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Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
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Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density
functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum
mechanics. This method has been developed by the authors over 20 years and used for modeling in various
multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena
inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for
chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the
van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous
rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis,
is presented to demonstrate modeling capabilities.
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I. INTRODUCTION

Multiphase compositional hydrodynamic processes in
small pores and microchannels are encountered in many areas
in industry and science. For instance, they are relevant for
various natural processes in biology, geology, hydrology, and
technical processes ranging from fuel cells to oil recovery and
CO2 sequestration. To date there is a number of techniques
used for multiphase flow modeling, including possible appli-
cation for multiphase flows in pores. Most commonly known
modeling methods are (listed in alphabet order) Cahn-Hilliard
equation method, embedded interface, free boundary problem,
lattice Boltzmann, level set, phase field, pore network, smooth
particle hydrodynamics, and volume of fluid (VOF). Various
approaches have individual strong and weak sides as they
address different challenges of the general problem. Our
overview of the listed methods can be found elsewhere [1,2].
We also refer the reader to the reviews found in Refs. [3–8].

In this work, various multiphase compositional problems
are treated in the frame of the density functional hydro-
dynamics (DFH). The basic concepts of the method were
published by Dinariev [9,10]; some of the latest publications
are [1,2,11–15]. The historical overview of the DFH can be
found in Ref. [2]. Here we present a very general overview of
this theory.

The basic idea of the density functional theory (DFT),
which is the foundation of DFH, is representation of energy of
a heterogeneous system as a functional of densities of chemical
components constituting the system. The first consistent results
in this direction are related to Thomas-Fermi model of electron
gas developed in 1927; see review in the book by Parr and
Yang [16]. But the genuine interest in DFT arose in 1964–1965
after the works by Kohn and his coauthors; see, e.g., Ref. [17].
Since then a lot of works on this subject were published.
The 1998’s Nobel Prize in chemistry was awarded to Walter
Kohn, the major contributor in DFT development. Currently,
the DFT is successfully applied in quantum chemistry, nuclear
physics, physics of semiconductors, superconductivity, and
diamagnetics. In his Nobel lecture, Kohn [18] identified 13
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various directions of possible DFT generalization, among
them heterogeneous systems and Helmholtz free energy at
finite temperatures. Initial formulation of DFT was developed
for static systems, and Kohn’s ideas were successfully im-
plemented to describe equilibrium states of various fluids,
including the molecular structure of liquids [19–22]. The
obtained results comprise analysis of static one-, two-, and
three-phase states, wettability, and contact angles [23–28].
Also, there has been a significant progress in modeling of
specific nanopore phenomena like capillary condensation and
adsorption at pore walls [29–32].

The applications of DFT to static fluid problems are largely
associated with nonlocal formulations of energy functional.
However, while the dynamic extension of general nonlocal
DFT is straightforward from a theoretical point of view [2,33],
it is not computationally effective. In order to obtain a con-
structive and computationally efficient approach for dynamic
problems, it is necessary to make certain changes in DFT
formulation. Introduction of the DFT into hydrodynamics
of multiphase compositional mixtures, developed by Dinar-
iev [9,10] and eventually called DFH, can be considered as
an example of such DFT optimization suitable for numerical
simulations. Previously, several authors [34–39] modeled
various multiphase hydrodynamic phenomena using order
parameter functional methods. The DFH method does not use
order parameter concept.

DFH uses classical mass, momentum, and energy con-
servation laws with specific constitutive relations. These
constitutive relations are derived to ensure consistency be-
tween hydrodynamic and thermodynamic descriptions of
multiphase compositional system in the frame of the density
functional approach. The specific expression for the density
functional uses square gradients of molar densities, which
enables description of surface tension. Thermodynamic state
of the mixture is described by means of bulk and surface
thermodynamic potentials, where the latter enables correct
description of liquid-solid interaction, i.e., wettability and
adsorption. DFH is successfully applied to hydrodynamic
phenomena in two- and three-phase compositional mixtures
with phase transitions (including liquid-liquid, gas-liquid,
gas-solid, liquid-solid, etc.), adsorption, surfactants, and non-
Newtonian rheology [1,2,15,40].
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The present work describes extension of the DFH for a set
of hydrodynamic phenomena, which take place at nanometer
scale. To make such extension possible, it was necessary to
take account of different phenomena related to disjoining
pressure [41,42]. This was done by introducing in DFH
external potential forces in the vicinity of solid surfaces.
Further, we developed implementation of modified DFH
equations within numerical simulator. Then we demonstrated
by numerical modeling that proposed modifications can be
used for effective description of several classical nanometer
scale effects, such as static and dynamic behavior of liquid
films, film precursors, and forward and reverse osmosis.

The detailed discussion of the developed DFH extension is
given in Sec. II. A range of numerical simulations of multi-
phase nanometer scale phenomena is presented in Sec. III. The
overall summary and discussion of further possibilities of the
DFH is outlined in Sec. IV.

II. THEORETICAL CONCEPTS AND EQUATIONS

Here we propose further extension of the DFH method to
incorporate a range of phenomena, which are observed for
the liquid mixtures at nanometer scale. The main instrument
of this extension is introduction of specific forces acting on
chemical components of the mixture in the vicinity of the
solid surfaces. These forces are assumed to be characterized
by potentials, which are variable in space but do not depend
on time. This assumption is sufficient to describe a set of
nanoscale physical phenomena without introducing significant
changes in the already existing DFH numerical simulator;
however, DFH method itself does not put specific restrictions
on potentials and can be further extended in future.

