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Flow and mass transfer around a core-shell reservoir
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I have developed an alternative numerical approach to study mass transfer from a stationary core-shell reservoir
under channel flow conditions. I use the lattice Boltzmann method to compute both the solvent fluid flow and
the diffusion and advection of the solute. I have investigated the impact of the flow by reporting mass transfer
quantities such as the instantaneous solute concentration and the local Sherwood number at the surface of the
reservoir. The flow is found to enhance the release of the encapsulated material, but it prevents the released
material from reaching the channel walls.
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I. PROBLEM STATEMENT

Understanding mass transfer under flow conditions is of
fundamental and practical interest. Many natural phenomena
and industrial processes involve the diffusion, advection, and
reaction of chemical substances (solutes) and the flow of their
surrounding fluid (solvent). In the present study, I am rather
interested in the release of a substance from a reservoir under
flow conditions. The reservoir is made of an inner core medium
(fluid or solid) coated with an outer shell. The substance is
initially loaded into the core and it is protected from the
external environment by the shell. The release of the substance
from the core is controlled by the shell. This study is initially
motivated to gain insight into the fundamentals of mutual
coupling between three components: fluid flow, structure, and
mass transfer. Direct applications can be found in the newly
flourishing discipline of controlled release systems, such as
targeted drug delivery systems [1]: core-shell capsules [2] or
core-shell fibers [3].

Few studies in the literature have dealt with the problem
of release from a core-shell reservoir and most of them have
considered no flow conditions [4,5], for simplification reasons.
For such a situation, the release is mainly controlled by the
shell properties, such as its thickness and permeability, and
there are even some empirical laws that give the release
rate [4]. However, the presence of an external applied flow
(forced convection) increases the complexity of the problem.
While there is no systematic study on release from core-shell
reservoir under flow, many other studies have considered
mass transfer from particles (including drops and bubbles)
under flow [6]. At low Péclet number (a dimensionless
number that measures the importance of advection with respect
to diffusion), the problem can be even solved analytically.
However, most of these studies have assumed uniform and
constant boundary conditions at the particle surface, as also
pointed out recently in Ref. [7], and do not match my actual
problem.

Here I consider release from a single isolated core-shell
reservoir particle under flow with unsteady mass transfer
boundary conditions at the shell. I study the distribution of the
released substance (solute) as a function of the Péclet number
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for a given flow pattern, here laminar, steady, and symmetric
around the particle. I consider the shell as a porous membrane,
which allows transport of the solute, but not the solvent. It is
impermeable to the external fluid. This simplifies the problem
by avoiding the swelling and deflation of the reservoir. I solve
the problem in two-dimensional (2D) space. This reduction in
the problem dimensionality would not alter the physics of the
system. The system in two dimensions would correspond to
the case of a cylindrical core-shell reservoir that is extended to
infinity in the third dimension. This corresponds to either the
2D version of a spherical capsule [2] or the 3D case of a fiber
[3]. Anyway, no direct quantitative comparison with fully 3D
experimental data is planned at this stage of the work. I am
rather interested in investigating the qualitative behavior. The
core medium is initially loaded with a high concentration of
the solute. This establishes a concentration gradient at the two
sides of the shell and triggers the pure diffusion of the solute
from the core, through the shell into the ambient fluid, in other
words, the release of the reservoir content into the external
medium. The system is at an out-of-equilibrium state at the
beginning and tends to relax towards an equilibrium state until
exhaustion of the encapsulated material.

I consider a steady nonmoving obstacle in order to remove
the effect of a moving reservoir on the flow and thus on the
mass transfer. The reservoir is kept stationary at the centerline
of the channel at a given location from the channel inlet. Such a
setup is practical to measure experimentally the concentration
using, for example, the florescence microscopy and the flow
around the reservoir by the particle image velocimetry while
having a nonmoving reservoir in the laboratory reference
frame. This avoids tracking at the same time both the motion of
the reservoir and the release of its inner substance, which is not
a trivial easy task. This setup is also very close to the case of
studying the problem in the particle center-of-mass reference
frame while considering an externally applied uniform flow,
as usually done analytically [6,7].

