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Quantifying the entropic cost of cellular growth control
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Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation
can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are,
in some sense, optimal. Here we quantify the amount of regulation required to control a cell’s growth rate by a
maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds
to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a
population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram
that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover,
we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on
the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can
be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and
(iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human
cells are found to be remarkably consistent with empirical evidence.
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I. INTRODUCTION

To a great extent, the physiologic state of a living cell is
determined by how a large number of microscopic degrees
of freedom subject to noise (nutrient import rates, metabolic
reaction fluxes, gene expression levels, etc.) coordinate in
response to the sensing of the extracellular conditions. This
process ultimately correlates different regulatory variables
and constrains the cell’s phase space, i.e., the set of viable
microscopic configurations. The ensuing reduction of the
effective size of the phase space, i.e., the entropy change, can
be thought to quantify, roughly speaking, the overall amount of
regulation required to correctly modulate the cell’s physiology
in a given environment. A key idea in this type of scenario is
that the fitness level and the strength of regulation necessary
to achieve it are tightly linked, with higher fitness being
generically associated with stronger regulation [1,2]. Having
access to detailed information on genetic and metabolic
variables, one may now hope to describe the set of phenotypes
selected by regulation, i.e., the physiologically relevant portion
of phase space, in terms of the behavior of individual degrees
of freedom. On the other hand, a principle-based approach
might provide meaningful system-level insights. An important
question in this respect is the following: Can one characterize
the selected region of the phase space in precise terms?

Bacteria, whose physiology is primarily described by their
growth rate (GR), may yield important clues in this respect.
Experiments probing bacterial growth at single-cell resolution
in fact appraise the significant cell-to-cell variability that
accompanies the establishment of a well-defined mean GR
across an exponentially growing population [3–5]. Such a
heterogeneity reflects, at a phenotypic level, variability in
the underlying microscopic configurations and may therefore
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carry strong regulatory signatures. Recent work has indeed
shown that single-cell GR distributions measured for E. coli
correspond to maximum-entropy distributions of its viable
metabolic flux patterns at fixed mean GR, suggesting that
metabolic regulation realizes a tradeoff between the high
fitness of fast-growing states and the high density of slow-
growing ones [6]. By shifting the optimization target from
the GR to its entropic costs, the maximum-entropy approach
offers a view that is compatible both with the presence of
noise in gene expression, which poses fundamental limits to
GR optimization [7], and with the idea that the metabolic costs
of strictly optimizing growth in fluctuating environments may
be prohibitive [5]. The scenario derived so far is however
largely incomplete. In particular, besides establishing more
connections to experiments, it would be important to devise
an interpretation for the Lagrange parameter that constrains
the mean GR of maximum-entropy distributions (equivalent
to the inverse temperature in a Boltzmann distribution).

Here we expand the maximum-entropy picture by showing
the following.

(i) The strength of regulation and the fitness are connected
by an extended phase diagram that clarifies how growth
repression can be as costly as growth enhancement. After
linking to genome-scale models of metabolic networks, this
allows us to point to specific mechanisms that cells can exploit
to implement those strategies and to qualitatively interpret
different types of empirical data.

(ii) The inverse temperature parameter that controls
maximum-entropy distributions can be directly connected,
in a generic dynamical setting, to the population growth law
and, perhaps most unexpectedly, to the initial size of the
population, leading to results that are again in agreement with
empirical evidence.

This strongly supports the idea that, within the right
framework, a statistical physics approach to cellular regulation
may provide useful and testable insights into the connections
between physiology and regulation.
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II. BASIC SETUP

Following [6], we focus on metabolic degrees of freedom.
We describe each viable metabolism by v = {vi}, representing
the vector of metabolic reaction fluxes (i = 1, . . . ,N with N

the number of reactions), and by λ(v), the GR corresponding to
flux configuration v. The spaceF of feasible flux vectors v (the
phase space) is formed by the nonequilibrium steady states of
the underlying metabolic network, defined by the solutions of
Sv = 0, where S denotes the M × N stoichiometric matrix (M
being the number of chemical species) and where a specific
range of variability [vmin

i ,vmax
i ] is assumed to be given for

each vi based on thermodynamic and kinetic constraints [8].
Maximum-entropy distributions with prescribed mean GR 〈λ〉
over F are given by

p(v) = eβλ(v)

Z(β)
(v ∈ F), (1)

where β is the Lagrange multiplier enforcing the constraint
〈λ〉 = ∫

F λ(v)p(v)dv, while Z(β) = ∫
F eβλ(v)dv is a normal-

ization factor. In the limit β → 0 (β � 1), p(v) becomes a
uniform distribution over F [a distribution that concentrates
around fastest-growing states with GR λmax ≡ maxv∈F λ(v)].
Following information-theoretic reasoning, for each given
β (or 〈λ〉) the effective phase-space volume accessible
to the system can be quantified by the entropy S(β) =
− ∫