Let us begin with description of basic fields, which
characterize instantaneous state of mixture. It is important
to remember that DFH is based on continuum mechanics, so
it does not consider individual molecules, but operates with
continuously distributed physical quantities. It is convenient
to use, as basic fields, the following quantities: chemical
component molar densities ni , mass velocity va , and internal
energy density u. Further, we discuss briefly how these
parameters are defined. The summation over repeated indices
is implied everywhere.

Let us consider a homogeneous mixture of M chemical
components inside a spatial region D of volume VD . The region
contains NiD (i = 1, . . . ,M) of each type of molecule. To
avoid large numbers, the quantities NiD are measured in moles
and by definition ni = NiD/VD . If the mixture is inhomoge-
neous, one can define ni locally by establishing a small volume
limit, such as ni = ni(t,xa) = limVD→0(NiD/VD). Here, t is
time and xa are Cartesian coordinates. Like elsewhere in
continuum mechanics, the small volume limit is understood
as the convergent procedure with VD being small, but still
larger than the molecular volume.

By counting the flow rate of molecules through a small
area inside the mixture, one can define the component flux
Iia = Iia(t,xb). The component fluxes are used to calculate
the mass flux Ia = miIia , where mi is the molar mass of the
ith component. By introducing mass density ρ = mini it is
possible to define mass velocity va = ρ−1Ia . Component flux
Iia can be represented as a combination of transport term niva

and diffusion flux Qia:

Ii a = niva + Qia, (1)

where by definition, diffusion flux does not influence net mass
transfer,

miQi a = 0. (2)

The total energy ED of the molecules inside region D is a
sum of kinetic and potential energy (the latter being the result
of molecular interaction and influence of external potential
forces). The energy density can be calculated by establishing
the small volume limit, ε = ε (t,xa) = limVD→0(ED/VD).
Internal energy density can be defined by subtracting the
kinetic energy density and the external potential energy from
the total energy:

u = u(t,xa) = ε − 1
2ρvava − niφi, (3)

where φi = φi(xa) are external potentials associated with
chemical components in the mixture. The introduction of
these potentials constitutes the extension of the previous DFH
theory.

For a mixture occupying some spatial region D we assume
the existence of the entropy functional,

SD = SD[u ,ni]. (4)

Here the entropy SD = SD(t) is determined at any moment
of time by the internal energy field u = u(t,xa) and density
fields ni = ni(t,xa). The general expression Eq. (4) is sub-
stantiated in statistical mechanics [43]. In Eq. (4) and below,
the term “functional” is used in the sense that the considered
quantity depends on the spatial fields (and not on point values)
at a particular moment of time.

The explicit expression for functional Eq. (4) is introduced
into continuum mechanics in general (and into hydrodynamics
in particular) from other branches of science, such as physical
chemistry and statistical physics. In many cases, it is possible
to use the following functional, which is considered an appro-
priate approximation to the exact though implicit definition of
the entropy functional in statistical physics (see discussion in
Ref. [2], pp. 39–57):

S D =
∫

D

θdV +
∫

∂ D

s∗dA, (5)

θ = s(u,ni) − 2−1αij (nk)∂ani∂anj , (6)

where ∂D is the boundary surface for the region D (when the
region is finite), s = s(u,ni) is the entropy bulk density for
homogeneous mixture, αij is the positive-definite symmetric
matrix, and s∗ = s∗(u,ni) is the entropy surface density (not
equal to zero if ∂D is a contact surface with some immobile
solid).

The model, which is presented in Eqs. (5) and (6),
is adequate for many important phenomena, but it is not
universal. Up to now, it was successfully used to simulate
multiphase multicomponent phenomena with or without phase
transitions, surfactants, mixtures with solid phases (e.g., gas
hydrates or solid particles), and thermal effects [2]. However,
it is not sufficient for the simulation of structured liquids
(e.g., liquid crystals), which require more complex expressions
for the entropy functional.
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Before moving on to dynamic problems it is appropriate
to discuss equilibrium states of the mixture. Such states
correspond to conditional critical points of the functional
Eq. (4) under the constraints that the potential energy UD

and the amount of components NiD are fixed, i.e.:

UD =
∫

D

(u + niφi)dV +
∫

∂D

u∗dA, (7)

NiD =
∫

D

nidV , (8)

where u∗ = u∗(u,ni) is internal energy surface density. At
this point, it is appropriate to recollect some of the classical
thermodynamic equations [44]:

u = T s + κini − p, (9)

du = T ds + κidni, (10)

dp = sdT + nidκi, (11)

where T is absolute temperature, κi is chemical potential of
ith chemical component of the mixture, and p is hydrostatic
pressure. Also, note the following useful relations, which result
from Eq. (10):(

∂s

∂u

)
ni

= T −1,

(
∂s

∂ni

)
u , n j �=i

= −T −1κi. (12)

We assume that functions s∗ = s∗(u,ni) and u∗ = u∗(u,ni)
are related in a way similar to Eq. (12),(

∂s∗
∂u∗

)
ni

= T −1. (13)

As follows from the above statements, the equilibrium states
of the mixture can be found as solutions of the variational
equation having the form

δSD − λ0δUD − λiδNiD = 0, (14)

where λ0,λi are Lagrange multipliers. In order to obtain
explicit equations for equilibrium states, it is convenient to
calculate variational derivatives using Eq. (12):

�0 = δSD

δu
= T −1, (15)

�i = δSD

δni

= −T −1κi −2−1 ∂αjk

∂ni

∂anj ∂ank + ∂a(αij ∂anj ).