The article is organized as follows. In Sec. II I will introduce
briefly the lattice Boltzmann method and how I set and adapt
it to compute both the flow and the mass transfer around
a stationary obstacle, the reservoir. In Sec. III I report how
the flow alters the main physical quantities of mass transfer:
the instantaneous solute concentration and the local and total
Sherwood number (the dimensionless version of the mass
transfer coefficient). A summary is given in Sec. IV.
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FIG. 1. Geometry of the problem for the flow part.

II. NUMERICAL METHOD

The lattice Boltzmann method (LBM) is the suitable
numerical technique to solve such multiphysics problem:
coupling mass transfer with fluid flow passing an obstacle
in a channel. This method is well established; therefore, I will
not give more details about it here. I rather refer the readers
to the textbooks of Succi (for the physics basis of the LBM)
[8], Sukop and Thorne (for the engineering applications of
the LBM) [9], and Wolf-Gladrow (for the mathematics of the
LBM) [10]. Here I give only the main steps on how I adapt
and set the LBM to solve the problem by computing both the
fluid flow and the mass transfer.

Flow solver. The problem involves the flow of a fluid
(solvent) around a stationary rigid cylinder (as depicted in
Fig. 1), which can be computed by solving the continuum
Navier-Stokes equations

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∇2u, ∇ · u = 0, (1)

where u(x,y,t) and p(x,y,t) are the local velocity and pressure
of the fluid at the position r ≡ (x,y) and at time t , respectively,
and ρ and ν are the mass density and the kinematic viscosity
of the fluid, respectively, which are assumed to be constant
and uniform throughout this study. The computational domain
is divided into two domains: the fluid domain (the white area
in Fig. 1) and the reservoir domain (the gray area), seen as
a stationary rigid obstacle. Instead of solving Eqs. (1) using,
e.g., the finite-element method or finite-volume method, I use
the LBM. The main quantity of interest in the LBM is the
distribution function fi that gives the probability to find a
population of fluid particles at the discrete position (x,y) with
the ith discrete velocity vector ei , with i = 0–8 for the D2Q9
lattice. The evolution of fi is given by the lattice Boltzmann
equation

fi(r + ei ,t + 1) − fi(r,t) = −fi(r,t) − f
eq
i (r,t)

τf
, (2)

where

f
eq
i (r,t) = ωiρ

[
1 + 3(u · ei) + 9

2 (u · ei)
2 − 3

2 (u)2
]
, (3)

with the D2Q9 lattice weight factors: ωi = 4
9 for i = 0; ωi = 1

9

for i = 1,2,3,4; and ωi = 1
36 for i = 5,6,7,8. Here the right-

hand side of Eq. (2) expresses the Bhatnagar-Gross-Krook
(BGK) relaxation scheme: fi relaxes towards equilibrium f

eq
i

within a microscopic characteristic time τf . This later is related

2R

δ

FIG. 2. Geometry of the problem for the mass transfer part.

to the macroscopic kinematic viscosity of the fluid via the
formula ν = 1

3 (τf − 1
2 ). Body forces can be included by adding

a forcing term to the right-hand side of Eq. (2) as explained
in Ref. [11]. The velocity can be computed then as the first
moment of fi :

u(x,y,t) = 1

ρ

8∑
i=0

fi(x,y,t)ei with ρ =
8∑

i=0

fi(x,y,t).

(4)

A flow with parabolic velocity profile having a maximum umax

at the channel centerline is generated by exerting a constant
body force uniformly distributed in the fluid domain: fb(x,y) =
(8ρνumax/W,0) in the x direction.

