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Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows
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Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we
carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate
them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches,
the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can
both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary
conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST
approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example
simulations are conducted, including flows through flat and wavy channels and flows through a square array with
circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations
using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the
DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations
demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow
simulations.
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I. INTRODUCTION

Periodic structures are often encountered in heat exchangers
and other heat transfer systems, such as wavy or grooved
pipes, fin-pin cold plates, and cross-flow heat exchangers [1,2].
When fluid property changes are neglected, identical flow
field and similar temperature distributions can be observed
in consecutive periodic modules after some distance from
the entrance. The flow is then called fully developed in both
flow and thermal fields [3,4]. Numerous studies have been
conducted on this topic; among them, existing simulations
mainly used traditional numerical techniques such as the
finite-difference and finite-volume methods [3–8].

Over the past two decades, the lattice Boltzmann method
(LBM) has experienced significant development. In addition to
various flow systems [9–13], LBM has also been successfully
adopted to study other processes and phenomena, such as
heat and mass transfer and electric and magnetic fields
[14–16]. Unlike other traditional numerical schemes such as
the finite-element, finite-difference, and finite-volume meth-
ods, where the governing equations of macroscopic properties
are discretized mathematically, LBM works with a set of den-
sity distributions at each lattice node, and the evolution of these
density distributions follows a simple collision-propagation
process consecutively. Interestingly, macroscopic equations
(such as the continuity and momentum equations for fluid
dynamics, the convection-diffusion equation for heat and mass
transfer, and the Poisson equation for electric fields) can be
correctly recovered from the density distribution dynamics via
mathematical analysis [14,15]. Studies and applications have
shown that LBM has some advantages over other methods in
simulating multiphase flows, incorporating complex boundary
geometries and moving boundaries, and implementing for
parallel computation.
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To simulate thermal flow systems, several approaches have
been developed along with the LBM advances over the past
two decades. In general, these methods can be grouped
in three categories: the multispeed approach, the double-
distribution approach, and the hybrid approach [17,18]. The
multispeed approach utilizes one set of distribution functions
for both flow and thermal fields; however, additional lattice
speeds and higher-order velocity terms are introduced to
recover the macroscopic energy equation. While this approach
may appear computationally attractive, its applications are
relatively limited due to the severe numerical instability and the
narrow temperature variation range [18]. The hybrid approach
uses LBM only for the flow filed, and the energy equation is
solved via some other traditional numerical schemes (e.g., the
finite difference method); therefore the hybrid approach is not
appropriate for our present work, since LBM is not involved
in the thermal field solution at all. The double-distribution
method employs two sets of distribution functions: one for the
flow field and one for the thermal field. The double distribution
method is most often used in thermal flow simulations, since
the numerical stability is significantly improved compared to
the multispeed method, and the computational implement is
more convenient than the hybrid approach. For these concerns,
we use the double-distribution approach in our next method
description and simulation demonstration. More details on
these thermal LBM models can be found in several review
articles and books and references therein [14–17].

As with other numerical methods, appropriate boundary
conditions are crucial for accurate and meaningful LBM
simulations. At lattice nodes near the boundary, there are
no density distributions entering the simulation domain after
the propagation step, and therefore appropriate treatments
must be implemented to assign values to such unknown
density distributions such that the macroscopic boundary
requirements are satisfied. Typically, macroscopic constraints
on boundaries are available before simulations, such as the
no-slip boundary condition on wall surfaces, the pressure
values at the inlet and outlet, and the wall temperature or
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FIG. 1. Schematic illustration of the periodic flow passage. The vertical dashed lines are plotted to divide the flow passage into individual
periodic modules. The coordinate system is set with the x direction in the flow direction and the y direction in the transverse direction.

heat flux in thermal systems. Tremendous efforts have been
devoted to develop accurate and efficient boundary schemes
for flow and thermal situations [14–17]. However, for the
periodic thermal flow discussed in this paper, the exact velocity
and temperature values at the module inlet and outlet cannot
be specified, and those LBM boundary methods cannot be
used. Fortunately, the particulate nature of LBM density
distributions provides great convenience for applying periodic
and symmetric (including the free-slip boundary condition
in fluid flows and the adiabatic boundary condition in heat
transfer) boundary conditions along a lattice grid line, which
can be accomplished by simply recycling or reflecting the
density distributions that cross the domain boundaries [15,16].
Both periodic and symmetric boundary treatments have been
frequently used in LBM flow simulations [15,19–22]; however,
this technical merit has not been recognized for LBM simu-
lations of heat transfer processes in periodic incompressible
flows yet.

In this paper, we extend the pressure periodic boundary
method by Zhang and Kwok [19] to fully developed periodic
incompressible thermal flows with constant wall temperature
(CWT) or surface heat flux (SHF) boundaries. The similarity
features of temperature field in periodic modules in such sys-
tems are first discussed. Two different numerical approaches,
the distribution modification (DM) and the source term (ST)
approaches, are developed to incorporate these similarity
features in LBM simulations. At last, several validation and
demonstration simulations are performed to illustrate the
correctness, accuracy, and usefulness of our proposed methods
in LBM simulations of periodic incompressible thermal
flows.

II. THEORY AND METHODS

In this section we first describe in detail the periodic
features of flow and temperature in fully developed periodic
incompressible flows for both the CWT and SHF conditions.
An outline of the LBM algorithm is included in Appendix A.
Such information is well documented in the literature; and
we represent these materials here for the completeness of this
paper and for the convenience of the following discussions of
our periodic boundary treatments.