(16)

Now using Eqs. (5)–(8), (15), and (16) one can derive
equilibrium equations

�0 = λ0, (17)

�i = λ0φi + λi, (18)

together with the following boundary conditions at ∂D(
∂s∗
∂u

)
ni

= λ0

(
∂u∗
∂u

)
ni

, (19)

(
∂s∗
∂ni

)
u,n j �=i

+ αij l
a∂anj = λ0

(
∂u∗
∂ni

)
u,nj �=i

, (20)

where la is the internal normal unit vector at the boundary
surface ∂D.

Note that in accordance with Eq. (17), the temperature is
constant everywhere in equilibrium state, which is consistent
with the zeroth law of thermodynamics. Also, Eq. (13) makes
condition Eq. (19) satisfied. The boundary condition Eq. (20)
can be rewritten in equivalent and more convenient form

ν̃ij l
a∂anj =

(
∂f∗
∂ni

)
T ,nj �=i

, (21)

where f∗ = u∗ − T s∗ is the surface Helmholtz energy density,
and ν̃ij = T αij . Equations (17) and (18) with boundary
conditions Eq. (21) provide correct problem statement for equi-
librium states of the mixture, while Lagrange multipliers λ0,λi

must be chosen to supply the fixed quantities Eqs. (7) and (8).
For further analysis, it is convenient to introduce the tensor,

σab = (−p + κini + 2−1ν̃ij ∂ani∂anj + T �ini)δab

− ν̃ij ∂ani∂bnj . (22)

It will be demonstrated below that this tensor represents
the static stresses in the mixture (see also the derivation of this
tensor in Refs. [2,9,10]. In a particular case of homogeneous
mixture, the tensor in Eq. (22) is reduced to the hydrostatic
pressure,

σab = −pδab. (23)

Using Eqs. (9)–(11) it is easy to demonstrate the validity of
the following identity in general case:

∂b(T −1σab) = u∂a�0 + ni∂a�i. (24)

Therefore, when the equilibrium conditions Eqs. (17)
and (18) are satisfied, we obtain from Eq. (24) the usual
equations for the mechanical equilibrium with external forces:

∂bσab = ni∂aφi. (25)

Now we consider governing equations for the hydrody-
namic problems. We use the classical continuum mechanics
set of equations that are local conservation laws for chemical
components of the mixture, momentum, and energy, respec-
tively, when there exist external potential forces [45]:

∂tni + ∂a(niva + Qia) = 0, (26)

∂t (ρva) + ∂b(ρvavb − pab) = −ni∂aφi, (27)

∂tε + ∂a(εva + qa − pabvb) = 0, (28)

where pab is the stress tensor, and qa is the heat flux inside the
mixture. Equation (26) is consistent with mass conservation,
because together with the condition in Eq. (2) it produces usual
continuity equation

∂tρ + ∂a(ρva) = 0. (29)

The boundary conditions at the immobile solid walls
include Eq. (21) and the following additional constraints:

va = 0, (30)

laQia = 0, (31)

∂tu∗ = la
(
qext

a − qa

)
, (32)
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where qext
a is the external heat flux. Boundary conditions

Eqs. (21), (30)–(32) possess clear physical meaning and can
be explained in the following way:

(1) Eq. (21) reflects the wetting properties of the boundary
∂D.

(2) Eq. (30) is the usual no-slip condition for the mass
velocity. In case of gases, this condition should be substituted
with slip condition; however, gas flow is outside the scope of
the present paper.

(3) Eq. (31) establishes that the solid surface ∂D is
impermeable to the diffusion flux Qia .

(4) Eq. (32) is the boundary energy conservation law.
Hydrodynamic Eqs. (26)–(28) and boundary conditions

Eqs. (21), (30)–(32) form a complete mathematical problem
for primary variables ni,va,u. Yet the problem requires
additional information to be closed. The hydrodynamic model
must be closed by specifying: (a) explicit expressions for
the thermodynamic potentials s,u∗,s∗ and (b) constitutive
relations for the fluxes Qia , pab, qa . The former are determined
by the chemistry of the mixture, while the latter should
be introduced in accordance with the entropy production
principle, which we are to consider presently.

To make mathematical expressions compact it is convenient
to introduce additional notations Q0a ≡ qa , φ0 ≡ 0, and Jsa ,
which is entropy flux. Then, using Eqs. (26)–(28), one can
calculate the local entropy production rate χ :

∂tθ + ∂aJsa = χ, (33)

Jsa = (u�0 + ni�i)va − �abvb + QAa(�A − �0φA)

+αij ∂tni∂anj , (34)

χ = T −1(pab − σab)∂bva + QAa∂a(�A − �0φA). (35)

Here and below, the indices A,B run through numbers
0, . . . ,M . As before, the summation is implied over the
repeated indices. The canonical form of the entropy Eq. (33)
represents the entropy changes caused by both entropy flux
and local entropy production [44,46]. At this point, it is time
to introduce viscous stress tensor τab = pab − σab. As one
can see from Eq. (35), the tensor σab constitutes a part of
the total stress tensor pab that does not affect the entropy
production. Also, it does not depend on the velocity va , and
it is uniquely determined by the instantaneous configuration
of the fields ni,u. This is why σab is interpreted as static
stress tensor. In order to have consistency with the second
law of thermodynamics, the local entropy production rate
Eq. (35) must be nonnegative. This can be achieved by using
constitutive relations satisfying two independent inequalities:

τab∂bva � 0, (36)

QAa∂a(�A − �0φA) � 0. (37)

There are many ways to satisfy these inequalities. Here, we
give only the simplest options. For the viscous stress tensor
τab, one can use the following constitutive relation:

τab = ηvδab∂cvc + ηs
(
∂avb + ∂bva − 2

3δab∂c vc

)
, (38)

with ηv and ηs being nonnegative bulk and shear viscosity
coefficients, respectively. In the linear viscous model, these
coefficients can depend on local temperature and component
densities. In nonlinear viscous models, they can depend also
on local velocity gradient. When the liquid is affected by the
forces in the close vicinity of the solid surface, ηv and ηs can
depend on coordinates.

