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Computational aspects of the smectization process in liquid crystals: An example study of a
perfectly aligned two-dimensional hard-boomerang system
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A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been
presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The
method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion
method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is
able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered
width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer
thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type.
Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties
are presented. Future applications of the replica method to freely rotating molecules are discussed.
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I. INTRODUCTION

Smectic liquid crystals are liquid crystals that exhibit,
besides orientational order, also spatial regular modulation—
they form layers. Within each layer particles can freely
move like in a liquid, yet their orientational properties can
exhibit different characteristics leading to different forms of
smectics [1]. Most knowledge about smectic phases come
from experimental evidence. From the theoretical point of
view such phases are difficult to study due to the complicated
spatio-orientational couplings.

There was always a strong interest to use theories like
density functional theory (DFT) [2] or mean field (MF)
theory to confirm or to predict physical properties of smectics.
The earliest successful DFTs in liquid crystals assumed only
one angle dependence and were able to provide solutions
only for the uniaxial nematic phase [3]. A similar feature is
exhibited in the MF model of Maier and Saupe [4]. With
the increasing power of computers these approaches have
been extended to find biaxial solutions, where the distribution
functions depend on all three Euler angles [5,6]. One of the
first attempts to provide a theory of smectics was the theory
of McMillan [7]. It considered a description of the smectic
phase by a mean field potential given in terms of the leading
order parameters related to orientational order as well as to the
density wave characteristics. Formally, it was an extension of
the Maier-Saupe model of the nematic phase to the case of the
smectic A phase. Marguta et al. [8] extended the McMillan
model to the case that uses an infinite set of the orientational
and translational order parameters and showed to what extent
the McMillan model underestimates both orientational and
translational order and the transition entropies. The importance
of using higher harmonics in the Fourier expansion was
also discussed by Longa in the context of the location of
the tricritical nematic-smectic A point [9]. Throughout the
following years a great number of published reports showed
that the mean field approach can be also successfully applied
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for the description of other more complicated types of smectics
(for instance, [10–18]).

It is a more challenging task to obtain full dependence
of the distribution functions on the spatial as well as on the
orientational variables for a given intermolecular potential. For
this purpose different types of density functional theories are
in use and the knowledge is still accumulating [19–24]. From
the computational point of view all of them resort to solving
integral equations or to minimizing the free energy functional,
which also contains multidimensional integrals.

One way to avoid tedious numerical integration is to assume
in advance the type of solution, for instance the already
mentioned above series of the Fourier functions, and then
to find iteratively appropriate expansion parameters. Such a
procedure will be restricted, however, to the number of terms
in the considered formulas. Due to Velasco et al. [23] or, also,
Martínez-Ratón and Velasco [24], an alternative way is to find
a single characteristic function that would mimic the shape
of the smectic density profile. For a smectic layer profile an
exponent exp (λ cos(qy)) has been used. This choice, however
relatively simple to use in calculations, would not be suitable
for incommensurate phases or for the phases in which the
distributions are not symmetric functions.

The question can be posed whether it would be possible to
find a full solution without expanding distribution functions in
the series of the symmetry adapted functions or without im-
posing mathematical restriction on the outcome. Surprisingly,
such a problem was easier to solve in the case of confined
liquid crystals than in the case of bulk smectics. In [25] a
method of finding spatially irregular orientational solutions
for a liquid crystal placed in a slab geometry between two
walls has been described. This method, which was based on
the Gaussian quadratures application, has been successfully
used to study inhomogeneous confined thin films of liquid
crystals like a fluid of hard Gaussian overlap particles [26–29]
or the Gay-Berne particles model [30].

The benefit of the Gaussian integration method lies in the
fact that it uses a small number of integration points and is very
quick. In the geometry used in [25] it was feasible to use this
methods for spatial integration since the integral limits were
the same as the scope of the distribution function dependence.
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In the case of bulk systems this is no longer valid—one cannot
obtain solutions described on the infinite spatial interval unless
the considered systems are uniform or periodic.

