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Statistical mechanics of stochastic growth phenomena
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We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using
its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the
variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson
gas. By using Einstein’s theory of thermodynamic fluctuations we consider transitional probabilities between
thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by
gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the
transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold
with a Kähler metric.
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I. INTRODUCTION

An important breakthrough occurred in the early 2000’s
after realizing a rich integrable structure of the Laplacian
growth problem [1,2]. Remarkable connections of Laplacian
growth with integrable hierarchies and random matrices pro-
vide ample opportunities to address long-standing problems
with novel methods. A particularly important example is a
consolidation of the two-dimensional (2D) Dyson gas theory
[3], quantum Hall effect [4], diffusion-limited aggregation,
and Laplacian growth within a single framework of normal
random matrix ensembles with complex eigenvalues.

Consider the generalization of a Gaussian ensemble of
random matrices [5,6] to the case of normal random N × N

matrices. The partition function is

τ =
∫

dMdM†d− 1
h̄

Tr[MM†+V (M)+V̄ (M†)], (1)

where h̄ is a positive parameter, V (z),V̄ (z) are analytic
functions, and the overbar denotes complex conjugation.
Since [M,M†] = 0, the normal matrices M and M† can be
diagonalized simultaneously. Their complex eigenvalues,
zn = xn + iyn, can be considered as the positions of particles
in a 2D plane. Reducing the matrix integral (1) to the integral
over the eigenvalues, and interpreting the Jacobian of the
transformation (which takes the form of the Vandermonde
determinant) as an effective logarithmic repulsion between the
eigenvalues, the partition function τ represents 2D Coulomb
gas in the external potential [4].

When the size of the matrices N becomes large, some new
features emerge, and the language of statistical equilibrium
thermodynamics provides an adequate description of the
partition function (1). Different aspects of the 1/N expansion
of the free-energy and density correlation functions were
already discussed in Refs. [7,8]. At large N , the eigenvalues
of normal matrices densely fill the domain D in the complex
plane (the support of eigenvalues), and their density steeply
drops down at the edge. In the semiclassical limit, as h̄ → 0
with t0 = h̄N fixed, the leading contribution to the free energy
F = − limh̄→0 h̄2 log τ tends to the tau function of analytic
curves [1].

Remarkably, the growth of an electronic droplet, while
increasing the number of electrons, N → N + 1, is equivalent
to the Laplacian growth problem [9], which describes the

dynamics of the oil-water interface in a thin gap between two
parallel plates [10]. In a cell, the velocity of viscous fluid obeys
Darcy’s law, v = − grad p (in scaled units), where the pressure
p(z) as a function of z = x + iy satisfies Laplace equation
with a sink at infinity, i.e., ∇2p = 0, and p(z) = − log |z| as
z → ∞. If one wants to neglect the surface tension, p = 0
at the interface between two fluids. The kinematic identity
requires the normal interface velocity to be equal to the
fluid velocity at the interface, vn = −∂np(ζ ), ζ ∈ ∂D, where
∂n stands for the normal derivative at the boundary. It is
convenient to introduce the time-dependent conformal map
w(z,t) of the domain occupied by oil D(t) to the exterior of
the unit disk, |w| > 1, normalized so that w(∞,t) = ∞ and
w′(∞,t) = 1/R(t) is a real positive function of t .1 In terms of
the conformal map, the interface velocity reads

vn(ζ,t) = |w′(ζ,t)|, ζ ∈ ∂D(t). (2)

The same equation of motion describes the adiabatic (qua-
sistatic) growth of a semiclassical electronic droplet in a
nonuniform magnetic field, when the number of electrons
increases [9], and the passages between the equilibrium states
are only considered—this is a limitation of the equilibrium
thermodynamics.

This Rapid Communication aims to apply common meth-
ods of nonequilibrium thermodynamics to study small fluctu-
ations of the external potential V (z) in the partition function
(1). This branch of thermodynamics, also known as linear
(or weakly nonequilibrium) thermodynamics as introduced by
Onsager [11], allows one to focus on transitions between ther-
modynamic states represented by different electronic droplets.
The probability of transitions between thermodynamic states
is an essential step towards the path-integral formulation of
Laplacian growth.

