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Although time-dependent random media with short-range correlations lead to (possibly biased) normal tracer
diffusion, anomalous fluctuations occur away from the most probable direction. This was pointed out recently
in one-dimensional (1D) lattice random walks, where statistics related to the 1D Kardar-Parisi-Zhang (KPZ)
universality class, i.e., the Gaussian unitary ensemble Tracy-Widom distribution, were shown to arise. Here, we
provide a simple picture for this correspondence, directly in the continuum, which allows one to study arbitrary
space dimensions and to predict a variety of universal distributions. In d = 1, we predict and verify numerically
the emergence of the Gaussian orthogonal ensemble Tracy-Widom distribution for fluctuations of the transition
probability. In d = 3, we predict a phase transition from Gaussian fluctuations to three-dimensional KPZ-type
fluctuations as the bias is increased. We predict KPZ universal distributions for the arrival time of a first particle
from a cloud diffusing in such media.
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Diffusion in random media arises in numerous fields, e.g.,
oil exploration in porous rocks [1], spreading of pollutants
in inhomogeneous flows [2], diffusion of charge carriers in
conductors [3], relaxation properties of glasses [4], defect
motions in solids, econophysics, and population dynamics
[5,6]. Many works have studied time-independent, i.e., static,
random environments [7], in d = 1 [8] or in higher dimensions,
with short-range (SR) [9,10] or long-range (LR) spatial
correlations [11]. It was found that static disorder with SR
correlations is generically irrelevant above the upper-critical
dimension dc = 2, leading to normal diffusion in d = 3, while
LR disorder can lead to anomalous diffusion in any d.

Another important class of random media are time depen-
dent, studied, e.g., in wave propagation [12], dispersion of
particles in turbulent flows [2] (Richardson’s law [13]), and
the passive scalar [14]. The latter cases involve long-range
correlations in the flow, and lead to anomalous transport
or multiscaling. The, a priori more benign, case of SR
space-time correlations received much attention recently in
probability theory, within random walks in time-dependent
random environments (TD-RWREs). Although then dc = 0,
and the diffusion is proved to be normal (in a given sample
[15]), interesting effects were shown, such as a tendency
for walkers in the same sample to coalesce [16], anomalous
fluctuations [17], and large deviations [18]. Note that TD-
RWREs can be generated in a static environment by studying
directed random walks.

An a priori unrelated topic is stochastic growth and the
celebrated Kardar-Parisi-Zhang (KPZ) equation [19]

∂th = ν0∇2
xh + λ0

2
( �∇xh)2 +

√
D0η, (1)

where h(x,t) ∈ R is the interface height at time t and point x ∈
Rd , ν is the diffusivity, and η(x,t) is the driving noise which,
for most of our applications, will be SR space-time correlated.
The nonlinearity leads to a nontrivial fixed point and exponents
for the scaling of the fluctuations at large times, i.e., h(x,t) =
v∞t + δh(x,t), with δh ∼ t θd ∼ xθd/ζd and θd = 2ζd − 1 from
Galilean symmetry [20]. The vast universality class of the
continuum KPZ equation (1) contains discrete growth models

[21], particle transport models [22], dimer covering, directed
polymers [20,23], and more, the subject in d = 1 of much
recent progress, due to the discovery of integrable properties
[24]. Beyond exponents ζd=1 = 2/3, the statistics of δh(x,t)
was shown to be related to the universal Tracy-Widom (TW)
distributions of random matrix theory [25], with, e.g., the
Gaussian unitary ensemble (GUE) [respectively Gaussian
orthogonal ensemble (GOE)] TW distribution for growth
starting from a droplet [26] (respectively a flat interface). For
general d, little is known exactly, but exponents and universal
distributions were obtained numerically in d = 1,2,3 [27–29]
and compared with experiments [30].

Recently, Barraquand and Corwin obtained an exact so-
lution of a discrete TD-RWRE on Z with SR correlated
jump probabilities, the beta polymer. The sample-to-sample
fluctuations of the logarithm of the cumulative [31] and
transition [32] probability distribution function (PDF) in the
large-deviation regime of the RW, i.e., away from the most
probable direction, were found to be distributed with the
characteristic KPZ exponent and GUE TW distribution.1

This was followed by a proof of the universality of the
one-dimensional (1D) KPZ equation for the diffusive scaling
limit of TD-RWRE on Z with weak disorder [33].