Flow boundary conditions. I set zero nonslip velocity
boundary conditions along the channel walls and at the reser-
voir surface, via the LBM bounceback boundary condition,
and I set periodic boundary conditions at the channel inlet and
outlet.

Mass transfer solver. The diffusion and advection of a solute
is described by the equation

∂c

∂t
+ u · ∇c = D∇2c, (5)

where c(x,y,t) is the local concentration of the solute and D its
diffusion coefficient. In this study, I consider one-way coupling
(also known as the passive-tracer limit [12]). That means the
flow alters locally the solute concentration evolution via the
advection term u · ∇c in Eq. (5), while the concentration has no
impact on either the fluid flow or its hydrodynamical properties
(ν and ρ).

Again, instead of solving directly Eq. (5), I use the LBM.
I use another additional distribution function gi(x,y,t) in a
second lattice Boltzmann equation [similar to Eq. (2) but with
gi] to compute the diffusion and advection of the concentration

gi(r + ei ,t + 1) − gi(r,t) = −gi(r,t) − g
eq
i (r,t)

τd
, (6)

where

g
eq
i (r,t) = ωic(r,t)

[
1 + 3(u · ei) + 9

2 (u · ei)
2 − 3

2 (u)2
]
. (7)

Here g
eq
i includes also the nonlinear terms and not only the lin-

ear one, as classically done (see, e.g., Refs. [9,12]). Moreover,
I let gi exist on the same D2Q9 lattice as fi , even though the
D2Q5 lattice is sufficient for the mass transfer part. This allows
performing twice the same LBM steps (streaming, collision,
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etc.), however with different boundary conditions, bulk forces
(source terms), and solid nodes (Figs. 1 and 2) for each of
the distribution functions fi and gi . For the mass transfer
part, the macroscopic diffusion coefficient D is related to a
microscopic characteristic time τd [equivalent to τf in Eq. (2)]
via D = 1

3 (τd − 1
2 ). The local concentration is given as the

zeroth-order moment of gi :

c(x,y,t) =
8∑

i=0

gi(x,y,t). (8)

Mass transfer boundary conditions. The way of implement-
ing properly the boundary conditions for diffusion, especially
on curved interfaces, within the framework of the LBM is still
an actual matter of development [13]. Here I get around this
issue by using the same technique as used to implement the
viscosity contrast [11] and the thermal conductivity contrast
[14] for particles under flow. The computational domain for
the mass transfer part is divided into three domains: the core,
the shell, and the fluid, as depicted in Fig. 2. A different
diffusion coefficient D is associated with each domain by
setting a different BGK relaxation time τd. Thus, D ≡ D(x,y)
is a spatial function and it has three different values depending
on whether the computation node (x,y) is located in the core,
the shell, or the fluid. This simple numerical approach may
seem naive, but it has demonstrated its credibility in capturing
the correct physics in Refs. [11,14–16]. This approach achieves
the continuity of the concentration at the core-shell interface
and at the shell-fluid interface. Moreover, with a nonzero shell
thickness (δ �= 0), the unsteady mass flux across the particle
surface is implemented naturally and straightforwardly. Zero
mass flux is set along the channel walls via the LBM bounce-
back boundary condition [9], as for the flow part, and periodic
boundary conditions are set at the channel inlet and outlet.

Initial conditions. The fluid is initially at rest and flow is
driven by applying the body force fb until it reaches the fully
developed flow regime. For the concentration, c(x,y,0) is set
to c0 = 10 in the core and zero elsewhere.

Benchmark tests. The flow part of the code is benchmarked
separately by recovering exactly the analytical expression of
a parabolic velocity profile in the absence of an obstacle.
The mass transfer part is also benchmarked separately by
comparing the obtained numerical data with analytical profiles
for pure diffusion in infinite domains [17]. Such benchmarking
tests are reported in Ref. [9]. For both the flow and the mass
transfer parts, the numerical data match exactly the analytical
solutions when the relaxation time parameters (τf and τd)
are taken within the range ]0.5,2], which is used in all the
simulations below. There is no validation test for the problem
of the release from a core-shell reservoir immersed in a channel
and subjected to flow.