Periodic spatial structures, like smectics in liquid crystals,
are bulk systems. Since their characteristics repeat regularly in
space in reality the needed spatial dependence can be limited
to a certain interval. A question is how to find such an interval
that would be commensurate with the true structure periodicity.
This is not just a problem about the smectic layer thickness that
minimizes the free energy; the main problem (see below) lies
in the fact that while solving the self-consistency equations for
the spatially dependent distributions one deals with an infinite
spatial integral.

In what follows we present a natural and simple numerical
algorithm together with the results of its application to
the smectic formation problem. As is always important in
computational physics, the main aspect is also how the
numerical accuracy of undertaken procedures influences the
reliability of the predicted physical properties.

This paper is organized as follows. Section II provides the
basis of the Onsager theory adjusted to the smectic geometry
for the case of a two-dimensional smectic liquid crystal with a
simplifying assumption of perfect alignment. Section III gives
the details of the used numerical scheme and Sec. IV provides
the numerical solutions together with the discussion of the
influence of the numerical accuracy on the obtained physical
properties. Section V is the summary.

II. ONSAGER THEORY

Let us consider a system composed of N particles whose
state is given by the spatio-orientational distribution function
ρ. The function ρ is the probability to find a particle at the
point r and having the orientation �. It is normalized to the
number of particles, N :

∫
ρ dr d� = N. (1)

The Helmholtz free energy of the system made of different
types of particles described by the indices i and j is given by
the formula

βF =
∑

i

∫
ρi(ln ρi − 1) d(i)

− 1

2

∑
i,j

∫
(e−βUij − 1)ρiρj d(i) d(j ), (2)

where index i or j denotes the type of the particle. As the type
of the particle we also understand a different conformation.
In (2) d(i) ≡ dri d�i ; β is β = 1/kT , where k is the
Boltzmann constant and T is the temperature; Uij is the
interparticle potential acting between molecules i and j ; and
(e−βUij − 1) is the so-called Maier function.

The minimum condition for particle type i reads

δ(βF )

δρi

= 0, (3)

L L

L particle R particle

FIG. 1. Boomerang particles. The arm length is given by L and
the apex angle is α. Boomerangs are perfectly aligned and two
orientations are considered, R and L. Different shading is used to
distinguish particles with different orientation.

which leads to the self-consistency (Onsager) equations of the
form

ln ρi =
∑

j

∫
(e−βUij − 1)ρj d(j ). (4)

Solutions of these equations depend on the type of the
interacting particles and assumed interactions Uij .

In this work we consider particles in the form of needlelike
boomerangs as in Fig. 1 that are characterized by the length
of the arm, L, and the apex angle α. The boomerangs are
perfectly aligned, yet they can attain two orientations. (For the
bifurcation analysis and phase diagram for such a system one
can see in [31].) Boomerangs pointed to the right are denoted
by the index R and boomerangs pointed to the left by the index
L.

For this case Eq. (4) takes the form

ln ρR =
∫

(e−βURR − 1)ρR d(R) +
∫

(e−βURL − 1)ρL d(L),

ln ρL =
∫

(e−βULL − 1)ρL d(L) +
∫

(e−βURL − 1)ρR d(R).

(5)

For rigid bodies and the possibility of spatially modulated
solutions the Maier function can be integrated over the variable
perpendicular to the assumed axis of modulation, which in
the two-dimensional (2D) case leads to the transformation of
the Maier function to the form of the excluded area Sexcl.
Since intermolecular potential Uij is zero, when particles are
apart, and infinite if they overlap, then the Maier function
(e−βUij − 1) is zero when they are apart and −1 when they
overlap. Hence the integral

−
∫

(e−βUij − 1) dxij = Sexcl(yij ) (6)

becomes Sexcl(yij ). How to calculate Sexcl(yij ) is explained in
the next section.

Because the modulation axis has been chosen as the Y axis,
the distribution functions depend only on the y variable. If
one knows beforehand the period of modulations, the problem
would be very easy: it would be sufficient to provide the
solutions only for this scope. But the period of the solutions is
unknown. Another difficult problem is also that the integrals
in Eq. (4) are infinite.