These recent results hint at a general connection between
TD-RWRE and KPZ growth. The aim of this Rapid Com-
munication is to unveil a simple and general mechanism
that explains the appearance of KPZ-type fluctuations in the
TD-RWRE problem, beyond exactly solvable models, and for
general d. We consider a continuum setting and we conjecture
the emergence of KPZ fluctuations everywhere in the large-
deviation regime of TD-RWRE in dimension d = 1,2, and
a phase transition in d � 3 between a low-fluctuation phase
for small large deviations and a phase with KPZ-class high
fluctuations for large large deviations (see Fig. 1). Using this
picture, we identify in d = 1 a setting where GOE TW-type
distributions for the fluctuations of the logarithm of the PDF

1Note also the upcoming work [34] on the roughness of random
walk paths in the beta polymer model.
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FIG. 1. Conjectural picture for TD-RWRE in arbitrary dimension
d . While particles typically diffuse normally as if the random
environment had been averaged out, particles conditioned on arriving
away from the Gaussian bulk of the distribution in the “large-deviation
regime” (for |x(t)| > uct) are superdiffusive with the roughness
exponent of the directed polymer in the pinned phase ζd > 1/2. In
this regime, fluctuations of the logarithm of the transition probability
are large (scale with t θd with θd = −1 + 2ζd > 0) and identical to
those of the height in the rough phase of the KPZ equation. The two
phases are separated by an Edward-Wilkinson regime of fluctuations
when x = uct + o(t). In d = 1,2, uc = 0, while for d � 3, there is
a phase transition with uc �= 0. If an external bias �f is added, the
bulk is around �x ∼ �f t and the transition occurs for �x = �ut with
|( �f + �u)| = uc.

are expected. This is checked using simulations of a discrete
model. We finally discuss the emergence of KPZ universality
in the extreme value statistics of N � 1 random walkers
diffusing in the same time-dependent random environment:
universality of the PDF of the largest distance traveled by a
particle in a cloud of pollutant and of the PDF of the first arrival
time in a given domain.

We consider the Langevin equation for the diffusion of a
particle �x(t) ∈ Rd in a d-dimensional time-dependent random

force field �ξ (�x,t) + �f , with �ξ (�x,t) = 0 and �f the uniform
applied force,

d

dt
�x(t) = �ξ (�x(t),t) + �f + �η(t), (2)

with �η ∈ Rd a thermal Gaussian white noise, 〈ηi(t)ηj (t ′)〉 =
2Dδij δ(t − t ′), and D is the bare diffusion coefficient. Here
and below, 〈·〉 refers to the average over thermal fluctuations
�η, and (·) over the disorder �ξ (�x,t).

In a given random environment (i.e., sample) �ξ (�x,t), one
defines the transition probability P (�x2,t2|�x1,t1) for a particle
which starts at �x1 at time t1 to end up at position �x2 at time t2.
It is convenient for now to consider the (backward) transition
probability Q(�x,t) = P (0,0|�x, − t) that a particle starting at
position �x at time −t � 0 ends up at the origin at time 0 (the
forward is considered later). The latter obeys the following
random backward Kolmogorov equation,

∂tQ = D∇2
xQ + �f · �∇xQ + �ξ · �∇xQ, (3)

with a final condition Q(�x,t = 0) = δ(d)(�x). For simplicity,
we focus on �ξ (�x,t) being a space-time Gaussian white noise
[interpreting (3) in the Îto sense] with variance

ξi(�x,t)ξj (�x ′,t ′) = Drd
0 δ(d)(�x − �x ′)δ(t − t ′)δij , (4)

where the parameter r0 has dimension of a length. Our results
on the large-scale properties should hold for a more general
distribution of the disorder, as long as correlations of �ξ (�x,t) are
short ranged in space and time. When short-scale regulariza-
tions are needed, we will think of this model as an approxima-
tion of a model with a disorder of (dimensionless) magnitude
σξ , a finite correlation length rc, and a finite correlation time τc.
In that case, ξi(�x,t)ξj (�x ′,t ′) = D

τc
σ 2

ξ R1( �x−�x ′
rc

)R2( t−t ′
τc

)δij , with
R1 and R2 two dimensionless, rapidly decaying functions, and
one relates r0 to the space-time correlation volume of the noise
as rd

0 ∼ σ 2
ξ rd

c

∫
dd �ydsR1(�y)R2(s).