F p(v) ln p(v)dv. In turn, sampling F by (1) reduces the
entropy with respect to the uniform sampling with β = 0 by a
factor I given by [6]

I ln 2 ≡ S(0) − S(β) = β〈λ〉 −
∫ β

0
〈λ〉dβ ′, (2)

where 〈λ〉 is a function of β. The above quantity (measured in
bits) gauges the effective reduction of the phase space that
occurs for any given β and, within the maximum-entropy

scenario, it can be interpreted as the minimal amount of
regulation required to establish a given mean GR 〈λ〉. The
〈λ〉 vs I curve obtained from (2) by varying β separates the
(I,〈λ〉) plane in a feasible region (where I is large enough for
the corresponding value of 〈λ〉) and a forbidden region (where
I is too small and hence the regulation is insufficient to achieve
the desired GR). Reference [6] has characterized this phase di-
agram for E. coli growth in a minimal glucose-limited medium
(based on the iJR904 genome-scale metabolic network model
with N = 1075 and M = 761 [9]) [see Fig. 1(a) (black line)].

More specifically, maximum-entropy GR distributions ly-
ing on this line were found to reproduce different sets
of empirical data by fitting a single parameter, with the
corresponding values of 〈λ〉/λmax shown as orange markers
in Fig. 1(a).

III. EXTENDED PHASE DIAGRAM

We start by noting that the standard E. coli GR in the
human gut, corresponding to a doubling time of about 40 h
[green marker in Fig. 1(a)], appears to be close to the mean
GR obtained for a flat sampling of F with β = 0, with both
lying close to 1% of λmax. Such fitness values are achievable
at very small regulatory costs, i.e., for I 	 0. This however
implies that slower GRs require some degree of regulation.
A slow growth branch in the (I,〈λ〉) diagram can be obtained
by simply computing (2) for β < 0. This leads to the red
curve in Fig. 1(a) and, in turn, to a second forbidden region
at small I and small 〈λ〉, where the amount of regulation I is
insufficient to grow at mean rate 〈λ〉 (or, equivalently, where
〈λ〉 is too small for the given value of I ). This region provides
a direct indication of the entropic costs of growth repression
in E. coli.

It would be interesting to check whether cells explore the
slow branch of the phase diagram as they seem to do with the
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FIG. 1. Both the enhancement (β > 0) and the suppression (β < 0) of growth imply regulatory costs in terms of reduced metabolic
phase-space accessibility. (a) The 〈λ〉/λmax versus I trade-off curve computed from the E. coli iJR904 genome-scale metabolic network model
assuming a glucose-limited minimal medium (λmax = 1/h). The blue, green, and orange markers denote the values of 〈λ〉/λmax (i) found for
β = 0 (i.e., for an unbiased sampling of the feasible space), (ii) estimated for E. coli in the human gut (roughly corresponding to a doubling
time of 40 h), and (iii) computed in [6] for two sets of GR distributions, respectively, described by the values 〈λ〉/λmax 	 0.28 and 	 0.45.
(b) The 〈λ〉/λmax versus I trade-off curve computed from the human catabolic core network with λmax 	 0.046/h, corresponding to a fast GR
for cancer cells (doubling time 	 15 h). Blue and green markers represent, respectively, the estimated renewal rates of various healthy human
tissues and the estimated GRs of different types of cancers (data were obtained from [10]). Note that reducing the mean GR by a given factor
generically requires a smaller amount of regulation compared to speeding it up by the same factor.
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fast branch. Perhaps unsurprisingly, few studies have probed
bacteria at very slow growth [11] (although active regulation
for dormancy and slow growth occurs in persistent bacteria
[12,13]). In human cells (or, more generally, in multicellular
systems), on the other hand, growth is usually controlled by a
variety of mechanisms that include mechanical (e.g., cell-cell
contacts), signaling (e.g., growth factors), and regulatory (e.g.,
metabolic) pathways. Figure 1(b) displays the (〈λ〉,I ) phase
structure obtained from the carbon catabolic core metabolism
of human cells [14] together with the estimated GRs of 61
cancer types (green markers) and the estimated renewal rates
of 21 human tissues (blue markers). Remarkably, the mean
fitness obtained for β = 0 is close to separating the two data
sets (note that the GR distributions for cancer and healthy
tissue cells overlap by less than 10%), suggesting that healthy
tissues might indeed probe states close to the slow branch
with β < 0, while cancer cells are more likely associated with
growth-enhancing phenotypes with β > 0.