A. Fully developed periodic thermal flows

Consider the two-dimensional (2D) system illustrated in
Fig. 1 as a general example of the fully developed periodic
flows driven under a pressure gradient. The flow and tempera-
ture fields are governed by the following continuity [Eq. (1)],
momentum [Eq. (2)], and energy [Eq. (3)] equations:

∂ρ

∂t
+ ρ∇ · u = 0, (1)

∂u
∂t

+ ∇ · (uu) = −∇P

ρ
+ ν∇2u, (2)

∂T

∂t
+ u · ∇T = α∇2T , (3)

where u is the flow velocity, P is the pressure, T is the
temperature, ρ is the fluid density, ν is the kinematic fluid
viscosity, α is the fluid thermal diffusivity, and t is time. Here
we have neglected the viscous dissipation term in the energy
equation as in typically heat transfer research. When the flow
is fully developed along the periodic passage, the velocity u
becomes identical at locations of the same relative position
in each periodic module (we will call them image locations
hereafter) [3,6], i.e.,

u(x ± mL,y) = u(x,y), (4)

where L is the streamwise length of the periodic unit and m

is a natural number. The fluid pressure keeps decreasing along
the flow direction; however, the following relationship exists
among image locations:

P (x ± mL,y) = P (x,y) ∓ m�PL, (5)

and the pressure drop over each periodic unit �PL remains
constant. It is easy to verify that u(x ± mL,y) and P (x ±
mL,y) are still valid solutions of the continuity and momentum
Eqs. (1) and (2), since the identical velocity and shifted
pressure cause no change to any terms in these governing
differential equations. Meanwhile, the no-slip boundary con-
dition, if satisfied in one unit, will also be satisfied in all
other units. To obtain an exact periodic boundary condition
for pressure like Eq. (4) for velocity, Patankar et al. [3] split
the fluid pressure P into two components: a global pressure
term −�PLx/L and a local reduced pressure P̃ :

P (x,y) = −�PL

L
x + P̃ (x,y). (6)
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After this modification, the momentum Eq. (2) is rewritten to

∂u
∂t

+ ∇ · (uu) = −∇P̃

ρ
+ ν∇2u + �PL

ρL
, (7)

and Eq. (5) now changes to a perfect periodic boundary
condition:

P̃ (x ± mL,y) = P̃ (x,y). (8)

As for the temperature field, the periodic features depend
on the boundary conditions imposed on the walls. For fully
developed periodic thermal flows to be established, the solid
surfaces must have a uniform, constant wall temperature
(CWT) Tw, or they can have specified surface heat flux (SHF).
For the latter situation, the heat flux could be uniform or
varying over the surface within one module, but it must have
the same distribution for all units. For the CWT systems,
usually we first shift the temperature field by the wall
temperature Tw to a reduced temperature θ

θ (x,y) = T (x,y) − Tw, (9)

and the energy Eq. (3) becomes

∂θ

∂t
+ u · ∇θ = α∇2θ ; (10)

with the wall boundary condition for θ as θ (�) = 0 (here
� denotes the wall surface). The periodic relationship for θ

among modules is expressed as

θ (x ± mL,y) = e−λL(±mL)θ (x,y), (11)

where λL is the decaying rate that describes the overall
temperature variation in the streamwise direction [6]. Similar
to the flow velocity and pressure discussed above, one can see
that, if θ (x,y) is a valid solution in one unit, θ (x ± mL,y)
from the above equation will automatically satisfy the energy
Eq. (10) in other units. Stalio and Piller [6] then introduced a
normalized temperature θ̄ (x,y) as

θ̄ (x,y) = θ (x,y)

e−λLx
= T (x,y) − Tw

e−λLx
. (12)

As a result, the energy equation for θ̄ is

∂θ̄

∂t
+ u · ∇θ̄ = α∇2θ̄ + (

αλ2
L + λLux

)
θ̄ − 2αλL

∂θ̄

∂x
(13)

with an exact periodic boundary condition

θ̄ (x ± mL,y) = θ̄(x,y). (14)

In Eq. (13), ux represents the x component of the flow velocity
vector u.

To determine the decaying rate λL, Stalio and Piller [6]
integrated the energy Eq. (13) and obtained λL as the root
of a quadratic equation. Here we propose another simpler
approach to find λL by considering the energy conservation
over a periodic module. Taking the fluid volume in a periodic
unit as the control volume, there are five streams of heat fluxes
crossing the control volume boundaries (including the walls
and the inlet and outlet of the periodic unit):

(i) heat flux entering the control volume with flow at the
inlet: ρc

∫
in

ux,inθindy;

(ii) heat flux leaving the control volume with flow at the
outlet: ρc

∫
out

ux,out θoutdy;
(iii) streamwise diffusion flux leaving the control volume

at the inlet: κ
∫
in

( ∂θ
∂x

)
in

dy;
(iv) streamwise diffusion flux entering the control volume

at the outlet: κ
∫
out

( ∂θ
∂x

)
out

dy;
(v) heat flux leaving the control volume over the wall

surface �: κ
∫
�

( ∂θ
∂n

)
�
ds.