In the following, we analyze this RW locally around a
given space-time direction (moving frame velocity) �u ∈ Rd ,
i.e., for �x = �ut + �x ′ with �x ′ = o(t). This is equivalent to
looking around the origin �x = o(t) in the model with an
effective bias �f�u = �f + �u: Using the equality in law between
white noises �ξ (t �u + �x ′,t)∼in law�ξ ′(�x ′,t), one gets Q �f (�ut +
�x ′,t)∼in lawQ �f +�u(�x ′,t). We drop the subscript �u in �f�u unless

needed, but �f should thus be thought of as a control parameter
analogous to the velocity of the frame of observation compared
to the mean velocity of the particles. We first note that the
averaged value of the transition probability is equal to the
transition probability of a RW in the averaged environment,2

hence it is Gaussian and given by Q(�x,t) = 1

(4πDt)
d
2
e− |�x+t �f |2

4Dt .

The regime |�x| = o(t) is thus characterized by an exponential

decay of the averaged probability −|�x+t �f |2
4Dt

� − �f ·�x
2D

− t | �f |2
4D

,
hence it corresponds to a large-deviation regime, far away
from the bulk of the probability, i.e., the optimal direction of
the RW, �x = − �f t . To study the local fluctuations around this
average profile of the probability, we introduce the partition
sum Z(�x,t) and height h(�x,t) as

Z(�x,t) := e
�f ·�x
2D

+t
�f 2

4D Q(�x,t), h(�x,t) := ln Z(�x,t). (5)

Inserting (5) in (3), we obtain

∂tZ = D∇2
xZ + ξDPZ + �ξ · �∇xZ, (6)

∂th = D∇2h + D( �∇h)2 + ξDP + �ξ · �∇h, (7)

with the “droplet” initial condition Z(�x,0) = δ(�x). In (6) and
(7) we introduced the “directed polymer (DP) noise term,”

ξDP(�x,t) = −
�f · �ξ (�x,t)

2D
, (8)

a Gaussian white noise with 〈ξDP(�x,t)ξDP(�x ′,t ′)〉 = σ 2
DPδ(t −

t ′)δ(d)(�x − �x ′) and (with f = | �f | the norm of the bias)

σ 2
DP = rd

0

4D
f 2. (9)

Equations (6) and (7) contain two (mutually correlated) noises.
While the second source of noise (last term) is a signature

2This is due to the delta correlations in time in (4) and to the Îto
prescription. As a consequence, the bare values of D and f (or v) are
not renormalized. A small but finite τc leads to small corrections to
these values.
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of the RW nature of the problem [it is already present in
the original backward Kolmogorov equation (3)], the first
was generated by our rescaling of the transition probability
(5) and is a signature of the fact that we are looking at
the large-deviation regime: It is the only term in (6) and
(7) that depends on f . A crucial observation is that if, in a
first stage (justified below), one neglects the second source of
noise, Eqs. (6) and (7) become respectively the multiplicative
stochastic heat equation (MSHE) and the KPZ equation (1).
The solution of the MSHE is known to be the partition sum
ZDP(�x,t) of the continuum directed polymer problem, i.e.,
the equilibrium statistical mechanics at temperature T = 2D

of directed paths of length t,�x : τ ∈ [0,t] → �x(τ ) ∈ Rd with
fixed end points �x(0) = 0 and �x(t) = �x in a quenched random
potential −2DξDP[t ′,�x(t ′)]. It can formally be written as a path
integral,

ZDP(�x,t) =
∫ x(t)=x

x(0)=0
D[x]e− 1

2D

∫ t

0 dτ { 1
2 ( d �x

dτ
)2−2DξDP[τ,�x(τ )]}, (10)

while the solution of the KPZ equation with the initial
condition of the droplet is given by hKPZ(�x,t) = ln ZDP(�x,t),
the two problems hence being, as is well known, equivalent.