To solve the Onsager equations the following scheme has
been proposed.
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III. DESCRIPTION OF THE SOLVING SCHEME

A. Equations to be solved

Let us consider an interval along the Y axis of length Sd ,
which would correspond to the modulation period or a multiple
of this period. The distribution ρ should be replaced now by
its normalized to unity counterpart f defined as

1

Sd

∫ Sd/2

−Sd/2
f dy = 1, (7)

which is the probability per unit length. In this formulation
we have also assumed that the layer of width Sd contains N

particles. The correspondence between f and ρ is

ρ = Cf, (8)

where C is the proportionality constant.
To find out the proportionality constant C we put the above

formula in the normalization condition (1) with respect to one
type of particle, for instance, i. If perfect alignment is assumed
and the particle’s orientation is chosen (R or L) then there is
no integration over the angles involved. Hence∫

Cifi dx dy = Ni, (9)

where Ni is the number of particles i and Ci refers also to the
particles of type i. Since there is no modulation of fi in the X

direction, the integration over the x variable gives the value of
the integration interval Sx . Equation (9) can be rewritten now
as

CiSxSd

1

Sd

∫
fi dy = Ni (10)

or
1

Sd

∫
fi dy = Ni

CiSxSd

. (11)

Using condition (7) in Eq. (11), it emerges that Ci = di , where
di = Ni/S is the surface density of particles i with S = SxSd .

The method of normalization is very important since upon
this condition it depends whether we consider a mixture with
fixed proportions of the components or a system with the
spontaneous possibility to attain orientation R or L. If one
assumes in Eq. (9) that the number of particles, Ni , is fixed,
then the considered case will be a mixture (like in [32,33]). In
this work, however, we focus on another case, i.e., when the
particles can spontaneously change their orientations. In this
case the normalization follows:

1

Sd

∫
(fR + fL) dy = 1 (12)

and the density d = N/S corresponds to all the particles in the
system.

In terms of the functions fR and fL the self-consistency
equations to be solved read

ln fR = −dxR

∫ +∞

−∞
Sexcl

RR fR dyR − dxL

∫ +∞

−∞
Sexcl

RL fL dyL

ln fL = −dxL

∫ +∞

−∞
Sexcl

LL fL dyL − dxR

∫ +∞

−∞
Sexcl

LR fR dyR

(13)

where xR and xL are the fractions of the particles R and
L. If one assumes that xR = 1 and xL = 1 and assumes the
normalization condition as in Eq. (12) then Eqs. (13) will
describe the system in which the amount of each type of
particles is adjusted spontaneously according to the free energy
minimum condition. This case is used in the analysis presented
in this paper.

The integral equations (13) are the core of the Onsager
theory. Not only do they contain infinite integrals but they also
depend on the unknown interval Sd . Two questions occur now:
how to solve them and how to find the optimal value of Sd .

The answer to the second question is straightforward.
Provided that solutions are known for arbitrary values of Sd , the
minimum of the Onsager free energy will provide a criterion
for the required optimal Sd . In terms of fR and fL the free
energy of the layer of the thickness Sd per particle can be
calculated from Eq. (2) as

βF

N
= [ln(d) − 1] + 1

Sd

∑
i

∫ +Sd/2

−Sd/2
fi ln(fi) dyi

+ d
1

2Sd

∑
i,j

∫ +Sd/2

−Sd/2
dyi

∫ +∞

−∞
Sexcl

ij fifj dyj , (14)

where i,j = R,L. This formula also contains an infinite
integral.

The most important problem is how to solve Onsager
equations (13) for an arbitrary value of Sd and how to obtain
the appropriate free energy if they contain infinite integrals.

A typical way of solving Eqs. (13) is to evaluate integrals
on the right hand side of Eqs. (13) by the use of arbitrarily
chosen starting values of fR and fL, obtaining new estimates
for these distributions, and then calculating again the above
integrals. Such a procedure should be repeated iteratively
until the new values of fR and fL agree with the values from
the previous iteration step. In the case of periodic solutions
that span over the infinite regime the most difficulty lies in
the integration scheme.

B. Establishing lattice and nodes for the integration scheme

All integration methods are based on the values of the
functions calculated at the chosen nodes of the integral interval.
In what follows we use the simplest of them—the trapezoidal
method—since in this case making replicas (to be explained
further) is the quickest. Note, however, that the replica method
can be adapted in any integration scheme.