The structure of this Rapid Communication is as follows.
After introducing the partition function of the 2D Dyson gas
in the large N limit (10), we derive the Laplacian growth
equation (17) by maximizing the transitional probability
between equilibrium states. Afterwards, following Einstein’s
theory of thermodynamic fluctuations [12], we determine the

1Here and below dot and prime denote partial derivatives with
respect to t and z.
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FIG. 1. (a) The electronic droplet in the external potential; the
pointlike charges (impurities) are marked by ⊗. (b) The support of
eigenvalues De (solid line), and the background charge occupying the
domain D (dashed line).

probability for occurring fluctuations of the parameter of the
matrix ensemble (30), which generates stochastic Laplacian
growth of the domain (25). Remarkably, the growth probability
is determined by the free-particle propagator on an infinite-
dimensional complex manifold with the Kähler metric (32).
Finally, we draw our conclusions and indicate some open
problems.

II. TWO-DIMENSIONAL DYSON GAS

A. The statistical ensemble

As we only consider the semiclassical fluctuations of the
boundary of the electronic droplet, it is convenient to start
with an eigenvalue version of the matrix integral (1) directly.
The partition function of N Coulomb charges repelling each
other according to the law of 2D electrostatics in the external
potential is2

e−βF =
∫ i∞

−i∞
dμ

∫
CN

eβ(μN−E)
N∏

i=1

d2zi, (3)

where μ is the Lagrange multiplier, which fixes the total
number of charges.3 The energy of the gas equals4

−E =
N∑

i �=j

log |zi − zj | +
N∑

i=1

U (zi), (4)

where U (z) is the external potential.
A particularly important special case arises if U (z) is a

quasiharmonic potential, U (z) = −|z|2 + 2 Re V (z), where
V (z) is an analytic function in the domain, which includes the
support of eigenvalues De, and Re denotes the real part. The
following two interpretations of U (z) are of equal importance:
(1) 2 Re V (z) is the electric potential created by impurities

2At some particular values of β, the partition function is the
eigenvalue version of the normal matrix ensemble (1) (β = 1) and
normal self-dual matrices (β = 2).

3We substitute the delta function under the partition function δ(N −
N∗) = ∫ i∞

−i∞ dμeμ(N−N∗), drop the inessential term μN∗, and rescale
μ → βμ afterwards.

4In what follows log denotes a logarithm with the base “e”.

(pointlike electric charges5) located in the exterior of De

[Fig. 1(a)], and (2) U (z) is the potential generated by the
background charge, which fills the domain D ⊃ De with a
unit density [Fig. 1(b)], i.e.,

U (z) = − 2

π

∫
D

log |z − z′|d2z. (5)

Both in the interior and exterior of D, the potential U (z) admits
the following series expansions,

U (z) =
{−|z|2 − V0 + 2 Re

∑
k>0 Tkz

k, z ∈ D,

−2T0 log |z| + 2 Re
∑

k>0 Vk
z−k

k
, z ∈ C \ D.

(6)

The coefficients of these series expansions Tk and Vk are the
harmonic moments of D, namely,

Tk = 1

πk

∫
C\D

z−kd2z, Vk = 1

π

∫
D

zkd2z,

T0 = 1

π

∫
D

d2z, V0 = 2

π

∫
D

log |z|d2z. (7)

The mean values of the symmetric functions of the particle
coordinates are defined in the usual way,

〈A〉 =
∫ i∞

−i∞
dμ

∫
CN

A(z1, . . . ,zN )eβ(F+μN−E)
N∏

i=1

d2zi . (8)

Some important examples of the symmetric functions are the
logarithmic function v0 and polynomials vk ,

v0 = 2

π

N∑
i=1

log |zi |, vk = 1

π

N∑
i=1

zk
i . (9)

In the large N limit these functions become the harmonic
moments of the support of eigenvalues De. By tk and t0 we will
denote the complement set of the harmonic moments of De.