According to the energy conservation principle, for a steady
system we have:

ρc

∫
in

ux,inθindy − ρc

∫
out

ux,out θoutdy − κ

∫
in

(
∂θ

∂x

)
in

dy

+ κ

∫
out

(
∂θ

∂x

)
out

dy − κ

∫
�

(
∂θ

∂n

)
�

ds = 0. (15)

Here we use the subscripts in and out to indicate the inlet and
outlet locations, and n for the local normal direction on the wall
surface. c is the heat capacity and κ is the thermal conductivity
of the fluid. Now applying the periodic relationships in Eqs. (4)
for velocity u and (11) for T , the decaying rate λL can be solved
as

λL = − 1

L
ln

[
1 − α

∫
�

(
∂θ
∂n

)
ds∫

in

(
uxθ + α ∂θ

∂x

)
in

dy

]
. (16)

Compared to the calculation method in Ref. [6], our method
does not require volumetric integration over the entire sim-
ulation domain, which could be computational expensive
especially in three-dimensional simulations.

Now we turn our attention to the SHF systems. In this
situation, the periodic relationship for temperature is given as

T (x ± mL,y) = T (x,y) ± m�TL, (17)

which is similar to that for the normal fluid pressure P in
Eq. (5). Here �TL is the temperature change over a periodic
unit and it is constant along the flow. Accordingly, Patankar
et al. [3] defined a reduced temperature T̃ as

T̃ (x,y) = T (x,y) − �TL

L
x (18)

to achieve a perfect periodic boundary condition for T̃ :

T̃ (x ± mL,y) = T̃ (x,y); (19)

and the energy equation should be rewritten correspondingly
to

∂T̃

∂t
+ u · ∇T̃ = α∇2T̃ − ux�TL

L
. (20)

The temperature change �TL can be relatively easily found
from the energy conservation principle:

�TL =
∫
�

qds

ρc
∫
in

ux,indy
, (21)

i.e., the temperature change equals the total thermal energy
addition via the surface divided by the product of flow rate
and volumetric heat capacity (ρc). Here q is the local heat flux
entering the fluid domain via the boundary walls.
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FIG. 2. Schematic illustrations of the modified periodic boundary treatment for thermal field. The inlet nodes are displayed as squares and
the outlet nodes are shown as circles, with the color changing from black to white along the flow direction. The numbered arrows are used
to show how a density distribution leaving the outlet can be adopted to specify the incoming distribution at the inlet. Please refer the text for
detailed method description.

B. Simulating periodic thermal flows with LBM

In LBM, governing equations are solved by means of
density distributions, which undergo consecutive propagation
and collision processes over a lattice grid. In the work,
we use the double-distribution thermal LBM scheme for
method descriptions and simulation demonstration. The two-
dimensional, nine-velocity (D2Q9) lattice structure and the
single-relaxation Bhatnagar-Gross-Krook (BGK) model are
used for both flow and thermal fields. Please refer to
Appendix A for details.

1. For flow field

Under a given pressure drop �PL per periodic module, it is
convenient to use the reduced pressure P̃ defined in Eq. (6), and
the LBM equations for fi given in Appendix A can then be used
F = (�PL/ρL,0)T . The classical periodic boundary condition
[16] can then be applied at the periodic boundaries, meaning
density distributions leaving the domain outlet will reenter the
domain at the inlet, or vice versa. This method has been widely
used in LBM simulations, although more dedicate treatments
are available to impose the pressure drop directly for some
particular situations like multiphase or multicomponent flows
[19]. To simulate a periodic flow with a specific flow rate, the
pressure drop �PL can be dynamically adjusted according to
the simultaneous flow rate till the desirable value is established.

2. For thermal field: The source term (ST) approach

Similarly, by tuning the source term δhi according to
Eq. (A13), the LBM algorithm for hi in Appendix A can be
used to solve Eq. (13) for CWT systems

δhi = ωi

[(
αλ2

L + λLux

)
θ̄ − 2αλL

∂θ̄

∂x

]
(22)

for energy scalar A = θ̄ ; or to solve Eq. (20) for SHF cases
with

δhi = ωi

[
−ux�TL

L

]
(23)

for energy scalar A = T̃ . The temperature change �TL for
SHF cases can be readily calculated from the total heat flux
over surface via Eq. (21); however, for CWT systems, the
decaying rate λL is unknown before the simulation. In our
practice, we start with an initial guess and run the simulation
for some time (2000 time steps in our simulations) with that
initial value. After that, a new λL value is calculated via
Eq. (16) every certain time steps (we use 20 time steps), till
the simulation becomes steady in flow and temperature fields.
The differential term ∂θ̄/∂x in Eq. (13) can be estimated by a
finite difference approximation.

3. For thermal field: The distribution modification (DM) approach

Another way to incorporate the periodic features of the
temperature field described in Sec. II A is to modify those
density distributions hi that cross the module inlet or outlet
boundaries, as done in Ref. [19] for pressure periodic boundary
conditions. We consider the CWT situation in the periodic
system shown in Fig. 1, and enlarge one module in Fig. 2
with the first column of lattice nodes at xin (dark gray
squares) and the last column at xout (light gray circles). Also
displayed are the outlet nodes of the upstream module at
x−

out = xin − δx = xout − L (black circles) and the inlet nodes
of the downstream module at x+

in = xin + L = xout + δx as
(white squares); although these nodes are actually not involved
in the LBM calculation. To avoid the extra source term in
Eq. (13), we will use LBM to solve the energy Eq. (10) for
θ . Now let us take the postcollision distribution h∗

1(xout ) at
xout [Arrow 1 in Fig. 2(a)] as an example. In the propagation
step, h∗