For the fluxes QAa one can use the following constitutive
relation:

QA a = μA B∂a(�B − �0φB), (39)

with μAB being a nonnegative definite symmetric matrix with
one zero eigenvalue [i.e., to provide consistency with the
condition in Eq. (2)]:

μAimi = 0. (40)

The constitutive relations Eqs. (38) and (39) close the
hydrodynamic model. To apply this model to the description
of particular multiphase flow scenarios, one should specify
explicitly the thermodynamic potentials s,u∗,s∗ and the trans-
port coefficients in Eqs. (38) and (39). This can be done
using experimental data for bulk and surface thermodynamics,
thermal and diffusive transport, and viscous stresses. Also,
certain interpolation and extrapolation procedures can be used
when input data does not cover the entire range of temperature
and component density values [2].

Integration of the local entropy Eq. (33) over the whole
region D with account of boundary conditions Eqs. (21), (30)–
(32) produces the dynamic equation for the total entropy of the
mixture:

dSD

dt
=

∫
∂ D

laT
−1qext

a dA + �, (41)

where � is the total entropy production rate, which is
nonnegative because of the inequalities (36) and (37); i.e.,

� =
∫

D

χdV � 0. (42)

As one can see from Eqs. (41) and (42), when the external
heat flux is nonexistent, qext

a ≡ 0, the entropy of the mixture
SD can only grow in accordance with the second law of
thermodynamics.

Now let us consider some applications of the static stress
tensor σab.

First, this tensor can be used to calculate interfacial tension
between fluid phases. Indeed, if we consider an equilibrium
1D solution T = const,ni = ni(x1) describing the transition
from one phase ni− at x1 → −∞ to another phase ni+ at
x1 → +∞, then the interfacial tension is calculated by the
following procedure [47]:

γ =
∫ +∞

−∞
(σ22 − σ1 1)dx1 =

∫ +∞

−∞
ν̃ij ∂1ni∂1njdx1. (43)

This particular equation can be used in numerical modeling
to fix the parameters ν̃ij from the known parameter γ .

Second, let us consider an equilibrium 1D solution T =
const, ni = ni(x1) in the vicinity of the solid surface. In
accordance with the mechanical equilibrium Eq. (25), here
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we have the equation for the static stress component σ1 1:

∂1σ1 1 = ni∂1φi. (44)

We consider the situation when there exists a liquid layer
of the thickness h in the vicinity of the surface. Farther
away is another liquid phase. The aim is to evaluate the
so-called disjoining pressure, �, which is the additional
pressure (i.e., in respect to the bulk pressure) in the liquid at
the surface [41,42,48]. This disjoining pressure can be positive
or negative. By definition, the disjoining pressure is zero for
infinite parameter h. After integrating Eq. (44) over the interval
[0,L], one can arrive to the following equation:

−σ1 1(0) = −σ1 1(L) −
∫ L

0
ni∂1φidx1. (45)

By definition, the hydrostatic pressure in the bulk can be
calculated as p = − limL→+∞ σ1 1(L). Therefore, Eq. (45)
produces the following relation between the static stress in
the liquid at the surface and the bulk pressure:

−σ11(0)p + �(h), �(h) = −
∫ +∞

0
ni∂1φidx1. (46)

Using the definition of the disjoining pressure it is possible
to produce the following expression:

�(h) = �(h ) − �(+∞). (47)

This last expression can be put in a simpler form under the
following assumptions:

(a) liquid layer consists only of the component 1 with
almost constant density n10, while another liquid contains no
component 1;

(b) there is only one nonzero potential φ1 = φ1(x1), which
vanishes at spatial infinity.

Under these assumptions the expression in Eq. (47) is
reduced to the following approximation:

�(h) ≈ −n10φ1(h). (48)

These relations can be used to calculate disjoining pressure
from the external potential φ1 = φ1(x1) and vice versa.

Now it is useful to discuss some simplified cases in DFH. In
many instances it is sufficient to perform simulations in isother-
mal approximation. Isothermal hydrodynamic equations can
be derived using nonisothermal equations assuming constant
temperature,

T = const, (49)

and excluding from consideration the energy Eq. (28) together
with boundary condition Eq. (32). In this case, the constitutive
relations in Eq. (39) are effectively reduced to a simpler system
of equations:

Qia = μij ∂a(�i − �0φi). (50)

It is necessary to note that the isothermal formulation of
DFH can also be rigorously built on the Helmholtz energy
functional instead of the entropy functional Eq. (5) [2,9].
In order to make this matter clear, we briefly trace here the
basic steps of the Helmholtz energy approach. The Helmholtz
energy functional, which corresponds to the functional Eqs. (5)

and (7), can be represented as follows:

FD = UD − T SD =
∫

D

(f + 2−1ν̃ij ∂ani∂anj + φini)dV

+
∫

∂D

f∗dA, (51)

where f = u − T s is Helmholtz energy density for homoge-
neous mixture without external potentials.

In isothermal problems, Helmholtz energy functional must
be considered as to be dependent on molar density fields ni ,
while temperature T is a fixed parameter. Equilibrium states
of the mixture correspond to conditional critical points of
the functional Eq. (51) under the constraints that amount of
components NiD are fixed, i.e.,

δFD − ζiδNi D = 0, (52)

where ζi are the Lagrange multipliers. This variational
equation leads to the equilibrium conditions, which include
equations in the bulk:

�i + φi = ζi, (53)

�i = κi + 2−1ν̃jk,i∂anj ∂ank − ∂a(ν̃ij ∂anj ), (54)

and the boundary Eq. (21). Evidently, the equilibrium Eq. (53)
is equivalent to Eq. (18) together with the condition Eq. (49).