In order to establish the lattice of nodes for the integration
scheme let us consider an interval in the Y -axis direction of
length Sd (we call it the central box) and two adjacent intervals
of the same length, within which we later place replicas of the
solutions from the interval Sd (like in Fig. 2). At the initial
stage there is no notion of how large such an interval should
be. The only information is the fact that it probably should be
commensurate with the interaction regime, which in the case
of the hard-body interactions will correspond to the size of the
particles. In practice, we start with the values slightly larger
than the projection of the boomerangs on the Y axis.

The central box and two adjacent boxes altogether cover
the 3Sd distance. Within this integration interval we place Nn
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DdS

Dd3S

X

Y

i

j

FIG. 2. Geometry of the integration points along the Y axis. The
size of Sd should be such that the particles placed at the outermost
points from the central interval and from the neighboring interval will
not lead to an overlap while the particles are being moved along the
X axis; i.e., their excluded X interval for such points is already zero.
An example of the excluded slice for the boomerangs at yi and yj is
given as a thick solid (red) line.

nodes so that they are in equispaced positions. The number of
nodes, Nn, can be assumed as needed. In Fig. 2 these nodes
are given as circles. Each node j is determined by the value
of its coordinate yj . To calculate integrals on the right hand
side of Eqs. (13) we need values of distributions fR(yj ) and
fL(yj ) at the nodes yj and also the values of the interaction
kernel, here Sexcl(yi,yj ). Within the process of the iteration the
distributions (their estimates) fR(yj ) and fL(yj ) will change
their values, but interaction kernel will be always the same.
This means that one can calculate values of Sexcl(yi,yj ) at the
beginning of the iteration scheme and tabulate them for later
use at each step of the iteration.

C. Replica method of solving self-consistency equations

The replica idea applied to the Onsager equations concerns
the usage of the set of nodes. The distribution functions needed
on the right hand side of Eqs. (13) are to be evaluated on the
whole 3Sd interval, but the interaction kernel, Sexcl(i,j ), in our
method is treated differently: with respect to the second vari-
able, yj , it depends also on 3Sd intervals, yet with respect to the
first variable, yi , it depends only on the nodes from the central
box. Such a notation that the index i refers only to the nodes
from the central box and the index j will cover nodes from the
central and from the adjacent boxes is also further used.

The first evaluation means that we take starting (any) values
of fR(yj ) and fL(yj ) for the whole 3Sd interval and we take
values of Sexcl(yi,yj ) for the interval, where yj is also for
the whole 3Sd interval but yi is only for the central box,
and we calculate new estimates of fR(yi) and fL(yi) (in fact,
logarithms of them).

The new estimates depend on the yi variable from the
central box, but for further use we need fR(yj ) and fL(yj ) for
the large interval 3Sd . The idea of replicas is just to use values
from the central box and assume that the same outcome will
exactly occur in the neighboring boxes. Numerically making
replicas is just copying values of fR and fL for the nodes in the
neighboring boxes. Once we have estimates of the distribution

functions on the whole 3Sd interval we can use them for the
next step of the iteration process.

D. On the calculation of Sexcl( yi , y j )

For the purpose of the above scheme we must calculate
values of Sexcl(yi,yj ) at each pair yi,yj and store these values
in a matrix form dependent on the indices i and j . By definition
the excluded area is the area which is inaccessible to the center
of the particle j while it is being moved around the particle
i. This area is constructed from the intervals inaccessible to
the particle j while it is being moved along the X axis in the
presence of particle i with its position fixed at (xi,yi). It should
be calculated for each pair of points i and j or, more precisely,
for the variable yij = yi − yj .

We present how to calculate Sexcl(yi,yj ) for the boomerangs
from Fig. 1 in Fig. 2. As the first step we consider a boomerang
i and place it at the node i from the central box in such a way
that the apex point (instead of the geometrical center) is at
xi = 0 and yj = 0. In Fig. 2 this boomerang is black. Then we
take another boomerang j and place it in such a way that its
apex point is at the level yj . In Fig. 2 there are shown two such
positions (the boomerangs are gray). The gray boomerang in
the upper position, while being moved along the X axis, does
not touch the black boomerang, since it is too high; hence
Sexcl(yi,yj ) is zero. For the gray boomerang at the lower level,
while it is being moved along the X axis, one finds two distinct
points of contact between the particles i and j . The distance
between these points gives the value of Sexcl(yi,yj ). In Fig. 2
this is depicted by a thick (red) interval.