1(xout ) is supposed to move to the next node in velocity
c1 = (1,0)T , and becomes the incoming distribution at the inlet
node of the downstream module x+

in [Arrow 2 in Fig. 2(b)].
However, now it is out of our simulation domain and therefore
cannot participate in the LBM calculation anymore. On
the other side, we need the incoming distribution h1(xin) at the
domain inlet xin [Arrow 3 in Fig. 2(b)], but it is not available
since the nodes at the x−

out are not in the simulation domain
either. Based on the periodic relationship of temperature given
in Eq. (11) and θ = ∑

i hi [Eq. (A3) with A = θ ], it is
reasonable to assume the proportionality in θ can be extended
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to each distribution hi , and therefore one has

h1(xin,t + δt) = eλLLh1(x+
in,t + δt) = eλLLh∗

1(xout ,t). (24)

This analysis can be extended to other lattice distributions that
cross the periodic boundaries during the propagation step, and
a modified periodic boundary treatment for these distributions
can be established as (for the D2Q9 lattice model used here)

hi(xin,yin,t + δt) = eλLLh∗
i (xout ,yout ,t),

yin = yout + ci,yδt, i = 1,5,8; (25)

hi(xout ,yout ,t + δt) = e−λLLh∗
i (xin,yin,t),

yout = yin + ci,yδt, i = 3,6,7. (26)

Here ci,y is the y component of the lattice velocity ci .
This distribution modification (DM) approach is also

applicable to the SFH cases. Here we work with the original
energy Eq. (3) and rewrite the periodic relationship for the
regular temperature T Eq. (17) to define a proportional factor
β as

β = T (x+
in)

T (xin)
= 1 + �TL

T (xin)
; (27)

and, following the above discussion, the modified periodic
boundary condition for hi in SHF systems is

hi(xin,yin,t + δt) = β−1h∗
i (xout ,yout ,t),

yin = yout + ci,yδt, i = 1,5,8; (28)

hi(xout ,yout ,t + δt) = βh∗
i (xin,yin,t),

yout = yin + ci,yδt, i = 3,6,7. (29)

Note these modified periodic treatments revert back to the
classical periodic boundary condition in LBM when the
proportional factor e−λL or β is set to 1.

III. VALIDATION AND DEMONSTRATION SIMULATIONS

In this section, we apply the periodic treatments described
above to simulate the flow and temperature fields in sev-
eral simple, however, representative and carefully designed
periodic systems, including flows through a flat channel,
a wavy channel, and a square array of circular cylinders.
Both CWT and SHF boundary conditions are considered,
and results are compared with available analytical solutions,
previous publications, or our own LBM results using different
simulation techniques (DM vs ST approaches and one-module
vs two-module domain simulations).

A. Heat transfer of laminar flow through 2D flat channel

The fully developed flow in a uniform pipe or channel can
be considered as an extreme example of periodic flows, for
which the periodic module can be selected as a segment of
the channel of any finite length. Here our simulation domain
is a 2D rectangle of length L = 100 and height H = 50 (both
L and H , as well as other LBM parameters to be given in
this section, are all nondimensional values). The midpoint
boundary method recently developed by Zhang and coworkers
[18,23,24] is implemented at the solid-fluid boundaries for
both flow and thermal LBM calculations for all simulations in
this paper. The Reynolds number Re = U0H/ν is 40, with the
mean flow velocity U0 defined as

U0 = 1

H

∫ H

0
uxdy. (30)

The Prandlt number Pr = ν/α is 0.7. The CWT situation is
considered here and wall temperature Tw is set as 0; thus the
regular temperature T and the reduced temperature θ are the
same. During the simulation, the mean flow temperature at
the domain inlet T0 = Tm(x = 0) is maintained at 1. Brown
[25] had developed an analytical solution in polynomial
series for thermal flows between parallel plates with constant
temperature, however, with the axial diffusion neglected. In
Appendix B, we extend the Brown solution to include the
axial diffusion effect. Figure 3 shows the comparison between
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FIG. 3. (a) The simulated temperature field and (b) transverse profiles for flow through the flat channel with CWT condition on the channel
surfaces. In (b) the symbols are our LBM results and the underlying curves are from the analytical solution in Appendix B.
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FIG. 4. The relative errors (a) E2 and (b) ENu for flows through CWT flat channels with different channel height H . The straight lines are
liner fittings of the LBM data points (symbols) in the log-log plots, and the line slopes are displayed in the figure labels.

our LBM results using the DM periodic boundary method and
those from our analytical solution (see Appendix B) for the
temperature field. No visible discrepancy can be observed.
According to our analytical solution the Nusselt number along
the channel is constant at 3.7723; while our LBM yields a
range of 3.7736 ± 0.0065 (mean ± SD) along the channel.
The relative difference is only −0.14 ∼ 0.21%. This small
difference could be from several sources, including the basic
LBM algorithm [14,15,26], the simple force term treatment in
Eq. (A12) [17], the finite-difference approximations involved
in our calculation, as well as the boundary methods [27].
Further investigations for the individual contributions from
different aspects (and they are very likely intercoupled) is out
of the scope of this paper.