Isothermal DFH is governed by the component and momen-
tum conservation Eqs. (26) and (27) without energy Eq. (28).
It is possible to verify that the described system is dissipative.
This dissipation property is similar to the nonnegative entropy
production in the case of nonisothermal processes. Direct
calculation of time derivative of the sum of kinetic and
Helmholtz energy with account of the boundary conditions
Eqs. (21), (30), and (31) leads to the dissipative function χ̃ as
follows:

d

dt

(
2−1

∫
D

ρvavadV + FD

)
=

∫
D

χ̃dV , (55)

χ̃ = Qia∂a(�i + φi) − τab∂avb. (56)

For isothermal problems, one can represent constitutive
relations in Eq. (50) in the following way:

Qia = −Dij∂a(�i + φi), (57)

where Dij = T −1μij . Now it is easy to see that subject to the
constitutive relations Eqs. (38) and (57), we get the inequality
χ̃ � 0, and thus the considered system is dissipative.

In this paper, we consider several applications to isothermal
problems, though the existing numerical simulator (Sec. III)
can also handle nonisothermal cases. The previous discussion
demonstrates that the reduction to isothermal processes is quite
consistent with Helmholtz energy theory.

As a conclusion to this section, we put here a brief summary
on how various multiphase phenomena are accounted for in
the frame of the DFH.

(1) Interfacial tension is taken into account by means of
molar density gradient term that enters the expression for
entropy Eq. (6). Assuming γ is known from experiment the
Eq. (43) is solved numerically to find parameters ν̃ij .
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(2) Adsorption (e.g., surfactants) into interfacial area be-
tween mobile liquid phases is incorporated into the theory
by the dependence of coefficients αij in Eq. (6) on local
composition.

(3) Wettability (interfacial tension between liquid and
solid) and adsorption onto solid boundaries are described by
the boundary condition Eq. (21).

(4) Coalescence and breakup of droplets as well as any
other topological changes of interfacial boundaries happen
naturally and can be traced from evolution of molar density
fields.

(5) Motion of interfacial boundary over solid surface (i.e.,
moving contact line) is possible despite presence of no-slip
boundary condition Eq. (30); it is enabled by the nonlinear
diffusion fluxes Qia Eq. (39) that enter the molar density
conservation Eq. (26) and can be nonzero over the surface.

(6) DFH is not limited to Newtonian rheology and can han-
dle non-Newtonian rheologies by using appropriate expression
for viscous stress tensor instead of the Navier-Stokes’s one in
Eq. (38). In particular, viscoelastic, viscoelastoplastic, as well
as the well-known Herschel-Bulkley rheological models can
be employed [1,2].

(7) Phase transitions are governed by the bulk entropy
or Helmholtz energy properties following the classical the-
ories [44,49]; their particular expressions should be selected
to represent fluid experimental behavior. In the present paper,
we used conventional analytical expressions [1,2,13].

(8) Hydrodynamic Eqs. (26)–(28) are solved in each
spatial point of a domain containing multicomponent mixture.
Accordingly, the evolution of the system is described by the
evolution of molar densities of chemical components and mass
velocity. For multiphase mixtures, the position of an interface
is indicated by high molar density gradients similarly to the
so-called “diffuse-interface” methods [37].

(9) There are extensions of DFH published elsewhere [2]
that significantly widen the range of phenomena that can be
modeled.

III. NUMERICAL EXAMPLES

All the numerical results presented in this section have
been produced by solving numerically the equations of the
density functional hydrodynamics (DFH) described in Sec. II.
The numerical simulations have been carried out by the
computer code called direct hydrodynamic (DHD) simulator.
This simulator, as a fully parallel code, was developed by
Schlumberger Moscow Research (SMR) in 2005; however,
the rudimentary serial versions of the code were created
by the authors in early 2000s. In 2009–2011, the code was
optimized for running on multi-GPU clusters. This has enabled
a 30- to 40-fold increase in performance in comparison with
the previous version designed for CPU clusters. Simulation
experience accumulated over the past several years yielded
that depending on the physics of the multiphase problem the
typical scenarios can be simulated on models with sizes from
2003 cells (on several GPU cards) to 10003 cells (on a 64-GPU
cluster) within a day. To enable modeling of the examples
described in this section, the simulator has been updated.

As it was explained in Sec. II, the endowing of DFH with
the necessary liquid nanoflow phenomena description was

achieved through introduction of external potentials. From the
numerical simulation point of view, those potentials serve as
a convenient way to unlock the required modeling capabilities
using the relatively simple implementation within the existing
code. The required implemented modifications encompass
the right part in Eq. (27); the new term with φi in the
constitutive relation Eq. (39); procedures for calculation of
the potentials themselves; and the results post-processing in
terms of the disjoining pressure as specified in Eqs. (45)–(48).
These important modifications did not influence in any way
the already verified existing functionality of the DHD code.