IV. DIFFERENT STRATEGIES TO ENHANCE AND
REPRESS GROWTH

It is instructive to compare the entropy reduction I to the
dimension of the feasible space F , equal, in the case of E. coli
presented in Fig. 1(a), to 233. In order to get close to λmax

cells have to invest considerably more than one bit per degree
of freedom into regulation, in agreement with the view that
GR maximization entails a finer and finer tuning of metabolic
reactions (and higher regulatory costs). On the other hand,
slowing growth below the unregulated limit only seems to
require a fraction of a bit per degree of freedom, compatible
with the idea that it is sufficient to act on a few essential
reactions to hinder growth. A careful look at solutions selected
by the maximum-entropy rule upon varying β (which can be
computed as detailed in [6]) sheds light on the regulatory
pathways that cells modulate in order to adjust their fitness.
Focusing on conditions for which λmax 	 0.4/h (so as to avoid
effects due to gene expression costs that set in at faster rates
[15]), we see that the flow through futile cycles anticorrelates
with the mean GR for β > 0 [Fig. 2(a)], confirming that the
reduction of chemical energy dissipation is a major mechanism
of growth maximization [6]. Likewise, increasing β appears to
select solutions for which CO2 is the main carbon compound
excreted [Fig. 2(b)], in agreement with the fact that the high-
ATP-yield oxidative phenotype should be dominant at the GR
values under consideration (λ � 0.4/h) [15,16]. On the other
hand, no major rearrangement of these pathways is observed
for β < 0, as the mean glucose intake also remains constant
[Fig. 2(a)]. This is not surprising in view of the fact that growth
suppression appears to require much weaker regulation than
growth optimization, as one can see by comparing the slow and
fast branches of Fig. 1(a). Interestingly, the only reaction that
appears to be significantly modulated along the slow branch
of the phase diagram is acetolactate synthase [Fig. 2(a)], a key
enzyme for the biosynthesis of branched-chain amino acids
in microbes [17,18]. This is reasonable, as limiting amino
acid production pathways effectively creates a bottleneck for
growth by reducing the rates of protein synthesis.

0.001 0.01 0.1 1
< >/

max

0.01

0.1

1

no
rm

al
iz

ed
 f

lu
x

ACLS
length-2 futile cycles
glc import

0.001 0.01 0.1 1
< >/

max

0

0.2

0.4

0.6

0.8

1

fr
ac

ti
on CO

2

others

(a) (b)

FIG. 2. Different metabolic strategies control growth suppression
and enhancement. Modulation of selected metabolic variables with
〈λ〉/λmax for maximum-entropy flux configurations of E. coli found
under glucose-limited (maximum uptake 4.4 mmol/gDW/h) aerobic
conditions with λmax 	 0.4/h. (a) Mean fluxes through acetolac-
tate synthase (ACLS), length-2 futile cycles, and glucose import.
(b) Fraction of carbon excreted as CO2 (cyan) and as other carbon
compounds (brown). All fluxes are normalized to the maximum
glucose import flux. β increases from −∞ to +∞ as 〈λ〉/λmax grows.
The blue triangle marks the value of 〈λ〉/λmax corresponding to β = 0.
Faster mean GRs can be achieved by reducing energy dissipation
by futile cycles and improving yields via respiration. Slower rates
appear to require the creation of bottlenecks in key pathways like the
aminoacid biosynthesis route.

V. PHYSICAL MEANING OF β

This analysis raises the question of whether the parameter
β, which in our setting varies from −∞ to +∞, can be seen in
more precise terms than simply as a degree of GR optimization
(maximization if β > 0, minimization if β < 0). To get some
physical insight, we analyze a generalization of the standard
logistic growth model (see, e.g., [19]). Consider a population
of N0 cells (indexed i) initially planted in a growth medium
with finite carrying capacity K and assume (similarly to [20])
that their intrinsic GRs λi are sampled independently from a
distribution q(λ) defined over the feasible space F . Here q(λ)
simply describes the statistics of the population from which the
initial inoculum was obtained. If the finite carrying capacity is
the only growth-limiting factor, each of the initial seeds will
expand in time according to its intrinsic GR and the number
ni of cells with GR λi will evolve in time according to

ṅi

ni

= λi

(
1 − N

K

)
, N (t) =

N0∑
i=1

ni(t), (3)

which implies

Ṅ

N
= 〈λ〉t

(
1 − N

K

)
, 〈λ〉t =

∑
i

λini(t)

∑
i

ni(t)
. (4)

A formal solution of (3) is given by ni(t) = eβ(t)λi , with

β(t) = t − 1

K

∫ t

0
N (t ′)dt ′. (5)
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FIG. 3. The asymptotic value of β controlling the phase-space organization of a cell population increases as the initial population size
decreases. (a) β� versus ln(K/N0) for the minimal model of population growth described in the text, obtained by solving Eq. (8) for
q(λ) ∝ (1 − λ/λmax)171. Note that 〈λ〉 increases with β. (b) Inverse of the measured doubling times of different cancer cell types (proxies for
the mean GRs) as a function of the inverse inoculum size 1/N0. Data were obtained from [21].