Now one can also see how large the interval Sd should be. If
we place the particle i at the outermost points from the central
box and the particle j at the outermost nodes from the interval
3Sd and the resulting Sexcl(yi,yj ) is zero, then one can assume
that the size of Sd is sufficiently large. It can be of course
larger, but the problem arises only when it is too small.

Once we know that two particles are so far away that
there is no interaction between them there is no longer any
contribution to the integral on the right hand side of Eqs. (13):
all possible contributions have been already considered and
initially infinite integrals become practically finite.

If all possible results for Sexcl(yi,yj ) are calculated and put
on a 2D diagram one obtains the full 2D excluded area. An
example of such excluded areas for two needlelike boomerangs
with infinitely thin arms from Fig. 1 are presented in Fig. 3.
The shaded area together with the black border lines is the area
which is inaccessible for the coordinates of the apex point of
the boomerang j and represents the resultant excluded area.
For two boomerangs with the same orientation the excluded
area is given at the left hand side of Fig. 3 and it is exactly
the same for the boomerangs pointed to the left or to the right.
If the orientations of the particles are opposite, the shape of
the excluded area, given on the right hand side of Fig. 3, is
completely different. As it can be seen, in both cases these
areas are defined by a set of straight lines. Their positions
correspond to the shape of the particles. The conditions for the
algebraic expressions that describe all these lines (parameters
A and B for y = Ax + B for each line) can be read out from
the picture and put in the program for automatic calculation of
Sexcl(yi,yj ) for any points yi and yj .

063316-4



COMPUTATIONAL ASPECTS OF THE SMECTIZATION . . . PHYSICAL REVIEW E 95, 063316 (2017)

Yy12
LL
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Yx12
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FIG. 3. Shape of the excluded areas for two different mutual
orientations of boomerangs.

E. Iteration process details

To start the iteration process, besides the model parameters
L, α, and Sd and emerging from them values of Sexcl, one also
needs the value of the density d and, as already mentioned, an
initial set of values for fL and fR . As starting distributions we
use the simplest periodical functions, i.e., the functions sine
and cosine:

fR = cos

(
2πy

ARSd

)
,

(15)

fL = sin

(
2πy

ALSd

)
,

with AR and AL being certain numbers allowing for a change
of the periodicity of the initial conditions. They can be chosen
arbitrarily. There is no need to normalize initial functions at
the beginning, since normalization of the functions must be
performed always at each step of the iteration process.

In general, Eqs. (13) can have many solutions of different
kinds and the chance to find them will depend on the values
of AR and AL. It would be good then to check as many sets
of AR and AL as possible to see what types of solutions are
being obtained. Once we know what functions are to be used as
initial data we calculate the distribution functions [fR(yj ) and
fL(yj )] at all nodes, from the central box as well as from
the adjacent boxes, and store the outcome in a vector for
further use. Performing integrals is just a summation of the
appropriate values that are also stored in vectors or matrices.
The new estimates of fR(yi) and fL(yi) are used as replicas to
construct distributions over the entire 3Sd interval. The updated
outcome should be next consistently used on the right hand side
of Eqs. (13). Such an iteration procedure self-consistently is
repeated until the following condition is fulfilled:

error < ε, (16)

where

error =
∑

i

(∣∣f new
R (i) − f old

R (i)
∣∣ + ∣∣f new

L (i) − f old
L (i)

∣∣),
(17)

ε is the assumed accuracy number, and i is the index of
the node. Labels in the superscript index, “new” and “old,”
refer to two subsequent values of distribution functions within

the iteration process. To ensure convergence of the iteration
procedure, in practice one needs also to use a mixture of the
new and old solutions. Usually it works for a mixture of 90%
of the old solution and 10% of the new one.

On the face of it such a replica method can give the impres-
sion of being wrong since surely there will be discontinuities
at the border of the boxes, at least after the first iterations, as
expected. But let us see how such an iteration scheme works.

IV. RESULTS

In this section the results of the Onsager theory are
presented for different values of the theory parameters.