Key physical parameters. The results are given as a function
of the control dimensionless numbers: the Reynolds number

Re = umaxR

ν
, (9)

which measures the importance of inertia and is taken to be
unity in all the simulations, and the Péclet number

Pe = umaxR

D
, (10)

which gives the importance between the advection and the
diffusion. It will be varied by varying only D in order to keep
the same Re = 1 and thus the same flow pattern. The Schmidt
number

Sc = ν

D
(11)

relates the Reynolds number to the Péclet number via the
expression Pe = Re Sc. Here Sc = Pe since Re = 1. There is
also the blockage ratio number B = 2R/W that controls the
transition to different regimes of flow passing an obstacle in a
channel. It is held constant. Time is expressed in dimensionless
form using the Fourier number Fo = Dt/R2.

III. RESULTS AND DISCUSSION

All the results reported below are obtained with a Reynolds
number set to unity Re = 1 and B = 0.225. The computational
domain is set to L = 1600 and W = 400. All the reservoir ge-
ometrical parameters are kept the same for all the simulations:
The reservoir radius R = 45 with a shell thickness δ = 15. The
obtained flow is then steady and laminar and does not exhibit
any recirculation wake patterns at the rear of the reservoir. The
Péclet number is varied while keeping the Reynolds number
constant. The other parameters are in lattice units: umax =
0.037, τf = 1, ρν = 1/6, τd(core) = 1, τd(shell) = 0.55,
and τd(fluid) = 0.9995,0.5999,0.54995,0.51998,0.50999 for
Pe = 10,50,100,250,500, respectively.

Developing fluid flow case. Figure 3 shows the evolution
in time of the velocity field (the gray vectors) and the
concentration (the color map) for Pe = 50. Due to the diffusion
across the shell, the solute escapes from the core reservoir
into the ambient fluid. At the early stage, when the flow is
still weak, the mass transfer is dominated by diffusion and
the concentration boundary layer is almost radially symmetric
with respect to the reservoir center of mass (xc,yc). Later on
the flow develops into steady and laminar flow that pushes the
concentration boundary layer downstream behind the reser-
voir. The snapshots are taken at equal time intervals. The range
of the color bar box varies from one snapshot to another. Its
upper limit decreases with time because the local concentration
tends everywhere towards a lower equilibrium value. At a later
stage, the fluid reaches a fully developed flow regime. The
flow has a parabolic velocity profile far from the reservoir
location, in the vicinity of the channel inlet and outlet. The
same figure shows the distribution of the solute concentration
in the same computational domain. Later on the concentra-
tion boundary layer is gradually punched off in the flow
direction. The flow prevents the solute from reaching the
channel walls. However, behind the reservoir the flow recovers
its parabolic shape. It slows down and the diffusion regains
control and thus the concentration spreads until it reaches the
channel walls.

To appreciate more the distribution of the solute, I report
in Fig. 4 the concentration profiles taken along the reservoir
center of mass location xc and at different moments. Figure 4(a)
shows the concentration profiles for the stagnant fluid case and
Fig. 4(b) for the flowing fluid case. The gray colored areas
indicate the location of the shell. The concentration in the core
decreases with time, it gets a slope along the shell, and it decays
in the fluid. The solute leakage is accelerated in the presence of
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FIG. 3. Evolution of flow and mass transfer around a stationary
rigid core-shell reservoir. The fluid is initially at rest and it develops
into a laminar steady flow. The core is initially loaded with a
high concentration c0 = 10 that creates a gradient with the rest of
the domain, where the solute is initially absent. The concentration
gradient triggers the release, from the core into the ambient fluid,
until exhaustion of the internal solute and until it reaches equilibrium.
Snapshots are taken at equal time intervals. Here Pe = 50.
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FIG. 4. Solute concentration profiles taken along the line x = xc

at different moments, for (a) stagnant fluid and (b) flowing fluid. The
gray areas indicate the location of the shell. Under flow conditions,
the released solute stays in the vicinity of the reservoir surface and
the thickness of the boundary layer δBL stays roughly constant.