For a more quantitative assessment of the numerical
accuracy, we simulate the above system using different channel
height H with the length-height ratio constant at L/H = 2.
The global relative error E2 is defined as

E2 =
[∑

(TLBM − Tth)2∑
T 2

th

]1/2

, (31)

where both summations are carried out over all lattice nodes in
the simulated domain. The subscripts LBM and th are used to
indicate, respectively, the LBM calculated temperature values
and theoretical values from the analytical solution given in
Appendix B. In addition, the local Nusselt number for this
system can be calculated from the temperature filed by

Nu(x) = (∂T /∂n)y=0H

Tm(x) − Tw

, (32)

where Tm is the local mean flow temperature

Tm(x) =
∫ H

0 ux(x,y)T (x,y)dy∫ H

0 ux(x,y)dy
. (33)

The relative error with respect to this theoretical Nusselt
number Nuth has also be defined as

ENu =
[∑

(NuLBM − Nuth)2∑
Nu2

th

]1/2

. (34)

Here the summations are performed along the two boundary
walls, and Nuth = 3.7723 from our analytical solution. These
relative errors at different channel height H are plotted in

Fig. 4 in the log-log scale. Clearly the relative errors decrease
with the channel height H , and the declining slopes in the log-
log graphs are approximately 2, which is similar to previous
observations of other LBM models [14,17].

B. Heat transfer of laminar flow through 2D wavy channel

The flow and heat transfer through wavy channels have
been extensively investigated for its practical applications
[5,6,8,28,29]. Here we consider the same geometry as in these
studies, and model the symmetric wavy wall shape by

H (x) = Havg − 2a cos

(
2πx

L

)
, (35)

where H (x) is the local channel width, Havg is the average
channel width over a periodic unit, and a is the wavy amplitude.
The maximum channel width Hmax = Havg + 2a occurs at the
middle x = L/2 and the minimum width Hmin = Havg − 2a

occurs at the inlet x = 0 and outlet x = L. Following those
previous studies, we use Havg/L = 13/28 and a/L = 1/8.
The computational domain length here is L = 240. As in
the flat channel simulation, we have Tw = 0, T0 = 1, and
Pr = 0.7; and the DM method is used to incorporate the
boundary periodicity. The Reynolds number is defined as
Re = U0Havg/ν [8,28], and two values, Re = 25 and 100, are
tested in our simulations.

Figure 5 collects our LBM results of these two calculations,
including the flow streamlines, the isotherms, and the spanwise
profiles of streamwise velocity ux and temperature T at the
maximum and minimum width locations. The streamline and
isotherm patterns are very similar to those reported in previous
studies [8,28]; however, a direct comparison is difficult due to
the lack of original data for those publications and analytical
solutions of this system. At Re = 100, a pair of circulation
vortex have developed in the wide section, and the separation
and reattachment locations are similar to those in Ref. [8]. In
Fig. 6, we also plot the distribution profiles of the normalized
wall vorticity ζw [29]

ζw = 1

2
ReCf

(
Hmax

Havg

)2

= 1

2
Re

τw

ρU 2
0 /2

(
Hmax

Havg

)2

(36)

and the local Nusselt number Nu. Here Cf is the local frictional
coefficient and τw is the wall shear stress. These distribution
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FIG. 5. [(a) and (a′)] The simulated flow and [(b) and (b′)] temperature fields and transverse velocity and temperature profiles [(c) and (c′)]
for the streamwise velocity; and [(d) and (d′)] for the temperature) at two locations x = 0 and x = L/2 for the flows through a wavy channel
with Reynolds number Re = 25 [(a)–(d)] and Re = 100 [(a′)–(d′)].

profiles are very similar to those reported in Ref. [29], both
in the variation trend and magnitude. More quantitatively, we
manually measure the velocity values uc

x at the domain center
(L/2, yc) (yc is the y location of the channel centerline) from
figures in Refs. [8,28], and compare them to ours in Table I.
In addition, we have also calculated the friction factor f

f = �PL

ρU 2
0

/
2

Havg

L
(37)

and average Nusselt number 〈Nu〉 for a periodic module [5,8]

〈Nu〉 = [Tm(0) − Tm(L)]
∫
in

uxdy

�

Havg

α
, (38)

where � is the log-mean temperature difference in the module

� = Tm(0) − Tm(L)

ln[Tm(L)/Tm(0)]
. (39)

These values are also listed in Table I in comparisons with
those from previous studies. It can be seen there that our
results, including the domain center velocity, friction factor,
and average Nusselt number, all agree well to previous
publications. As discussed in Ref. [28], the discrepancy among
these studies might be due to the different numerical methods
employed.

C. Heat transfer in flow through square cylinder array

The last system we simulate represents the heat transfer
process associated to laminar flow through a square array of
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FIG. 6. Distributions of (a) the normalized wall vortex ζw and (b) local Nusselt number Nu along the channel wall.

circular cylinders, which resembles the interior configuration
of a cross-flow tube heat exchanger [1,2]. The periodic module
here is a square with L = H = 160, and the cylinder has a
diameter of D = 40 and its center locates at (3L/8,L/2). The
flow direction is from the left to the right in the x direction, and
the regular periodic boundary condition is applied along the top
and bottom edges. The Reynolds number Re = U0H/ν = 2.4
and the Prandlt number Pr = 1.