For the density corresponding to the smectic phase, d =
200, and parameters α = π/2, L = 0.1, and Sd = 0.16 with
the initial function parameters as AR = 1 and AL = 1 [see
Eqs. (15)], the program converges to a solution like in Fig. 4(d).
In Fig. 4 we also present intermediate stages of the iteration
process: Fig. 4(a) shows the starting profiles of fL and fR

according to Eqs. (15), Fig. 4(b) presents an intermediate
stage of fL and fR when error � ε = 50, Fig. 4(c) presents
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FIG. 4. Solutions fL and fR obtained from the initial configura-
tions due to Eqs. (15) with AL = 1 and AR = 1: (a) starting profiles
of fL and fR according to Eqs. (15); (b) an intermediate stage of fL

and fR , when the error is error � ε = 50; (c) an intermediate stage
of fL and fR , when the error is error � ε = 10; and (d) the final
solutions of fL and fR , when the error is error � ε = 0.00001. At
each stage the solutions are continuous.
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FIG. 5. Antiferroelectric phase.

an intermediate stage of fL and fR when error � ε = 10,
and Fig. 4(d) shows the final solutions of fL and fR for
error � ε = 0.00001.

Looking at these results the first observation is that all
profiles obtained at different stages of iteration are continuous.
The negative parts, which are present in the starting profiles,
pertain for a number of initial iterations because of the fact that
mixtures of old and new solutions are used. They eventually
disappear: the whole profiles are gradually shifted up within
the iteration process. At the same time the peaks are moved to
the left or to the right and finally they find themselves in the
regular intervals, which is characteristic for the regular layered
formation.

The obtained final solutions are of the antiferroelectric
type. In this type of order subsequent layers, whose positions
are given by subsequent peaks, are of different orientations.
The layer rich in the R boomerangs, whose center is given by
the peak of the fR function, is followed by a layer rich with
the L boomerangs, whose center is given by the peaks of the
fL function. An artistic view of an antiferroelectric phase is
given in Fig. 5.

So the first aim has been achieved: the replica method
indeed leads to the physical solution of the modulated phases
even for arbitrary Sd . In Fig. 4 one observes exactly three
periods spanning the interval of the size of the central box and
two adjacent replicas. Finding solutions for different values of
Sd and checking corresponding values of the free energy due
to Eq. (14), one can obtain an optimal value of the modulation
structure period.

It turns out, however, that the condition of continuous initial
functions does not mean that the intermediate profiles are
always continuous, as feared at the beginning. The case shown
in Fig. 6 gives an example when the initial condition, due to
Eqs. (15) with AL = 0.4 and AR = 0.7, is continuous, yet,
because of the Sd being incommensurate with these initial
periods, it becomes immediately discontinuous. During the
iteration process these discontinuities change their character
and finally fL and fR attain the stage when they are continuous.
In fact, the same solutions are being obtained as in Fig. 4,
although they are slightly shifted in phase: the peaked profiles
are the same, yet their positions are changed (moved). This
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FIG. 6. Solutions fL and fR obtained from the initial config-
urations due to Eqs. (15) with AL = 0.4 and AR = 0.7: (a) starting
profiles of fL and fR according to Eqs. (15); (b) an intermediate stage
of fL and fR , when the error is error � ε = 50; (c) an intermediate
stage of fL and fR , when the error is error � ε = 10; and (d) the
final solutions of fL and fR , when the error is error � ε = 0.00001.
Periodicity of the initial profiles is much different from the final
solutions which results in the fact that intermediate profiles are
discontinuous, yet final solutions are continuous again.

change of the position of the peaks is very important as far as
calculation of the order parameters is concerned.

The order parameters are needed in order to assess the
degree of smectization of the system. They should provide
universal information. To find them it is important to know
how many layers are found within the main interval Sd . This
number m should be included in the defining formulas for the
order parameters SR and SL, which describe the strength of
order of the boomerangs R and L, respectively:

SL =
∫ Sd/2

−Sd/2
fL(y) cos

(
2πmy

Sd

)
dy,

(18)

SR =
∫ Sd/2

−Sd/2
fR(y) cos

(
2πmy

Sd

)
dy.