Here we put a brief summary about the DHD. The
DHD code solves numerically the dynamic equations of
the DFH, namely Eqs. (26)–(28), with boundary conditions
Eqs. (21), (30)–(32). The code uses an explicit conservative
uniform finite volume numerical scheme on a staggered grid.
The numerical method possesses first-order approximation
in time and second order in space. A particular numerical
scheme implemented in DHD was specifically designed to
accommodate for the DFH equations. The scheme is called
tensor-aligned conservative uniform scheme on a staggered
grid (TACUS); its description can be found in Ref. [2].
A detailed description and analysis of numerical methods
belonging to the same class can be found, for example, in
Refs. [50,51]. To date, DHD simulator has been extensively
verified by a lot of numerical exercises, such as standard grid
convergence tests [2], various single-phase, two-phase, and
three-phase problems that have analytical solutions [1,2]. The
simulator capabilities were demonstrated by solving various
multiphase problems with complex physics (non-Newtonian
rheology, phase transitions, presence of surfactants, mobile
solid phase, turbulence, thermal effects) [1,2,15]. Recently,
we also demonstrated additional verification of the DHD sim-
ulator in respect to typical two-phase pore-scale phenomena
inherent to porous media flow [11–13]; those studies include
comparison between numerical simulation and experimental
results.

In this section, we review numerical simulation examples
related to nanoscale compositional fluid systems. Each of
the demonstrated examples highlights specific nanoscale
phenomenon important in compositional fluid applications,
in particular:

(1) Disjoining pressure (Sec. III A),
(2) Film precursors and anomalous rheology (Sec. III B),
(3) Compositional fluid in contact with heterogeneous

surface (Sec. III C),
(4) Capillary condensation (Sec. III D),
(5) Forward and reverse osmosis (Sec. III E).
The numerical examples presented here demonstrate possi-

bilities of the DFH in nanoscale modeling and are not intended
for a quantitative validation of the numerical method. Such
validation was among the subjects of our previous publications
referenced above.

In numerical modeling, we generally rely on the expressions
for Helmholtz energy density f = f (T ,ni) obtained using
equation of state approach [52]. But in many practical cases,
to speed up computations, we use rational approximations
for f wherever possible; see the Appendix. Also, in some
problems, we use Helmholtz energy approximations, which
are compatible with the assumption of 100% pure phase. But,
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FIG. 1. Schematic representation of disjoining pressure (�)
isotherms corresponding to different wetting scenarios: (1) complete
wetting, (2) partial wetting, (3) nonwetting.

because of diffuse interface approach, pure composition is
never actually realized in multiphase numerical simulations.

A. Disjoining pressure

An important phenomenon observed near submicron scale
at liquid-surface contact is possible thermodynamically stable
coexistence of both liquid film and bulk liquid belonging to the
same phase in proximity of the liquid drop [41,42,48,53–55].
Some publications utilize different terminology where the film
and the bulk fluids are named as separate thermodynamically
dissimilar phases [56]. Importantly, the bulk fluid have specific
equilibrium contact angle over the film depending on the
properties of the fluid and the surface. The conventional
surface chemical explanation of this phenomenon is based
on the concept of disjoining pressure that was introduced
by Derjaguin in 1936 [41]. The nature of the disjoining
pressure can be understood on the level of molecular layers
and orientation of the molecules as explained in terms of
interactions often grouped under the general name of van
der Waals forces [57,58]. In continuum class models (DFH
belongs to this class), description of the disjoining pressure
can be introduced using the idea of the disjoining pressure
isotherm [42].

Dynamic phenomena such as spreading thin liquid layers
with account for evaporation and condensation can be modeled
using phase field theory with disjoining potential (i.e., quantity
conjugated to disjoining pressure) as demonstrated by Pismen
and Pomeau [59] for a single component fluid. The density
functional theory can be used to calculate disjoining pressure
or potential of a single component fluid in a straightforward
manner as presented by Henderson [56]. Our DFH modeling
technique described in Sec. II can be considered as a further
generalization of these ideas in nanoscale dynamic phenomena
modeling for compositional mixtures.

Disjoining pressure isotherms are based on experimental
data and can describe different possible wetting scenarios as
shown schematically in Fig. 1 [42].

In DFH, we use the concept of the disjoining poten-
tial, which is directly related to the disjoining pressure by
Eqs. (45)–(48) (in Sec. II a general term “external potential”
is used). To demonstrate consistency of our modeling, we
present three numerical simulation examples corresponding to
different wetting scenarios: Case 1, complete wetting; Case
2, partial wetting; and Case 3, nonwetting. In each case, we
use the same parallelepiped model geometry with dimensions
200 nm × 200 nm × 80 nm discretized using 200 × 200 × 80
grid with identical cubic cells.

The numerical simulations for all cases listed in this section
were performed using the same pair of fluids with the fol-
lowing properties: ρA = 1000 kg/m3, ρB = 800 kg/m3, m1 =
18 kg/kmol, m2 = 100 kg/kmol, ηA = 0.001 Pa · s, ηB =
0.002 Pa · s, and γAB = 0.022 N/m, where ρA, ρB are mass
densities of phases A and B; m1,m2 are molar masses of
components 1 and 2; ηA, ηB are shear viscosities of phases
A and B; and γAB is interfacial tension. The phases are defined
in such a way that phase A consists 100% of component 1,
while phase B consists 100% of component 2.

The initial and boundary conditions are the same in all
simulated cases. The model has periodic boundary conditions
in lateral directions (i.e., x and y), which makes numerical
simulations physically consistent. In vertical direction (i.e.,
z), the model has impermeable boundaries. For the most part
of the volume, the model is filled with phase A. Immediately
adjacent to the bottom side of the model (i.e., at z = 0) and at its
geometrical center, a parallelepiped-shaped fragment of phase
B is placed; the sizes of the fragment are 96 nm × 96 nm ×
50 nm [Fig. 3(a)].

The three simulated cases are different in the shape of the
disjoining potential, which is a function of the vertical coor-
dinate, i.e., distance from the surface, φ2 = φ2(z) [Fig. 2(a)].
The lower index 2 indicates that the potential is related to the
second chemical component constituting phase B. The model
function φ2 depicted in Fig. 2(a) was taken as follows:

φ2(z) = (a1 z2 + a2 z + a3) exp(−a4 z2). (58)

The values of model parameters a1,a2,a3,a4 used in the
numerical simulations are listed in Table I.