B. Large N limit

At large N and low enough temperature the Dyson gas
behaves as an incompressible charged liquid. It is convenient
to introduce the short distance cutoff h̄ (which is simply the
area of a cell occupied by a single electron) and define the
quasiclassical limit as N → ∞ and h̄ → 0 while t0 = Nh̄ is
kept fixed. Then, the eigenvalues densely fill the domain De

in a complex plane, so that the mean density ρ(z) outside
De is exponentially small as N → ∞. Since the density of
eigenvalues is a smooth function in the large N limit, the
partition function (3) can be rewritten as

e−βF =
∫ i∞

−i∞
dμ

∫
e

β

h̄2 (μt0−E[ρ])[dρ], (10)

where t0 is the area of De, and we rescaled μ → μ/h̄ for
convenience. The Jacobian of the transformation,

∏
i d

2zi =
J [ρ][dρ], is J [ρ] = exp [h̄−1

∫
De

ρ log ρd2z + cN ], where c

5Equivalently, one can consider magnetic impurities, i.e., magnetic
filament fluxes orthogonal to the plane.
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is a constant [8]. The energy of the Dyson gas (4) can be
written in terms of the density function. In the leading order it
equals6

− h̄2E =
∫∫

ρ(z) log |z − z′|ρ(z′)d2zd2z′

+
∫

U (z)ρ(z)d2z. (11)

Minimizing the functional μt0 − E[ρ] in (10), we obtain
the following equation for the charge distribution,

−2
∫

ρ(z) log |z − z′|d2z′ = U (z) + μ. (12)

The classical (equilibrium) solution to this equation, which is
ρcl(z) = 1/π , if z ∈ De, and ρcl(z) = 0 otherwise, determines
the support of eigenvalues De in what follows. All harmonic
moments of the domains De and D are equal, except for v0 �=
V0 (or, equivalently, t0 �= T0) because of the term μ in (12). If
t0 = T0, the domains De and D coincide [Fig. 1(b)], while in
the limit t0 → 0 the support of the eigenvalues is the mother
body of D [13].

The extremum condition (12) also fixes the Lagrange
multiplier μ. Comparing the potential of the Dyson gas at
the origin with U (0), we obtain from (12)

μ = V0 − v0. (13)

After substituting this extremal value of μ into (10), the
partition function of the gas takes the form

e−βF =
∫

e
β

h̄2 (μt0−E[ρ])[dρ]. (14)

The free energy admits the 1/N expansion [8], and its
leading contribution to F is determined by the classical
configuration ρcl(z). The 1/N corrections to the free energy
(which we do not consider here) emerge as the atomic structure
of the Dyson gas is taken into account [7,8].

The language of statistical thermodynamics provides an
adequate description of the Dyson gas in the large N limit. One
can introduce the entropy S = β2∂F/∂β,7 the internal energy
〈E〉 = F + S/β, and external coordinates, which determine
the configuration of the system [14]. These coordinates are the
parameters of the external potential (6), i.e., V0,T1,T 1, etc. By
differentiating (14) we obtain the fundamental thermodynamic
relation, which relates changes of the entropy, the energy, and
the generalized “forces” 〈vk〉 = −〈∂E/∂Tk〉,

d〈E〉 = 	dS − T0dV0 + 2 Re
∑
k>0

VkdTk + μdt0, (15)

where 	 ≡ 1/β is a “temperature”, and we took into account
the mean values of the “forces” 〈vk〉 = Vk and 〈t0〉 = T0 in the
thermodynamic equilibrium.

6The correction h̄

2 (2 − β)
∫

ρ log ρ d2z, which results from the
atomic structure of the Dyson gas, can be neglected at large scales.

7The classical configuration ρcl(z) does not contribute to the entropy,
as the charges are frozen at their equilibrium positions. A nontrivial
contribution to the entropy results from the discrete “atomic” structure
of the Dyson gas.

C. Laplacian growth equation

The adiabatic (quasistatic) variations of the parameters
of the potential U (z) cause the evolution of the support
of eigenvalues, that is a motion of the boundary ∂De. The
dynamical law which governs the evolution is incorporated in
the extremum condition. By differentiating (12) with respect
to z and replacing ρcl(z) with the characteristic function of
De, we obtain the functional equation for the support of the
eigenvalues De,

1

π

∫
De

d2z′

z − z′ = U ′(z). (16)

Taking the time derivative of (16), we arrive at the celebrated
Laplacian growth equation [15],

Ṡ(z) = 2W ′(z), (17)

written in terms of the Schwarz function S(z) for the boundary
∂De,8 and of the complex potential W (z) such that U̇ (z) =
W (z) if z ∈ C \ D and analytically continued inside D.