In practice SL and SR will depend on the fact whether the
profiles fL and fR are symmetric about the point y = 0. In
order to have universal values we have to impose a condition
that one of them, say fR , has a maximum exactly at y = 0
and we have only one smectic layer within the interval Sd .
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FIG. 7. Free energy versus Sd interval. Two subsequent mini-
mums correspond to the same type of solution. The second minimum
corresponds to the solutions covering twice the number of smectic
layers as in the first minimum case.

Under this condition we can treat the outcome of Eqs. (18) as
a good measure of the smectization degree. For the boomerang
case given in Fig. 6 these values are SL = −0.3449 and
SR = 0.3449. They have the same absolute value but opposite
signs; such a feature is symptomatic of the order of the
antiferroelectric type.

As already mentioned, the distance between two subsequent
peaks, the layer thickness, is determined by the assumed
number for Sd . This should be optimized. In order to obtain
a realistic value of the layer thickness one needs now to scan
over different values of the Sd parameter, calculate solutions
of the self-consistency equations, and then find values of the
free energy according to Eq. (14).

To analyze the free energy properties, in Fig. 7 the free
energy profile versus the integration layer thickness has been
given for the needlelike boomerangs of the apex angle α =
π/2, the arm length L = 0.1, and the system density d = 170.
One observes here two minimums of the same depth. The first
minimum occurs at the integration interval Sd = 0.1775 and
the second minimum at Sd = 0.355. These two minimums, in
fact, correspond to the same solution. In the case Sd = 0.355
the number of smectic layers is twice the number of smectic
layers obtained for Sd = 0.1775. To see this in Fig. 8 we
show that the free energy characteristics of two subsequent
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FIG. 8. Free energy versus Sd interval. Two subsequent mini-
mums correspond to the same type of solution.
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FIG. 9. Accuracy of free energy calculations with respect to the
number of integration points.

minimums are, in fact, the same. If we divide Sd by 2 then we
see that we obtain the second minimum in the place of the first
minimum and exactly the same shape.

The minimums in Fig. 7 are of the same depth. Such results
have been obtained for 2400 points that have been used in the
assessment of the integrals. It is interesting now to see what
will happen—if the number of integration points is smaller.
In Fig. 9 we show a sequence of the free energy results
obtained for different numbers of integration points. For the
solutions without modulations the free energy should be at
a constant level. Yet, due to the numerical inaccuracy, it has
a diminishing tendency: it is stronger as a smaller number
of integration points are used. For comparison purposes, an
anisotropic solution is also presented for only 240 nodes. Now
the second minimum is a bit deeper, yet its position is the same
as in the previous case. If the numerical purpose is only to find
the position of the minimum then the accuracy of computation
and the number of integration points seems to be unimportant.

To see also that the second minimum corresponds to the
case with a doubled number of layers, let us also have a look
at the distribution functions obtained for the above two values
of the integration interval. They are presented in Fig. 10. The
solutions fL and fR for Sd = 0.1775 exhibit only three peaks.
For Sd = 0.355, fL and fR exhibit six peaks: twice as many
as in the former case. The peaks are of the same height, which
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y

0

0.5

1

di
st

rib
ut

io
n 

fu
nc

tio
ns

 f R
 a

nd
 f L

fL , Sd = 0.1775
fR, Sd = 0.1775
fL, Sd = 0.335
fR, Sd = 0.335

FIG. 10. The distribution profiles fR and fL for Sd = 0.1775 and
Sd = 0.335. These are the same functions, but for a longer interval
of Sd the number of smectic layers obtained is twice the number as
in the case of Sd = 0.1775.
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FIG. 11. Comparison of the distributions for the smectic A case
and for the antiferroelectric smectic obtained for the same density,
d = 800. In the smectic A case the free energy is E = 10.76 and in
the AF smectic it is E = 7.317.

emerges from the fact of the normalizing condition (7), which
contains the term 1/Sd .

Besides the antiferroelectric order, for hard boomerangs it
is also possible to obtain another solution. If the density comes
from the region beyond the bifurcation point from the uniaxial
phase to the smectic A phase, one can obtain fL and fR which
describe the smectic A type.

