var(��), τp = 2
σ 2 . In

terms of real numbers, for example, from Ref. [18], we can set
v = 0.5 μm (per δt) and δt = 0.01h. We then obtain σ 2δt ∼
0.052 on stiff substrates and ∼0.32 on soft substrates. In this
way, we find τp = 2/σ 2 ∼ 0.2h on soft substrates and ∼8h on
stiff substrates in our simulations.

Initially, we assume that the cell speed v is stiffness
independent and we simulate cell trajectories on uniform
substrates with different stiffness and verify the previous
results for σ 2 [see Fig. 2(b)]. In Figs. 2(c) and 2(d) we show
trajectories of cells simulated on both uniform soft and hard
substrates. Consistent with the experimental observation [29],
cells crawl more efficiently on stiffer substrates.

Next we study the effect of stiffness gradients on cell
motility. We impose a constant stiffness gradient in the central
region with constant low stiffness kleft on the left side and high
stiffness kright on the right side. We fix both kleft and kright and
vary the width of the central region

k(x) =
⎧⎨
⎩

kleft = 1, −1000 < x < −L

kleft + kright−kleft

2L
(X + L), −L � X � L

kright = 5, L < x < 1000.

(5)
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FIG. 3. Direct simulation on the gradient matrix and DI. (a)–(c)
Soft substrate k = 1 in the left region and hard substrate k = 5 in
the right region. The central region has a constant gradient stiffness
and varying width: (a) L = 100, (b) L = 200, and (c) L = 300
(arbitrary units). (d) Durotaxis indices at several values of L; the
index decreases as L is increased. Every ten steps is counted as a big
step.

Initially, all our cells are placed at the origin and given a
random initial direction. For small width, at a time when half
of the cells go into the stiff region on the right, the other half are
still hovering within the central gradient region [Fig. 3(a)]. As
the width increases, fewer and fewer cells enter the soft region
on the left [Figs. 3(b) and 3(c)]. This is caused by the fact
that larger width allows more moving steps inside the gradient
region and cells have more time to adapt to the direction of
stiffness gradient. We further characterize these results by the
durotaxis index (DI) [29]. We calculate DI defined below every
ten time steps in our simulation:

D(ti) = Nright − Nleft

Nright + Nleft
, (6)

where Nright and Nleft are the number of cells having positive
and negative net displacement in the x direction, respectively.
This index is in the range [−1,1]. Larger durotaxis indices
indicate that more cells are moving towards the ascending
gradient direction.

We find that the curve can be divided into three sections
[Fig. 3(d)]. In the first section, nearly all cells are still
in the gradient region. The index increases rapidly, which
suggests that cells start being guided by the stiffness gradient.
Consistent with experiment observation [27], the magnitude of
the DI is highly correlated with the magnitude of the gradient.
In the second section, part of the cells are in the gradient region
while the other have entered the uniform stiffness region. In the
last section, the index starts decreasing because all cells move
into the uniform rigid region and begin to execute random
walks. The DI curve in the first section elucidates the role of
gradient stiffness on cell motility.

To facilitate understanding of our simulation data, we
now develop a Fokker-Plank equation for the probability

distribution P (x,y,�; t) governing a population of particles
in our model. We will be specifically interested in cases
with a stiffness gradient, which we choose to lie along the x

direction. We focus on the variation with x and � and introduce
p = ∫

dy P as a two-dimensional density. For any single cell,
the next position x(t + dt) depends on the current position and
angle via x(t) + v cos[�(t)]dt . We can therefore represent a
single step in our stochastic process via

p(x,�; t + dt) =
∫ 2π

0
p(x − v cos(�0)dt,�0; t)

× f (x − v cos(�0)dt,�0 − �)d�0, (7)

where we will use the aforementioned Gaussian approximation

f (x,�0 − �) = a(x)e−(�0−�)2/2σ (x)2dt . (8)

Here a(x) =
√

1
2πσ (x)2dt

is the normalization coefficient as long

as the width is significantly smaller than 2π . Note that now
the variance depends on x through an x dependence in the
stiffness k.

In the standard manner we can assume small dt and expand
p around the current values of its arguments. After some
simplification, we obtain

∂p

∂t
=−∂p

∂x
v cos �+ σ (x)2

2

∂2p

∂�2
+ v sin �

∂

∂x

[
σ (x)2dt

∂p

∂�

]
.

The horizontal location x and moving direction � are directly
coupled in the last term on the right-hand side, which is of
the order of dt . We have checked that this third term can
be neglected in our model, both in terms of any qualitative
predictions but also (and perhaps more surprisingly) at
little cost in quantitative accuracy even though our model
involves discrete update steps. Consequently, Eq. (9) can be
simplified to

∂p

∂t
= −∂p

∂x
v cos(�) + σ (x)2

2

∂2p

∂�2
. (9)

Following standard procedures (see, for example, Ref. [30]),
one can show the Langevin equations below are equivalent to
the Fokker-Planck approach:

dx

dt
= v cos(�),

d�

dt
= η(t), (10)

where 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′)σ (x)2.
We then solve Eq. (9) for both the uniform and stiffness

gradient substrate cases. Figure 4(a) shows the initial condition
in the all cases discussed in the following; in particular
we apply a narrow Gaussian distribution to approximate
the δ in p(x,�; t = 0) = 1

2π
δ(x), � ∈ (0,2π ). The solution

shows a peak in x that varies from being at positive values
(for � � 0) to negative ones (for � � π ); the peak heights
are independent of � as expected via rotational symmetry
[see Fig. 4(b)].