III. FLUCTUATIONS

A. Linear thermodynamics

Following Einstein’s theory of thermodynamic fluctua-
tions [12], the probability of the fluctuation P ∝ exp 
S

is determined by the entropy difference 
S between two
thermodynamic states. The change in the entropy of the
system, 
S = −βRmin, can be calculated using the minimal
reversible work Rmin, which has to be applied to bring the
system out of equilibrium. For Rmin one can use the expression
[16]

Rmin = 
〈E〉 − 	
S + T0
V0 − 2 Re
∑
k>0

Vk
Tk − μ
t0,

(18)

where 	, T0, Vk , t0 are the equilibrium values of temperature,
harmonic moments, and the area of the liquid droplet. Using
the fundamental thermodynamic relation (15) we find in the
quadratic approximation the logarithm of the probability for
occurring fluctuations of the thermodynamic variables,

log P ∝ 
V0
T0 − 2 Re
∑


Vk
Tk − 
μ
t0 − 
S
	

2	
.

(19)

The large N limit of the Dyson gas corresponds to a very low
temperature, when the charges are frozen at their equilibrium
positions, and their fluctuations are negligible. Thus, we will
consider the classical fluctuations at the constant temperature

	 = 0 only.

B. Stochastic growth

Remarkably, highly unstable and nonequilibrium Laplacian
growth can be considered as small (Gaussian) fluctuations

8The Schwarz function is defined as the analytic continuation of
z̄ = S(z) away from the contour [24].
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near equilibrium in the beta ensemble of complex eigenvalues.
Different ways of adding new particles to the system result in
different growth processes. A particularly important example
is an aggregation of diffusing particles issued from the source
at infinity. Since the particles can freely arrive at the system
to compensate the background charge, we have De = D and
μ = 0 at the thermodynamic equilibrium (12).

First, we introduce the deterministic growth, which serves
as a reference point in the space of all growth processes. It
is caused by a specific variation in the background potential,
when all Tk’s (except T0) are kept fixed. The new particles
arrive at the system from the distant source to compensate the
change of U (z). Being attached to the boundary of De with
a rate proportional to the local electric field, they cause the
growth of the support of eigenvalues. Since the change in U (z)
is a much faster process than adjusting the domain De,9 the
chemical potential for newly incoming particles is nonzero
and is given by (13). Expanding this formula in 
T0 � T0, we
obtain

μ = 2
T0 log R + O[(
T0)2] (20)

where 2 log R = ∂V0/∂T0 [1], and R = z′(∞) is the conformal
radius, determined by the conformal map z(w), from the
exterior of the unit disk |w| > 1, to the exterior of D,10

z(w) = Rw + c0 +
∑
k>0

ckw
−k, w → ∞. (21)

Representing the logarithm of the conformal radius as the
solution to the Dirichlet boundary problem,11 we recast the
chemical potential (20) in the form

μ = −2
t

∮
∂D

un(ζ ) log |w′(ζ )||dζ |, (22)

where w(z) is the inverse to the conformal map (21), and
un(ζ )
t = |w′(ζ )|(
T0/2π ) is the normal displacement of
the boundary ∂D due to the change 
T0. The newly attached
particles cause the growth of De with the normal velocity,
un(ζ ) = (q/2π )|w′(ζ )|, which prompts Darcy’s law, where
q = 
T0/
t is the rate of growth. Thus, the evolution
of the interface follows the deterministic Laplacian growth
dynamics,

Im(∂t z̄∂φz) = q

2π
, (23)

where φ = −i log w(ζ ) parametrizes the boundary, Im denotes
the imaginary part, and the subscripts stand for partial deriva-
tives. By plugging 
Tk = 0, 
t0 = 
T0, and 
V0 = 
μ into
(19), we conclude that the deterministic Laplacian growth (23)
maximizes the probability of fluctuations.