In turn, for large enough N0 we can resort to an annealed
approximation for N (t), yielding

N (t) 	 N0Z(β(t)), Z(β) =
∫

q(λ)eβλdλ, (6)

so that, from Eqs. (5) and (6),

β̇ = 1 − N0

K
Z(β). (7)

At stationarity, β settles to a value β� fixed by the condition

Z(β�) ≡
∫

q(λ)eβ�λdλ = K

N0
, (8)

which determines the asymptotic degree of optimization β�

given q(λ), the carrying capacity K , and the size of the
inoculum N0. Figure 3(a) shows the solutions obtained for
q(λ) ∝ (1 − λ/λmax)171 (the distribution of λ corresponding
to a flat distribution of flux configurations over F in E. coli
[6]) as a function of ln(K/N0). One can see that β > 0 for
K > N0, while it rapidly becomes more and more negative
when N0 > K . In other terms, the asymptotic GR distribution
is of the maximum-entropy type and concentrates on growth-
suppressing states with β < 0 for stressed initial conditions for
which the initial size of the population N0 exceeds the carrying
capacity K . (Note that the picture obtained for N0 > K may
be relevant for a more realistic class of stresses than excess
initial population; see, e.g., [22].)

The important role played by N0 (or, more precisely within
the model discussed above, by N0/K) in determining how
a population of cells will asymptotically distribute over the
phase space F seems to represents a rather counterintuitive
prediction. Within the above model, the existence of a finite β

linked to N0 is simply due to the fact that, if N0 values of λ

are sampled from a distribution q(x) = (1 + a)(1 − x)a (with
x ≡ λ/λmax the relative GR), then on average cells will have
values of x lying below

xc(N0) = 1 − [(1 + a)N0]−1/a. (9)

This, however, corresponds to a value of β given by βc =
a[(1 + a)N0]1/a . In other words, the maximum β achievable
by a population evolving as in (3) is determined by N0 [and

by the specifics of q(λ)]. It is in our view remarkable that the
decrease of 〈λ〉 upon increasing N0 [see Fig. 3(a)] is consistent
with the increase of doubling times with N0 found for various
cancers in vitro, at least for small enough N0 [see Fig. 3(b)].
Experiments probing the slow-growth regimes may clarify if
E. coli cells saturate the slow branch in Fig. 1(a) as they seem
to do with the fast branch.

VI. CONCLUSION

The setup presented here combines a standard statistical
physics view with genomewide knowledge of cell metabolism
to address, at a general level, the question of how a popu-
lation of exponentially growing cells organizes in its phase
space F . Complementing the standard view that focuses
on the molecular determinants of growth control [23], we
propose a system-level approach whose key idea is that both
the fitness (i.e., the mean GR) and the density of metabolic
states in F contribute to the establishment of well-defined
single-cell distributions of metabolic phenotypes, leading to
a maximum-entropy description of cellular metabolic states.
Defining the amount of regulation required to set a given mean
GR as the corresponding phase-space entropy reduction, we
found an explicit relationship linking regulation and fitness and
quantitatively showed that slow growth requires active regu-
lation. Applying the maximum-entropy idea to genome-scale
models, different regulatory tuners were identified that cells
can act upon in order to control their GR from very fast to very
slow. Finally, we proposed a minimal theoretical interpretation
for the key parameter of our maximum-entropy theory based
on the dynamics of population growth. Ultimately, it is in
our view the exponential character of the population growth
law that leads to maximum-entropy distributions over F .
This analysis has also brought to light the possibly key role
played by the parameter N0, i.e., the initial size of a cellular
population. Despite its basic crudeness, our theory provides
quantitative information on the interplay between regulation
and growth in different cell types and is in qualitative
agreement with known empirical data. The maximum-entropy
approach therefore seems to provide once more [24] concepts
to analyze the organization and performance of living systems
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in a statistical physics perspective. Experiments probing slow-
growth regimes could clarify if cells saturate the slow branches
shown in Figs. 1(a) and 1(b) as they seem to do with the
fast branch, at least for E. coli [6]. Perhaps more importantly,
though, the maximum-entropy scenario discussed here could
be further validated by metabolic data at single-cell resolution,
e.g., regarding enzyme levels, metabolite levels, and metabolic
fluxes. Advances in single-cell metabolomics may therefore
play a key role in unraveling novel system-level organization
principles in living cells and populations [25]. On a more
abstract level, it would be interesting to extend the simple
population growth model presented here, specifically to clarify

the conditions leading to β < 0 as opposed to β > 0. Most
notably, the explicit inclusion of the interplay between the
cell population and an environment-borne nutrient is likely to
provide important insight in this respect.
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