An example of such a solution is given in Fig. 11. In the case
of the smectic A phase, the distribution functions fR and fL

are the same and the layer width is twice the layer width of the
antiferroelectric (AF) case. In contrast, the solutions for the AF
order exhibit steep peaks, which correspond to well ordered
layers. The layers composed of the R particles are practically
free of the L particles. Contrarily, the peaks of the smectic
A phase are much smaller and softer. One also observes here
larger areas which are completely free of all types of particles.
Comparing energies one sees that the antiferroelectric phase is
more stable than the smectic A phase. An artistic view of the
smectic A phase is given in Fig. 12.

No polar smectic phase has been encountered for the
needlelike boomerangs.

It would be interesting now to compare the outcome of the
present calculations with the most successful fitting function
for the smectic density profiles. It has been considered, for

FIG. 12. Smectic A occurs when the numbers of left and right
particles within each layer are on average the same.
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fR=0.00124*exp(8*cos[2*3.1415(y-0.08)/0.16])

FIG. 13. Fitting of the probe function of the form
exp(λ cos(2πy/d)) (dots) to the fR solution (solid line) for d = 600,
L = 0.1, Sd = 0.16, and α = π/2.

instance, in [23,24]. It reads

f (y) = N exp

(
λ cos

(
2πy

d

))
. (19)

We call it the cosine-exponent (CE) function.
Fitting of this function to our results for a chosen set

of parameters for a very dense system is given in Fig. 13.
Indeed, the function of the type in Eq. (19) seems to be a
very satisfactory choice, which requires only three adjustable
parameters. We believe that in the case of typical smectic
profiles the CE function will work also well, but there exist
cases when this function may not be appropriate to use,
for instance when the smectic layers are incommensurate
or consist of bi- or multilayers or when the molecules do
not exhibit head-tail symmetry and the resulting distribution
profiles would be not symmetrical. Please also note that
the replica method is a general idea and can be used for
any modulated structures, not only smectics. In the case
of liquid crystals it can be also used for description of
all modulated nematics, starting from the simple case of
cholesterics, through twist bend and splay bend phases, and
to other more sophisticated phases that have been recently
discovered theoretically [34].

V. SUMMARY

A simple replica method for calculating smectic properties
has been presented and examined for studying properties of
a two-dimensional needlelike boomerang system. It is based
on the observation that the integral equations, whose terms
are based on different intervals of the spatial integration, can
be, in practice, solved by making replicas of the main box
characteristics. It has turned out that the necessary continuity
condition required on the distributions at the borders of the
central and replica intervals is fulfilled automatically at the
end of the convergence process, even though the intermediate
or initial steps are discontinuous. This feature of discontinuity
at initial stages was probably the reason why the idea with
replicas has not been used so far in solving Onsager equations.
The iteration process applied to the Onsager self-consistency
equations always provides solutions as one or a multiple of
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periods with respect to the size of the central integration box
Sd . This size can be chosen arbitrarily, yet the minimum of the
free energy allows one to find the optimal value of Sd .

Based on the distribution functions, other physical proper-
ties, like the above mentioned free energy or order parameters,
can be calculated. Distribution functions obtained have been
next fitted to the probe CE function used, for instance, in [24].
It turns out that the CE function can be very well fitted to
our exact results. There are, however, cases when it is not
possible to use the cosine-exponent function and the current
algorithm aimed at the exact solutions may be more useful. To
such cases belong more complex phases like incommensurate
smectic phases, bi- or multilayer smectics, or smectics with
asymmetrical profiles of the density peaks. The third case,
which, to our knowledge, has not been described yet, is quite
plausible and expected to be found, for instance, in polar
systems of asymmetrical particles.

To conclude, the above presented approach combined in a
complementary way with the CE method has very good per-
spectives for studying different classes of smectic properties.
Not only does it surpass the method of Fourier expansions of

interaction terms by allowing for inclusion of all the interaction
contribution, but it is also capable of studying incommensurate
phases.

In order to extend investigations to a more general descrip-
tion, investigations are currently being carried out to include
the whole angle dependence. It is a challenging numerical
task to include more variables into the Onsager formalism.
The case presented in this paper considers in fact only two
orientations of the polar angle. Only the uniaxial smectic
phase would require consideration of the whole range of the
polar angle, which already extends the time of calculation to
several times the computational time needed in the current
work. Application of Gaussian quadratures, which are less
time consuming, gives hope for the Onsager analysis of the
biaxial order.
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