The stochastic growth processes deviate from the determin-
istic Laplacian growth dynamics (23) by random fluctuations

9The newly arrived particles undergo a diffusion from the source to
the interface.

10Here and below we do not indicate the time dependence explicitly
and write simply z(w).

11Namely, log R = −(1/2π )
∮

∂D
log |w′(ζ )|∂nG(ζ,∞)|dζ |, where

G(z,z′) is the Green’s function of the Dirichlet boundary problem in
the exterior of D [25], and ∂nG(ζ,∞) = −|w′(ζ )| at the boundary.

of the interface during the evolution. These fluctuations
are generated by newly arrived particles, which tend to
compensate the change in the parameters of the external
potential Tk (k � 0) caused by variations of the impurities
[Fig. 1(a)]. They are related by the Richardson theorem [17],


T0 = 1

π

M∑
m=1

qm, 
Tk = 
t

π

M∑
m=1

qm

A−k
m

k
, (24)

where Am is the position of the mth impurity, and qm is its rate
of change of the charge. The corresponding interface dynamics
is then described by the stochastic Laplacian growth equation

Im(∂t z̄∂φz) = q

2π
+

M∑
m=1

qm

2π
Re

eiφ + am

eiφ − am

, (25)

where am are the inversed preimages of Am = f (1/ām)
inside the unit disk. This equation is well known in the
classical Laplacian growth problem in the presence of pointlike
hydrodynamical sources qm at the points Am [18].

The general formula (19) determines small fluctuations of
all basic thermodynamic quantities. The harmonic moments
Tk and Vk , as the coefficients of the multipole expansion of the
potential (5), are interrelated via a certain potential function
[1],

Vk = ∂ log τ

∂Tk

, V k = ∂ log τ

∂T k

, V0 = ∂ log τ

∂T0
, (26)

where log τ is the logarithm of the tau function of the boundary
curve [2],

log τ = − 1

π2

∫
D

∫
D

log

∣∣∣∣1

z
− 1

z′

∣∣∣∣d2zd2z′. (27)

The symmetry relations between the harmonic moments
suggest choosing Tk’s as independent variables.

Variations of Tk’s also cause the deviation of the chemical
potential for newly incoming particles from its “deterministic”
value (22). Since un(ζ )|dζ | = Ṡ(ζ )dζ/2i, we transform the
line integral in (22) in the contour one. The Laplacian growth
equation (17) relates the change in the Schwarz function with
the variation of the electric potential, πṠ+(z) = −∑

qm/(z −
Am).12 Thus, by evaluating the contour integrals, we determine
the variation of the chemical potential,


μ = −2
t

M∑
m=1

qm log |w′(Am)|. (28)

Now, using the symmetry relation (26), one can express

Vk’s in terms of 
Tk’s to transform the probability for the
occurring fluctuation (19) in a quadratic form in 
Tk and 
T k

only. As for the term 
t0
μ,13 we use (28) and take into
account the description of the conformal map w(z) in terms of
the tau function, which leads to the identity [2]

log |w′(A)| = −∂2 log τ

∂T 2
0

+ 2 Re
∑
k,l>0

A−k−l

kl

∂2 log τ

∂Tk∂Tl

, (29)

12Here, S+(z) is a regular in the D part of the Schwarz function
S(z) = S+(z) + S−(z).

13Recall that 
t0 = 
T0.
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thus allowing one to express 
μ through 
Tk’s (24).
As discussed earlier, the variations in Tk’s are caused by
fluctuations of the pointlike impurities in the exterior of
De (24) [Fig. 1(a)]. Thus, the quadratic form in the ex-
ponent of (19) (upon rewriting in terms of Tk’s) includes
the cross terms of the form cmnqmqn. These terms, how-
ever, do not contribute to the mean fluctuation values of
any quantities, if the statistical independence of impurities,
〈qmqn〉 = 0 for m �= n, is assumed. Under these circumstances,
the probability for occurring fluctuations can be written in
the form14

P ∝ exp

{
− β

h̄2

∑
k,l>0

∂2 log τ

∂Tk∂T l


Tk
T l

}
. (30)

The mean square fluctuations of the harmonic moments,

〈
Tk
T l〉 = β−1h̄2gkl̄, (31)

then are determined by the coefficients of the quadratic form
in the exponent of (30),

gkl̄(T0,T1,T 1, . . . ) = ∂2 log τ

∂Tk∂T l

, (32)

and gkl̄ are the elements of the inverse matrix. The mean square
fluctuations of 
Vk’s are obtained from (31) by virtue of the
symmetry relation (26). It also follows from (30) that the area
of the droplet does not fluctuate with time, as we consider
fluctuations of the interface against the background of the
growth process with a constant rate.