The numerical simulation results showing equilibrium
distribution of phases are presented in Figs. 3(b) and 3(c).
Figure 2(b) shows equilibrium disjoining pressure profiles for
each of the simulated cases. The profile is taken at the center of
the model and along z axis. As expected, in Case 1 [Fig. 3(b)],
the initial nonequilibrium fragment of phase B has evolved to
a uniform film that evenly covers the entire bottom surface of
the model. In Case 2 [Fig. 3(c)], the system has evolved to the
state in which there is still a film covering the entire bottom of
the model, but unlike Case 1, equilibrium thickness of the film

TABLE I. Scope of the disjoining potential model parameters.

a1(N m−1kmol−1) a2(N kmol−1) a3(N m kmol−1) a4(m−2)

Case 1 −4.62 × 1020 1.76 × 1013 −2.25 × 105 5 × 105

Case 2 −2.43 × 1021 7.29 × 1013 −3.04 × 105 8 × 105

Case 3 −4.53 × 1021 8.66 × 1013 −3.2 × 105 1016
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FIG. 2. (a) Disjoining potentials used in the numerical modeling of the different wetting scenarios. (b) Disjoining pressure profile obtained
in the equilibrium numerical solution for the different wetting scenarios; the profile is taken at the center of the model and along the z axis.

in Case 2 is limited by the disjoining potential, which becomes
positive at approximately 6-nm distance from the surface.
At farther distance, the film becomes unstable and excessive
amount of phase B bulks in a shape of a droplet. In Case 3
[Fig. 3(d)], the equilibrium film thickness is the same as in Case
2, but because disjoining potential has larger positive range, the
droplet has evolved to a different shape, which is characteristic
for nonwetting fluids. This result has particular importance as
it demonstrates direct modeling of the phenomenon that can
be considered paradoxical at the first glance: a simultaneous
presence of the localized nonwettability and the film.

The solutions shown in Figs. 3(b) and 3(c) cannot be
realized in conventional DFH modeling shown in our previous
publications, where the concept of the disjoining potential
was not present. Before the DFH extension developed in
this paper, both wettability and adsorption were governed
by the boundary condition Eq. (21) alone. Therefore, only
two scenarios could be modeled by the previously published
model: Either a complete wetting where the entire volume
of wetting phase spreads over the surface and forms film of
arbitrary thickness, or wetting with certain contact angle; but

in the latter case the film could not exist. The concept of
the disjoining potential introduced in the new DFH model
described in Sec. II eliminates this limitation of the previous
model as was demonstrated in this section.

B. Film precursors and anomalous rheology

In Sec. III A, we did not focus on the dynamic effects
that can take place during the evolution to the equilibrium
solutions like those shown in Figs. 3(b)–3(d). However, there
are important dynamic phenomena inherent in the nanoscale
fluid systems. These phenomena include existence of film
precursors [53,54] and anomalous rheology of the films [60].
Film precursors are distinguished from the equilibrium films,
because the former is essentially dynamic phenomenon. In
DFH modeling of spreading dynamics, one can observe film
precursors, as will be demonstrated further in this section.

Another observation related to thin films (i.e., in case of
simple liquids films are considered thin when having thickness
on the order of ∼10 nm and less) is that the film rheology is
usually considerably different from that of the bulk liquid [60].

FIG. 3. Initial condition (a). Equilibrium distribution of phases in the numerical solution for (b) Case 1 (complete wetting), (c) Case 2
(partial wetting), and (d) Case 3 (nonwetting). The images show 3D view of the distribution of phases; phase A is shown in semitransparent
blue (light gray) and phase B is shown in red (dark gray), other colors (shades of gray) indicate transition zone.
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FIG. 4. (a) Exponential factor 1 + be−a r in the effective viscosity model in Eq. (59) showing deviation between the bulk and the thin
film theology in Cases 2 and 3. (b) Film precursor travelled distance as a function of the dimensionless time (τ ) as obtained in the numerical
simulations.

Thin films demonstrate dramatic growth of effective viscosity
as approaching the surface. In addition, they demonstrate
pronounced non-Newtonian behavior, e.g., dependence of
effective viscosity on shear rate. These rheological features
are captured by DFH modeling.

Numerical simulation presented here was performed on
a parallelepiped model with dimensions 240 nm × 240 nm ×
80 nm discretized using 240 × 240 × 80 grid with identical
cubic cells.

The model has periodic boundary conditions in lateral di-
rections. In vertical direction, it has impermeable boundaries.
Initial conditions were similar to those of Sec. III A [Fig. 3(a)].
The disjoining potential φ2 = φ2(z) was taken from Case 3 of
Sec. III A [Fig. 2(a)].

Three scenarios were simulated numerically. In the first
scenario (Case 1), there was no difference in rheology between
bulk and film liquids. In the two other scenarios, the rheology
of phase B was described by the effective viscosity model as
follows:

ηeff
B = ηB(1 + b e−a r ), (59)

where r is distance to solid surface, a,b are positive model
parameters. The model Eq. (59) ensures exponential growth
in effective viscosity of the film with approach to the
surface following the qualitative trend described in Ref. [60],
pp. 580–591. In the numerical simulations presented here we
used a = 10 9 m−1 for Case 2 and a = 5 × 10 10 m−1 for Case
3, while parameter b was the same in these both cases, b = 20
[Fig. 4(a)]. As can be seen from Fig. 4, considerable deviation

between bulk and film rheology occurs at about r < 5 nm in
Case 2 and much earlier, at about r < 10 nm, in Case 3.