For a fully developed periodic incompressible flow, if the
periodic relationships are physically correct and they have been
accurately implemented in a numerical model, using one or two
or even multiple periodic modules as the simulation domain
should generate the same results. To confirm this statement,
we perform two separate simulations for the above described
cylinder array system: the first one includes one module with
a square simulation domain of L×L, and the second one
includes two modules with a rectangular domain of 2L×L

and it has two cylinders: one at (3/8L,L/2) and another at
(11/8L,L/2). The cylinder surface temperature Tw = 0 and
inflow average temperature T0 = 1. No analytical solutions
are available for this system. Comparison of these two sets of
results is displayed in Fig. 7. Please note that in Fig. 7(a) for the
temperature field, the color patches are from the two-module
simulation while the isotherm lines are from the one-module
calculation. Clearly they agree to each other excellently and
the isotherm lines follow the color patch edges exactly. More

quantitatively, in Fig. 7(b), we plot the temperature profiles
at several representative streamwise locations, and we see
those at x/L = 0 and 3/8 from the two simulations match
each other perfectly. The difference in temperature in the first
module from these two calculations is of the order 10−6 ∼
10−5. We also plot the temperature profiles at corresponding
locations in the second module (i.e., x/L = 1 and 11/8)
from the two-module simulation, and we can clearly see the
proportional similarity in variation as expressed in Eq. (11).
Actually the profiles at x/L = 1 and 11/8 scaled up by eλLL

(λL = 3.885233×10−3 from the one-module simulation and
λL = 3.885264×10−3 from the two-module simulation; they
are almost identical) are also plotted in the figure; however,
they are visually indistinguishable from the profiles at x/L = 0
and 3/8, respectively.

A more direct comparison of the temperature fields from
these two simulations is presented in Fig. 8. The magnitude of
temperature difference, from the two different simulations,
or between the left and right sections of the same two-
module simulation, is of the order of 10−6 ∼ 10−5. With
the inlet mean temperature of 1 in these simulations, this
difference can be considered as the relative errors as well. The
patterns in Figs. 8(a) and 8(b) appear interesting; however,
it is difficult for the authors to explore the underlying
mechanisms due the system complexity. With this comparison,
it is further confirmed that the periodic features have been

TABLE I. Comparison of the center velocity uc
x , friction factor f and Nusselt number Nu from our LBM simulations to those from previous

publications. The data of Ref. [5] are approximated using linear interpolation or extrapolation based on the converted values from Ref. [28].

Center Velocity uc
x Friction Factor f Nusselt Number Nu

Re Ref. [28] Ref. [8] this work Ref. [28] Ref. [8] Ref. [5] this work Ref. [28] Ref. [8] Ref. [5] this work

25 0.619 0.596 0.620 1.483 1.294 1.871 1.469 4.39 4.39 3.94 4.395
100 0.955 0.929 0.949 0.458 0.415 0.725 0.455 4.27 4.59 4.03 4.559
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FIG. 7. Result comparison of the simulations for the cooling process of flow around cylinder with one or two modules included in the
simulation domain. In (a) for the temperature field, the color patches are from the two-module simulation, and the isotherm lines are from the
one-module simulation. The temperature profiles at x/L = 0, 3/8, 1, and 11/8 (indicated by labels) are displayed in (b), with the symbols
from the one-module calculation and curves from the two-module calculation.

correctly and accurately implemented in our method and
program.

So far all our simulations are for the CWT boundary
condition and only the DM approach has been used. At last,
we test the SHF boundary condition and the ST approach using
the same cylinder array geometry. Four individual simulations
are conducted: CWT+DM (the same one-module simulation
described above), CWT+ST, SHF+DM, and SHF+ST. To
impose a desirable heat flux (i.e., normal temperature gradient)
on the surface, the Neumann boundary method developed by
Oulaid et al. [30] is employed. With the inlet mean temperature
T0 = 1 and wall temperature Tw = 0, the CWT case represents
a cooling process. On the other hand, for SHF case, we use
a uniform surface flux with ∂T /∂n = −0.01 for the cylinder
surface and it therefore is a heating process. Results from these
simulations, including the temperature field in the domain
and two representative transverse temperature profiles, are
collected in Fig. 9. The cooling or heating effect from the
cylinder is clearly indicated by the isotherms in Figs. 9(a)
and 9(a′), respectively. It is interesting to see that, in Fig. 9(a′)

for the SHF boundary situation, the temperature increases
along the centerline near the outlet. This is understandable
since the outlet is close to the heating source (the cylinder)
in the next module, and for this diffusion-dominant system
(Peclet number Pe = RePr = 2.4), the heating flux from the
next cylinder can reach a relatively long distance even against
the flow direction. As for the results from the DM or ST
approaches for both CWT and SHF boundary conditions, one
can see again excellent agreement exists in Fig. 9, and no
apparent difference can be spotted. The decaying rate λL value
is 3.88554×10−3 from the DM approach, and 3.88533×10−3

from the ST approach. Such a nearly perfect match indicates
that both the DM and ST approaches can produce reliable
results for simulating developed periodic thermal flows.

A similar comparison is performed in Fig. 10, which
displays the distributions over the simulation domain between
the ST and DM simulations with CWT [Figs. 10(a) and 10(b)]
and SHF [Figs. 10(a) and 10(b)] wall conditions. Again
the difference magnitude is relatively small (10−6 ∼ 10−5),
suggesting that both the DM and ST methods can be

FIG. 8. Distributions of temperature difference (a) in the left L×L domain between the one-module and two-module simulations, and (b)
that between the left (x ∈ [0,L]) and right (x ∈ [L,2L]) half domain from the two-module simulation. In (b) the temperature in the right half
domain has been scaled up by a factor of eλLL for direct comparison. (c) shows the temperature difference from (a) and (b) at two representative
x locations.
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FIG. 9. Result comparison of the simulations for the thermal flows around cylinder using the DM or ST approaches for the [(a) and (b)]
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utilized to simulate incompressible periodic thermal flows.
The temperature difference seems to vary more smoothly in
space for the CWT system than the SHF system; however, the
detailed mechanism responsible for this observation is out of
the capacity of the authors.