The emergence of the MSHE and KPZ equations in this
problem is at the core of the connection between TD-RWRE
and the KPZ universality class (KPZUC). Let us now explore
some consequences of this connection in the DP language,
which is more adapted to the physics of the RW problem
in terms of space-time paths. It is known [20,35] that the
DP exhibits a phase transition as a function of the noise
strength σDP between (i) a diffusive phase at small σDP < σc

where polymer paths are diffusive x(τ ) ∼ τ 1/2 and do not
feel the disorder, and (ii) a pinned phase at large σDP > σc

where directed polymer paths are superdiffusive x(τ ) ∼ τ ζd

with ζd > 1/2 the universal (dimension-dependent) roughness
exponent. In the diffusive phase, the fluctuations of the DP free
energy are small, ln ZDP(t) ∼ O(1). In the pinned phase, the
DP optimizes its energy: The partition sum is concentrated on
a few optimal paths and the fluctuations of the DP free-energy
scale with the length as ln ZDP(t) ∼ t θd with θd = −1 + 2ζd >

0. While for d > 2 there is a transition at a nontrivial value
σc > 0,3 σc = 0 in d = 1,2 and the system is always in the
pinned phase.

We now argue, using the interface language, that the
second source of noise in (6) and (7) is always irrelevant
in the pinned phase at large time. In this phase, the KPZ
field displays scale invariant fluctuations and we can rescale
h(�x,t) = bαh̃(�x/b,t/bz) with b large and z = 1/ζd and α =
θd/ζd the dynamic and roughness exponent of the KPZUC,
with h̃ = O(1). From the scale invariance of the Gaussian
white noise, under rescaling, the second source of noise in
(7) receives an additional factor bα−1 as compared to the first
one. This heuristic suggests that the second source of noise is
irrelevant as long as α < 1. This condition is always satisfied
in the rough phase, with α = 1/2 in d = 1 and α decreases
with d.

3The existence of an upper-critical dimension dc, where σc = +∞
has not yet been settled.

This leads us to the following conjecture. In the RW
problem, looking locally4 in the large-deviation region �x =
o(t), the system undergoes a phase transition as a function
of the bias from (i) a diffusive phase for f < fc, where
the local fluctuations of ln Q(�x,t) are O(1) and the random
walk paths are diffusive with the same law as the RW in an
averaged environment (for f = 0 this was shown rigorously in
Ref. [15]), and (ii) a pinned phase for f > fc, where ln Q(�x,t)
has larger fluctuation scaling as t θd and random walk paths
are superdiffusive with the DP roughness exponent ζd . In
addition, the full multipoint distribution of ln Q(�x,t) at large
t is expected to be universal and identical to those of the free
energy ln ZDP(�x,t) of the DP problem in the pinned phase.
Furthermore, fc = 0 in d = 1,2 and in d > 2 we can give
an estimate of the transition point. For the KPZ equation (1),
d = 2 + ε renormalization group (RG) calculations indicate
that the transition for d > 2 occurs for the dimensionless
coupling5 g := Kd�

d−2 λ2
0D0

8ν3
0

= gc of order ε, gc = ε + O(ε2),

with �−1 a short distance cutoff [19,36]. Translating into the
RW with � = 1/rc, we find gc = Kdσ

2
ξ r2

c f 2
c /(8D2), which

provides an estimate for fc. As we mentioned, the bias also
incorporates the effect of looking at the problem in a moving
frame of velocity �u. The phase transition can thus be driven
by �u and occurs when | �f�u| = | �f + �u| = fc: The pinned phase
occurs everywhere in space outside a “light cone” around the
optimal direction of the RW (see Fig. 1). This picture agrees
with known results: It was shown in Refs. [37–39] that the
annealed and quenched large-deviation rate functions Ia(u)
and Iq(u)6 of an unbiased lattice RW coincide for small u in
d � 3, but always differ in d = 1,2 and for large enough u in
d � 3. This confirms our scenario of a transition in d � 3, and
our arguments show that the strong bias phase is in the KPZ
class.

Let us now discuss the scale at which KPZUC emerges,
first in the simpler one-dimensional case. To that aim, note that
rescaling time, space, and height in (7) as t = t∗t ′, x = x∗x ′,
and h′(t ′,x ′) := 1

h∗ h(t∗t ′,x∗x ′) with the characteristic scales

t∗ = (4D)3

r2
0 f 4 , x∗ = 8D2

r0f 2 , and h∗ = 1, leads to a rescaled KPZ-like

equation for h′(t ′,x ′) identical to (1) with λ0 = D0 = 2, ν = 1,
up to the second source of noise of (7) which now involves
a unit white noise multiplied by the dimensionless ratio
f r0/(2D

√
2). Hence for f r0/D � 1 (weak bias/weak noise

or large diffusivity limit) the “deformed” KPZ equation (7)
becomes equivalent to the standard KPZ equation (this is
reminiscent of the “weak universality” of the KPZ equation).
Hence in this weak bias regime, we can apply the known
results for the continuum KPZ equation (see Ref. [40]). Thus,

4Note that in a sense the conservation of probability of the random
walk problem seems to be lost in the KPZ regime. This is only because
the mapping to KPZ only holds locally in the large-deviation region
x = o(t). Everywhere in that region the probability mass escapes
towards the most probable direction, where the equivalence to KPZ
breaks down.