the flow. The height of the profiles at a later stage is lower for
the stagnant fluid case. So the flow enhances the release of the
encapsulated material into the ambient flowing fluid. However,
the released material stays close to the reservoir surface and it
does not diffuse laterally towards the channel walls. It builds
up a concentration boundary layer, for which the thickness
δBL stays roughly constant. For the stagnant fluid case, δBL

extends with time and the released material diffuses radially
until it reaches the channel walls.

Impact of the Péclet number. The data obtained for different
values of the Péclet number Pe are reported in Fig. 5. These
data are taken when the core has released 80% of its initial
loaded material. Here the simulations are performed by setting
initially a fully developed flow, obtained with Re = 1, similar
to the one reported in Fig. 3(f). Fully developed flow allows
appreciating the effect of Pe for the same flow pattern, while
ruling out the transient regime effects. For all nonzero Pe,
the flow restricts the released solute within the vicinity of the
reservoir surface and extends its concentration boundary layer
downstream behind the reservoir. This boundary layer shrinks
more around the reservoir and extends further into the flow
direction when increasing Pe. Thus, the flow breaks the radial
symmetry of the diffusion front [Fig. 5(a)] and alters also the
solute concentration distribution within the shell and the core.

Flow impact on mass transfer quantities. The impact of
flow (fully developed flow case) can be well described by
reporting the mass transfer physical quantities on the surface
of the reservoir. Figure 6 gives the instantaneous local surface
concentration c(R,θ,t), the instantaneous local mass flux
J (θ,t), and the instantaneous local Sherwood number Sh(θ,t),
defined as

J (θ,t) = −D

[
c(R,θ,t) − c(R − δ,θ,t)

δ

]
, (12)

h(θ,t) = − D

c(R,θ,t)

[
∂c

∂r

]
r=R

, (13)

Sh(θ,t) = 2
R

D
h(θ,t), (14)
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FIG. 5. Distribution of the solute as a function of the Péclet number Pe, for the same fully developed flow pattern around the reservoir,
when 80% of the initially encapsulated amount is released. Here Pe is increased by decreasing the value of the diffusion coefficient in the
fluid D while holding all the other parameters constant. The concentration boundary layer gets thinner and extends farther downstream when
increasing Pe.

where θ is the angular position as defined in Fig. 6(a). The
Sherwood number Sh(θ,t) is the dimensionless version of
the mass transfer coefficient h(θ,t) and it is equivalent to
the Nusselt number used for heat transfer. Equation (12) is
evaluated using the diffusion coefficient in the shell, while

Eqs. (13) and (14) are evaluated with the diffusion coefficient
in the ambient fluid. Figure 6(b) shows that the solute
concentration at the surface of the reservoir is not uniform,
in contrast to the stagnant fluid case in which it is uniform. It
is lower in front of the reservoir and higher behind it. Moreover,
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FIG. 6. (a) Angular position θ , (b) instantaneous solute concentration at the surface of the reservoir c(R,θ,t), (c) instantaneous local mass
flux across the shell J (θ,t), and (d) instantaneous local Sherwood number Sh(θ ), taken at three different moments. All these quantities are not
constant and are not uniform at the surface of the reservoir.
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FIG. 7. Instantaneous total Sherwood number ShT(t) for a stag-
nant fluid (solid red line) and for a flowing fluid with Péclet number
Pe = 50 (dashed blue line). The overall mass transfer from the
core-shell reservoir is enhanced by the flow.