IV. SUMMARY AND CONCLUDING REMARKS

We have examined the periodic relationships in flow and
temperature fields for fully developed periodic incompressible
thermal flows with CWT and SHF boundary conditions,
and proposed two LBM implementations (the ST and DM

approaches) for such flow situations. The methods have then
been tested carefully in several simulations by comparing
our LBM results to those from analytical solutions, previous
publications, and our own LBM simulations using different
numerical techniques. The good performance suggests that our
methods could be useful for future LBM thermal simulations.

Since the purpose of this paper is to propose these LBM
methods for periodic thermal flows, we have limited our
formulations and demonstrations to 2D, laminar, and steady
flow situations. Extending these methods to other LBM
models (other lattice structures, three-dimensional, multiple-
relaxation-time models, or even turbulent LBM models)
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FIG. 10. Distributions of temperature difference between simulations using the ST and DM approaches for the [(a) and (b)] CWT and [(a′)
and (b′)] SHF wall conditions. The temperature difference from (a) and (a′) at two representative locations x/L = 0 (black solid line) and 3/8
(blue dashed line) are shown in (c).

should be relatively straightforward. Other alternative thermal
LBM models [14,15,17] can also be adopted to solve the
thermal field. In addition, although the systems considered
in this paper are relatively simple, more complex geometric
shapes and boundary conditions (for example, different heat
flux magnitudes at different wall locations) can be readily
simulated by our methods. For more realistic situations
such as unsteady and turbulent periodic thermal flows, some
numerical strategies [4,6,31] used in previous computational
fluid dynamics (CFD) studies can be considered.

For the two numerical schemes to implement the periodic
features of temperature in LBM, the ST approach has been
typically used in traditional CFD studies, and certainly can
also be adopted in LBM. On the other hand, the DM approach
is unique for LBM with some computational advantages. In the
DM method, extra calculations are only required for the ther-
mal distributions crossing the periodic inlet/outlet boundaries;
but in the ST method, an extra term has to be calculated for all
distributions and at all lattice nodes. Furthermore, for systems
with CWT boundaries, the ST approach also needs to calculate
the streamwise derivative of temperature [∂θ̄/∂x in Eq. (13)],
and this could further increase the computational demand. The
method in Eq. (16) to calculate the decaying rate λL does not
require a volumetric integration of temperature over the entire
computational domain, and thus it could also be useful for im-
proving the computational efficiency for other CFD methods.
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APPENDIX A: DOUBLE-DISTRIBUTION
THERMAL LBM MODEL

Here we describe the double-distribution lattice Bhatnagar-
Gross-Krook (LBGK) model for thermal flows [32], although
other LBM models are available in the literature [14,15,17].
Here two sets of density distribution functions are employed:
one as fi for the fluid dynamics and one as hi for the thermal
convection-diffusion equation. The subscript i denotes the
lattice direction in which the distributions fi or hi move. The
evolution of such density distributions can be described by
two consecutive steps: the collision step and the propagation or
streaming step. In the collision step, the incoming distributions
fi(x,t) and hi(x,t), at a lattice node (x,t) (x as the position
vector with two coordinate components x and y) from
different directions i = 0,1, . . . ,b − 1 (b is the total number
of lattice velocities of the lattice model employed), mix and
then are redistributed into all lattice directions, with mass,
momentum, and energy conserved. The new distributions are
called postcollision distributions and they are represented as
f ∗

i and h∗
i in this work. The collision step can be expressed

mathematically as

f ∗
i (x,t) = fi(x,t) − 1

τf

[
fi(x,t) − f

eq
i (x,t)

] + δfi, (A1)

h∗
i (x,t) = hi(x,t) − 1

τh

[
hi(x,t) − h

eq
i (x,t)

] + δhi. (A2)

063309-11



ZIMENG WANG, HELEN SHANG, AND JUNFENG ZHANG PHYSICAL REVIEW E 95, 063309 (2017)

The relaxation parameters τf and τh are related to the fluid
kinematic viscosity ν and thermal diffusivity α, respectively;
the additional terms δfi (usually called the forcing term) and
δhi (usually called the source term) can be tuned to recover
the correct macroscopic momentum and energy equations.
These issues will be discussed below. The fluid density ρ,
equilibrium velocity ueq, and energy scalar A (could be the
regular temperature T or its modified counterparts such as
T̃ , θ , or θ̄ , depending on which energy equation to solve by
distributions hi) can be obtained from the density distributions
fi and hi as

ρ =
∑

i

fi, ueq =
∑

i

fici

/ ∑
i

fi, A =
∑

i

hi, (A3)

where ci is the ith lattice velocity. The equilibrium distribu-
tions f

eq
i and h

eq
i can then be calculated from these properties

as [14,18,24]

f
eq
i = ωiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
, (A4)

h
eq
i = ωiA

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
. (A5)

The parameter ωi is called the lattice weight factor and cs is the
lattice sound speed. In the following propagation step, the post-
collision distributions f ∗

i and h∗
i will then move to the nearest

neighboring lattice node at velocity ci over a time step δt :

fi(x + ciδt,t + δt) = f ∗
i (x,t); (A6)

hi(x + ciδt,t + δt) = h∗
i (x,t). (A7)

Now they become the incoming, precollision density
distributions at node x + ciδt , and the above-described
collision-propagation process can be repeated iteratively, till
satisfactory results have been obtained.