5Kd = Sd/(2π )d , where Sd is the d-dimensional unit sphere area.
6These are defined as Ia(u) := − limt→∞

ln Q(t �u,t)
t

and Iq(u) :=
− limt→∞

ln Q(t �u,t)
t

.
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FIG. 2. The behavior of the RW crosses over from a diffusive to
a bias dominated regime when t ∼ tf . The latter is also subdivided
in between a EW regime and a KPZ regime for t∗ � tf (see text for
an estimation of t∗ in d = 1,2).

for t/t∗ � 1, we predict that the KPZUC appears in the RW
problem. At short scale t ′,x ′ � 1, the behavior of the height in
the KPZ equation becomes similar to the Edward-Wilkinson
(EW) behavior [41]. In the RW problem we expect by
inspection of (7) that the first source of noise (bias) dominates
for x � xf = D/f while the second (diffusion) dominates
for x � xf (with an associated time scale tf := x2

f /D). We
conclude that for f r0/D � 1 there is a regime xf � x � x∗
and tf � t � t∗ where one can already neglect the second
source of noise but KPZUC-type fluctuations have not yet
been built up: This should be an EW regime7 (see Fig. 2). In
general d the scale at which the bias starts to dominate remains
tf and xf , but the scales t∗ and x∗ where KPZ fluctuations
emerge change. For example, in d = 2, disorder is marginally
relevant and from RG [19,36,43] one has x∗ �g�1 �−1e1/g

with here (see above) g = r2
0 f 2/(16πD2), t∗ = (x∗)2/D and

for the RW we take �−1 = rc. For g � 1 the scales are well
separated and we similarly expect an intermediate EW regime
of fluctuations.

It is useful to extend our analysis to the forward transition
probability P (�x,t) = P (�x,t |0,0). It satisfies the Fokker-Planck
equation ∂tP = D∇2

xP − �∇x · [( �f + �ξ )P ]. Considering again

the “partition sum variable” Z(�x,t) := e− �f ·�x
2D

+t
f 2

4D P (�x,t) gener-
ates additional noise terms in this equation and our arguments
can be repeated (see Ref. [40]): The statistical properties
of Z(�x,t) at large scale are identical to those of the DP
partition sum. In fact, note that in law, P (�x,t) ∼ Q(−�x,t).
We can also consider different initial (final) conditions in the
forward (backward) setting. This is of great interest since the
KPZUC is split in subuniversality classes [24] that depend
on the boundary conditions, and we thus predict universal
distributions for the fluctuations of ln P or ln Q according to
the chosen boundary conditions (see Fig. 3 for examples in
d = 2). These were determined numerically in d = 2 [28] and
are known analytically in d = 1, on which we now focus.
Using our argument and KPZ universality, we conjecture
that the rescaled fluctuations of ln P (x,t) and ln Q(x,t) are
universal in the large-deviation region and distributed as a
TW GUE random variable χ2 [24]. This has already been
observed analytically and numerically for the exactly solvable
beta polymer (see Refs. [31,32]). For the continuum model
(2)–(4) in the absence of bias, f = 0, but in a moving frame,
we obtain (using Ref. [26]; see Ref. [40]) a sharp prediction

7We note that links between the Edward-Wilkinson universal-
ity class and the TD-RWRE have already been studied (see
Refs. [17,42]). This, however, seems very different from what we
discuss here.

FIG. 3. Some typical polymer geometries for DP in d = 2. See
text for applications to the RW problem.

for t � t∗,

ln P (x = ut,t) � −Iq(u)t + λ(u)t1/3χ2, (11)

where Iq(u) � u2

4D
+ 2r2

0 u4

3(8D)3 and λ(u) � r
2/3
0 u4/3

4D
, estimates valid

in the weak bias limit r0u/D � 1. Using the equivalence
(for small bias) between the RW and the KPZ equation at
finite t/t∗ [40], the scaling x = yr0(4Dt/r2

0 )3/4 implements
the crossover, as a function of y = (t/t∗)1/4, from EW to KPZ
fluctuations for ln P (x,t), the crossover to diffusion occurring
for x ∼ (Dt)1/2.