the concentration at the surface is not constant, but it evolves
in time due to the established unsteady mass flux across the
shell. In most previous studies on mass transfer from particles,
the concentration is assumed to be uniform and constant at the
particle surface [6]. Here the system is placed at an out-of-
equilibrium state by setting initially a concentration gradient
on both sides of the shell and that triggers the diffusion. Thus,
relaxation towards an equilibrium state. The generated mass
flux is important upstream at the front of the reservoir and
is less downstream, as shown in Fig. 6(c). The flux is higher
upstream because the flow washes away downstream the newly
released material. This creates a lower surface concentration
that results in a high-concentration gradient with the internal
slowly evolving concentration. The local Sherwood number
as a function of the angle is shown in Fig. 6(d). It is higher
upstream and lower downstream. Its value is not also constant
and uniform. It is different from the classical constant and
uniform value Sh = 2 computed for a particle with constant
boundary conditions on its surface and subjected to unbounded
uniform Stokes flow [6]. In both Figs. 6(b) and 6(c) c(R,θ,t)
and J (θ,t) exhibit noticeable evolution in time, while Sh(θ,t)
only weakly evolves with time [Fig. 6(d)].

Total Sherwood number. Figure 7 shows the instantaneous
total Sherwood number for a stagnant fluid (solid red line) and
for a flowing fluid (dashed blue line), which corresponds to
Péclet numbers Pe = 0 and Pe = 50, respectively. I report data
obtained before the concentration boundary layer reaches the
channel outlet boundary. The total Sherwood number ShT(t)
is obtained by integrating the local Sherwood number Sh(θ,t)
over the surface of the reservoir (here in two dimensions over
its circumference): ShT(t) = 1

2πR

∫ 2π

θ=0 Sh(θ,t)ds(θ ). Higher
and exactly identical values of the Sherwood number are

measured at the early stage of the simulations for both cases
(the gray area). At this stage, the flow has no effect on the
mass transfer, even though the flow is already fully developed.
The mass transfer is taking place mainly by pure diffusion.
The amount of the released solute around the reservoir is
still negligible for advection to play a part. Later on the
two curves detach. The Sherwood number for the stagnant
fluid case decreases rapidly and tends to vanish. For this
pure diffusion scenario, the mass transfer rate (the mass flux)
drops gradually in time and tends to vanish at equilibrium
(when the concentrations at both sides of the shell reach an
equal equilibrium value), while the one for the flowing fluid
plateaus around ShT = 5, which is higher. Due to advection,
the solute is washed away each time from the reservoir surface,
causing the external concentration to drop down [Fig. 6(b)].
Thus, the concentration gradient drops slowly and so does the
mass transfer coefficient. For the flowing fluid case, the flow
creates a concentration boundary layer with a thickness that is
maintained constant enough in time. This is why the Sherwood
number plateaus momentarily for the flowing fluid case until
exhaustion of the encapsulated material. The flow enhances
the overall mass transfer from the core-shell reservoir.

IV. CONCLUSION

I have adapted the lattice Boltzmann method to couple
and compute both the flow and mass transfer around a
core-shell reservoir. For the boundary conditions, I have used
a simple algorithm that allows having the mass transfer in
a heterogeneous medium with curved interfaces and allows
implementing unsteady jump boundary conditions on these
interfaces.

I have presented results of the LBM simulations showing
the released solute distribution under flow condition and report
how the flow affects the mass transfer quantities such as the
concentration of the solute at the reservoir surface, the local
mass flux across the shell, and the local Sherwood number.
All the simulations imply nonuniform unsteady mass transfer
boundary condition at the reservoir surface, in contrast to the
classical studies. The flow is found to enhance the solute
release from the core-shell reservoir. However, it hinders
the spread of the released solute to the channel walls. Such
qualitative and quantitative data are not available in literature,
especially for the core-shell reservoir system, despite their
relevance, for example, to the fields of chemical engineering
and pharmaceutics.
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