C. Path-integral formulation of the Laplacian growth

If growth continues until time T � 
t (T/
t is integer),
the associated probability of the process is given by the product
of the conditional probabilities (30),

P = P (t1)P (t2) · · · P (tT /
t ). (33)

Since P (ti+1) depends solely (through the tau function) on the
present domain at time ti , the product in (33) is a Markovian
chain. In the limit 
t → 0, by summing the exponents of the
probabilities, we obtain

P ∝ exp

{
−β
t

h̄2

∫ T

0
dt

∑
k,l>0

gkl̄ dTk

dt

dTl

dt

}
. (34)

Remarkably, the exponent in (34) is the action for a
nonrelativistic massless particle on the infinite-dimensional
complex manifold with the Kähler metric (32), so log τ is the
Kähler potential [19].

Although the growth of the support of eigenvalues was
treated as a response to the variation of the external potential,

14Equivalently, one may think that only a single impurity fluctuates
per time unit.

one can forget the details of this derivation and consider
the growth probability on its own. Then, assuming that
fluctuations of the interface during evolution are inevitable
features of unstable Laplacian growth, formula (34) allows
one to compare the probabilities of different growth scenarios,
which lead to the same final domain starting, e.g., from
the ideal circle. Under these circumstances, the path-integral
formulation does what it is supposed to do, namely, indicates
the most probable growth scenario.

IV. CONCLUSION AND DISCUSSION

The application of statistical equilibrium mechanics to
stochastic growth phenomena sheds light on the long-standing
problems of nonequilibrium universal growth. In this Rapid
Communication, we have touched only on the Laplacian
growth, because of its impressively wide applicability ranging
from solidification and oil recovery to biological growth.

A particularly important result is an explicit calculation of
the growth probability (34), which is simply the propagator of
a free particle on the infinite-dimensional complex manifold
with the Kähler metric. From the Lagrangian mechanics point
of view, geodesics in this space determine the most probable
growth scenarios of 2D planar domains. Therefore, the pattern
selection problem in Laplacian growth might be considered in
the purely classical mechanics framework.

The fluctuation theory of Laplacian growth also has a
rich mathematical structure if one uses its dual description
(known as the inverse potential problem) in terms of conformal
maps. The growth probability (30) can be obtained also by
considering the “entropy of the layer” that is composed of
particles which attach to the boundary of the domain per
time unit [20,21]. This observation allows one to relate the
Laplacian growth problem to the theory of random partitions
[22], and might have far reaching consequences.

For direct applications in physics, our results assume the
following impact. The probability (30) generalizes the growth
process of the electronic droplet in the quantum Hall regime
[23] to the case when a large number of electrons are attached
to the boundary of the droplet during a single time unit. It
allows one to determine the correlation functions between the
electrons at the boundary of the droplet, and consider the
geometrical properties of the boundary, e.g., its multifractal
spectrum.

The Gibbs-Boltzmann statistics of fluctuations (30) pro-
vides a framework for a systematic analytic treatment of
static (time-independent) perturbations of highly nonequi-
librium growth processes, which has been lacking so far.
It also furnishes a clue to the dynamical (time-dependent)
fluctuations, which reveal the role of the fluctuation-dissipation
theorem in the Laplacian growth problem. The latter problem
is closely related to the probability distribution function for
fluctuating impurities, which appear in the right-hand side
of the stochastic Laplacian growth equation (25). The time-
dependent fluctuations promise to elucidate the derivation
of the Laplacian growth fractal spectrum, and unexplained
selections of patterns. These problems will be addressed in
future publications.
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