We now make a prediction related to the flat KPZ sub-
universality class in the TD-RWRE context. It is known that
the large time fluctuations of the logarithm of the solution of
the MSHE ∂tZ = D∇2Z + ξDPZ with a flat initial condition
Z(x,t = 0) = 1, properly scaled, are distributed according to
a GOE Tracy-Widom random variable χ1. Here, it means
that the initial probability of the RW8 must be P (x,t = 0) ∼
ef x/(2D). It is a natural and normalizable initial condition on
an interval of length L with reflecting boundary conditions,
x ∈ [−L/2,L/2]: It is the stationary measure of the RW in
the absence of disorder. Turning on the disorder at t = 0, we
predict that at large times [in the regime 1 � t/t∗ � (L/x∗)3/2

to avoid the influence of the boundaries], ln P (0,t) fluctuates
as c(t/t∗)1/3χ1, where c = 2−2/3 [44] when t∗ � D/f 2. This
scenario, and its universality, is checked explicitly through
simulations of a one-dimensional discrete TD-RWRE (see
Fig. 4).

An important application of the large-deviation regime
of the RW where the KPZUC emerges is to extreme value
statistics. Consider N � 1-independent walkers starting at the
origin at t = 0 with no bias, �f = 0. We define xmax(t) :=
maxi=1,...,N {�xi(t) · �e1} the position of the rightmost walker in
the direction of the unit vector �e1. We show [40] that the KPZ
universality in the fluctuations of the logarithm of the transition
probability, ln P (�x · �e1 = ut,t |0,0), implies that as N,t → ∞
with γ = ln N

t
fixed. Then xmax(t) grows ballistically,

xmax(t) � u∗
γ t + c(γ )t θd χ + o(t θd ). (12)

Here, θd is the KPZ exponent, and χ has a universal distribution
[40] characteristic of the point to hyperplane (of dimension

8Here, we adopt the forward setting. Indeed, observing GOE fluc-
tuations in the backward case requires imposing the final probability
Q(x,t = 0) ∼ e−f x/D which does not seem possible.
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FIG. 4. Numerical observation of the GOE TW distribution for
the log of the forward transition probability P (0,td) of a TD-RWRE
on [−4096,4096] ∩ Z with a reflexive boundary in a biased random
environment (see details in Ref. [40]), starting at time td = 0 with
the stationary measure of the RW in the absence of disorder. Main
plot: Centered and normalized histogram (in a logarithmic scale) of
ln P (0,td) with td = 2048 compared with the GOE (red line) and GUE
(black dashed line) TW distribution. The insets show the convergence
of the skewness (top) and of the excess of kurtosis (bottom) of the
distribution of ln P (0,td) to values close to those of the GOE TW
distribution. Error bars are 3-sigma Gaussian estimates.

d − 1) subuniversality KPZUC (see, e.g., Ref. [28]). Here, c(γ )
and u∗

γ are nonuniversal, given in the continuum in Ref. [40].
This is valid if the front velocity u∗

γ > uc, so that KPZUC
appears (with uc = 0 in d = 1,2). A formula such as (12)
was rigorously shown in an exactly solvable 1D model in

Ref. [31] with θd=1 = 1/3 and χ = χ2 a GUE TW random
variable. Similarly, the first arrival time at �x · �e1 = �, THit(�),
of a particle from a cloud of N -independent particles, behaves
for fixed γ̂ = ln N

�
as

THit(�) � �/v∗
γ̂ − d(γ̂ )�θd χ + o(�θd ), (13)

with the same universal random variable χ [40]. Arrival times
in compact domains, i.e., a ball, lead instead to a point-to-point
KPZ distribution in any d.

In this Rapid Communication we investigated the origin
and consequences of the emergence of universal statistics of
the KPZUC in the large-deviation regime of TD-RWRE in
arbitrary dimensions. We focused on short-range correlated
random media, but our method readily extends to long-range
(LR) spatial correlations [40], leading to a distinct LR space
correlated KPZ universality classes [45]. Important questions
for the future are how LR correlations in time in the medium,
and interactions within a cloud of N particles, will affect the
results, since those are present in many natural examples, such
as the atmosphere or the ocean. We hope that this motivates
further connections between the fields of growth and diffusion.
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