Appropriate mathematical analysis such as the Chapman-
Enskog expansion can be performed to the above distribution
dynamics, and the following macroscopic equations can be
derived [14,15]:

∂ρ

∂t
+ ρ∇ · u = 0, (A8)

∂u
∂t

+ ∇ · (uu) = −∇P

ρ
+ ν∇2u + F, (A9)

∂A

∂t
+ u · ∇A = α∇2A + S. (A10)

The fluid properties u, P, ν, and α are related to the LBM
parameters by

u = ueq + Fδt

2ρ
, P = c2

s ρ, ν = c2
s

(
τf − 1

2

)
δt,

α = c2
s

(
τh − 1

2

)
δt. (A11)

The additional terms δfi and δhi in Eqs. (A1) and (A2) are
related, respectively, to the forcing term F and source term S

in the resulting macroscopic Eqs. (A9) and (A10) as

δfi = ωiF · ciδt

c2
i

, (A12)

δhi = ωiS . (A13)

These δfi and δhi terms can be conveniently adjusted accord-
ing to the forcing or source terms in the macroscopic equations
to be solved. In our next validation and demonstration
simulation examples, we use the simple D2Q9 (2D and b = 9)
square lattice structure, for which the nine lattice velocities are

c0 =
(

0
0

)
, c1−4 =

[
cos(i − 1)π/2
sin(i − 1)π/2

]
δx

δt
,

c5−8 =
√

2

[
cos(2i − 9)π/4
sin(2i − 9)π/4

]
δx

δt
. (A14)

The lattice weight factors are ω0 = 4/9, ω1−4 = 1/9, and
ω5−8 = 1/36; and the lattice sound speed cs = 1/

√
3δx/δt .

δx is the lattice grid resolution.

APPENDIX B: ANALYTICAL SOLUTION FOR
DEVELOPED THERMAL FLOW BETWEEN PARALLEL

PLATES WITH CONSTANT WALL TEMPERATURE

For a fully developed incompressible flow between two
parallel plates of a separation H , the streamwise velocity is

ux(y) = 3

2
U0

[
1 −

(
2y

H

)2]
, (B1)

and the transverse velocity is uy = 0. Here U0 is the mean
velocity and the transverse coordinate y measures from the
centerline at y = 0. The two channel walls then locate at y =
±H/2. For the steady thermal flow simulated in Sec. III A, the
energy Eq. (3) is simplified to

3

2
U0

[
1 −

(
2y

H

)2]
∂T

∂x
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (B2)

Following Ref. [25], we define the new coordinates as
ȳ = 2y/H and x̄ = 2x/H

PrRe′ , where the Reynolds number is given
as Re′ = 2U0H/ν. Please note here the Reynolds number Re′

is different from the Reynolds number Re = U0H/ν used in
Sec. III A. The energy equation Eq. (B2) can then be written
as

3

8
(1 − ȳ2)

∂T

∂x̄
= ∂2T

∂ȳ2
+

(
1

PrRe′

)2
∂2T

∂x̄2
. (B3)

To represent the similar temperature profile along this uniform
duct, the temperature field is assumed as a product of a function
Y (which only has ȳ as the variable) and a decaying function
e−8λ2x̄/3 along the flow direction:

T (x̄,ȳ) = Y (ȳ)e− 8
3 λ2x̄ . (B4)

Here the parameter λ is called the eigenvalue and its value will
be determined next. For the periodic situation in this study, we
are only interested in the first eigenvalue and its corresponding
mode, since higher-order modes have disappeared in the devel-
oping region due to their faster decaying speed. Equation (B4)
is now further simplified to a differential equation of function
Y only as

Y ′′ +
[

1 +
(

8λ

3PrRe′

)2]
λ2Y − λ2ȳ2Y = 0. (B5)

Considering the flow and temperature symmetry about the
channel centerline at ȳ = 0, we further express the function Y
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as a polynomial series of only even order terms:

Y (ȳ) =
∞∑
i=0

bi ȳ
2i . (B6)

Submitting this series expression into Eq. (B5) yields the
following recursion relationships among the coefficients bi :

b0 = 1; b1 = mb0

2
; bi = mbi−1+nbi−2

2(i+1)(2i+1)
(i = 2,3,4, . . .),

(B7)

with

m = −
[

1 +
(

8λ

3Pr Re′

)2]
λ2; n = λ2. (B8)

A trial-and-error procedure is required to determine the value
λ [25]. Here we start with the value of 1.6815953222 from

Ref. [25], and a set of coefficients bi (up to the 50th term
in our calculation) can be calculated from Eq. (B7). The
function value of Y (ȳ = 0) is then obtained from Eq. (B6), and
the difference between Y (ȳ = 0) and 0 (the wall temperature
requirement) can serve as the criterion to refine the λ value,
until a satisfactory resolution is reached. For the system
considered in this paper with Pr = 0.7 and Re = 40, the
eigenvalue obtained from this trial-and-error process is λ =
1.675516290994, which is slightly lower than the value from
Ref. [25]. The Nusselt number can also be readily calculated
from the calculated temperature profile from this λ value, in
combination of the parabolic Poiseuille flow velocity Eq. (B1).
The analytical Nusselt number is constant along the channel
of 3.7723, slightly larger than that in Ref. [25] (3.7704)
where axial diffusion is neglected. This is reasonable since
the axial diffusion effect enhances the heat transfer efficiency
of the system; however with a relatively large Peclet number
Pe = RePr = 28 here, the diffusion contribution to the overall
heat transfer is not significant.
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