For the stiffness gradient case, the stiffness distribution is
described by Eq. (5) with L = 400. The full distributions are
shown at several times in Figs. 5(a) and 5(b). Now there is a
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FIG. 4. The PDE solution. (a) Initial probability density function
p(x,�; t = 0). (b) Probability density function p(x,�; t = 94) on a
uniform substrate. Note that in this and the subsequent figure � runs
from π/2 to 5π/2.

clear peak as a function of the direction. Most cells adapt their
moving directions from their initial directions �(t = 0) to �

near zero, exhibiting durotaxis (data not shown); this can be
seen by showing a full 2D density plot, where there is a sharp
ridge of cells moving ahead and a significant smearing of cells
that are going backward [Fig. 5(c)]. This can be studied by
defining p̂(x,t) = ∫ 2π

0 p(x,�,t)d� and comparing our partial
differential equation (PDE) result for this quantity with direct
simulations [Fig. 5(d)]. The very good agreement between
PDE and direct simulation results validates the Fokker-Planck
equation approach. Note that as time progresses the above
trends continue, with the population continuing to break up
into a peak at positive x and a straggler peak at negative x

corresponding to cells that have wandered out to the uniform
less stiff side of the gradient profile.

FIG. 5. The PDE solution and comparison to simulation on a
substrate with stiffness gradient. Probability density distribution
p(x,�; t) at (a) t = 56 and (b) t = 94. (c) Full 2D density plot
from direct simulation. (d) Comparison between direct simulations of
30 000 cells and the numerical solution of the Fokker-Planck equation
for p̂(x,t = 94).

FIG. 6. Direct simulations with random initial velocities and
uniform initial spatial density.

In general, the Fokker-Planck approach is computationally
preferable, especially if we are interested in the long-time
behavior of the density. With direct simulation, we often need
to calculate many thousands of cells to determine a smooth
distribution. An example is shown in Fig. 6(a), where the
left side of the box is soft, the right half is hard, and we
have used reflective boundary conditions in the x direction
and periodic in the y direction. Even though the trajectories
are very different on each side, the overall steady-state
density distribution is flat (see Fig. 6). This can be obtained
directly from the steady-state Fokker-Planck approach, either
by numerical relaxation or analytically by separation of
variables.

To see one last nontrivial use of the PDE approach, we
now generalize our model to allow the velocity to be stiffness
dependent. The Fokker-Planck equation now becomes

∂p

∂t
= − cos(�)

∂

∂x
[pv(x)] + σ (x)2

2

∂2p

∂�2
. (11)

FIG. 7. Further test of the PDE. (a) Full PDE solution for periodic
variation in stiffness and concomitant cell speed, with random initial
velocities and uniform initial spatial density. (b) Comparison between
direct simulations of 10 000 cells and the numerical solution of the
Fokker-Planck equation for p̂(x,t = 200).
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We use the specific forms

k(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

khard = 5, −150 < x < −90

khard + ksoft−khard
60 (X + 90), −90 � X � −30

ksoft = 1, −30 < x < 30

ksoft + khard−ksoft
60 (X − 30), 30 � X � 90

khard = 5, 90 < x < 150

(12)

and for the same regions,

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vhard = 0.56, −150 < x < −90(√
vsoft−√

vhard

60 · (x + 90) + √
vhard

)2
, −90 � X � −30

vsoft = 0.0165, −30 < x < 30(−√
vsoft+√

vhard

60 · (x − 30) + √
vsoft

)2
, 30 � X � 90

vhard = 0.56, 90 < x < 150.

(13)

Figure 7 shows that the PDE result matches very well with
direction simulation, but direction simulation needs a very
large number of cells to get a smooth result.

In this study we discussed a possible underlying mechanism
for durotaxis, namely, a stiffness dependence of FA formation
and possible FA-dependent speed. It is known that FAs
can dynamically sample rigidity to act as mechanosensors
[25], but it remains elusive how FA formation can directly
control cell motility. In previous work it was shown that
stiffness-dependent persistence time leads to durotaxis [19].
In our work we proposed several biophysical mechanisms that
can cause positive correlation between persistence time and/or
distance and substrate stiffness. For example, we show that
a model starting from the stiffness-dependent FA formation
assumption can generate results consistent with those in [19].
In addition, we derived the corresponding 2D Fokker-Planck
equation associated with our model and showed that it gives
consistent numerical agreement with our simulations. To show
an alternative application of our model, we predicted long-term
durotaxis effects on cell density distribution in the presence of
a spatially complex stiffness field. We found that the velocity

dependence on stiffness can lead to cell trapping on soft
materials. Our work can potentially help in predicting cell
motility in more complex physiological environments such as
those arising during cancer metastasis.

Our model implicitly assumes that cells are incompetent
at sensing rigidity gradients without moving around. For
chemotaxis, a close analog of durotaxis, a eukaryotic cell
is capable of comparing chemical concentration between its
two ends, even though a typical bacterium is not [31]. It is
technically hard to test such an ability in durotaxis, mainly
because the cytoskeleton is essential for both cell motility and
mechanosensing. Recently it was shown that some cells can
exhibit durotaxis as a cluster even if isolated constituent cells
are ineffective [32]; in this case motion appears to not be
necessary.

This work was supported by the National Science Foun-
dation Center for Theoretical Biological Physics (Grant No.
NSF PHY-1427654). H.L. was also supported by the Cancer
Prevention Research Institute of Texas Scholar program of the
State of Texas.
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