Results of the numerical simulation by DFH are presented
in Figs. 4(b) and 5. Particularly, Fig. 4(b) shows the distance
travelled by the film precursor as a function of dimensionless
time τ defined by τ = tL−2ρ−1

B ηB, where t is time and L is the
reference size of the model. As expected, the film precursor
propagates considerably slower when anomalous rheology of
the film is accounted. Figure 5 demonstrates distribution of
phases for each of the cases captured at the same dimensionless
time τ = 3.04.

C. Compositional fluid in contact with heterogeneous surface

In the two previous sections, we dealt with the ideal
systems having a flat solid surface and a simple two-phase,
two-component mixture. However, majority of natural sur-
faces exhibit certain extent of heterogeneity in distribution
of properties (e.g., wettability, adsorptivity). Generally, the
heterogeneity can be attributed to variability in composition,
surface contamination, or geometrical defects. Even artificial
surfaces prepared in strictly controlled laboratory conditions
cannot be completely devoid of heterogeneity.

Another complication comes from the fact that most
natural fluids are compositional, meaning that they consist of
many different chemical components. For example, natural
hydrocarbon fluids may contain hundreds and thousands
of components [61]. Consequently, homogeneous phases
have complex composition. Each component has individual

FIG. 5. A single scene from the numerical solution for (a) Case 1, (b) Case 2, and (c) Case 3. The scene corresponds to the same
dimensionless time τ = 3.04. The images are 3D views showing distribution of phases, where phase A is shown in semitransparent blue (light
gray) and phase B is shown in red (dark gray); other colors (shades of gray) indicate transition zone.
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FIG. 6. Disjoining potentials distribution for component 2 (a) and component 3 (b) as seen in 2D cross-sections of the 3D model taken
parallel to the xy plane at distance of 1 nm, 3 nm, 5 nm, and 7 nm (left-right, top-bottom) counted from the bottom of the model. Colors indicate
disjoining potential values (N m kmol−1) according to the color palette.

properties characterizing its interaction with solid surfaces. For
example, two component phases may wet a surface; but one of
the components may wet the surface better than the other. This
results in composition gradient near the surface. Another possi-
ble scenario is when one of the components can be significantly
affected by certain surface inhomogeneity types (e.g., adsorb
upon certain impurities), while the other component is much
less sensitive to those types of inhomogeneity. The processes
related to the described phenomena are often referred to as
competitive or selective (the latter term refers to the scenario
when there is full separation of adsorbates) adsorption [62,63].
Selective and competitive adsorption play important role in
many scientific and technological applications dealing with
compositional fluids, e.g., chromatography, separation and
purification processes, and also in biology.

To model the above said phenomena by DFH, it is necessary
to introduce disjoining potentials that are functions of not
only the vertical coordinate but of the lateral coordinates as
well, φ = φ(x,y,z). In addition, while it was sufficient to have
just one potential in two-component mixture of Sec. III A,
there should be more than one potential for the compositional
mixture.

For a modeling example, we consider a mixture that
is two-phase, three-component with 100% of component 1
constituting phase A and components 2 and 3 constituting
phase B in such a way that they can be mixed in any
proportion providing their total molar concentration is unity
within phase B, i.e., c2 + c3 = 1 always holds, where c2,c3

are molar concentrations of components 2 and 3. The relevant

properties of phases and components are the following:
ρA = 1000 kg/m3, ρ2 = 800 kg/m3, ρ3 = 900 kg/m3, m1 =
18 kg/kmol, m2 = 100 kg/kmol, m3 = 60 kg/kmol, ηA =
0.001 Pa · s, ηB = 0.002 Pa · s, and γAB = 0.02 N/m, where
ρA is mass density of phase A; ρ2,ρ3 are mass densities of
components 2 and 3 for pure substances; m1,m2,m3 are molar
masses of components 1, 2, and 3; ηA, ηB are shear viscosities
of phases A and B; and γAB is interfacial tension. The model
is parallelepiped with dimensions 250 nm × 250 nm × 80 nm
discretized using 250 × 250 × 80 grid. The model has periodic
boundary conditions in lateral directions. In vertical direction
it has impermeable boundaries. Initially, the model was filled
with 100% of phase A.

Disjoining potentials were introduced for components 2 and
3 and both follow the nonwetting trend. Namely, the potentials
are negative near the bottom side of the model and positive
farther from it, thus providing favorable conditions for a finite
thickness thin film and bulk phase at places where thin film
exceeds equilibrium thickness (i.e., similar to the trend of
Case 3 from Sec. III A). However, due to the spatial variability
introduced in φ, the conditions are nonuniform leading to
variable thickness of the equilibrium film. Practically, the
potentials shown in Fig. 6 have been constructed using Eq. (58)
as a function of the vertical coordinate z with parameters as in
Case 3 from Sec. III A; then, this function has been multiplied
by a 3D homogeneous Gaussian random function with the
correlation radius equal to 40 nm and the standard deviation
equal to 0.3. The difference in the two potentials has been
obtained by using two different realizations of the Gaussian
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FIG. 7. Numerical simulation results in the model with heterogeneous bottom surface properties. Separate images (a) through (d) show 3D
view of consecutive states of the system. Phase A is shown in semitransparent blue (light gray) and phase B is shown in red (dark gray); other
colors (shades of gray) indicate transition zone.

distribution, which was also zero centered for component 2
and centered at 0.2 for component 3 (Fig. 6).

During simulation, phase B, formed by 50% of component 2
and 50% of component 3 (molar percentage), was continuously
injected with low rate into the model at one point in the
geometric center of the bottom side of the model. To sustain
material balance, residual fluids were removed at the top side
of the model with the rate equal to the injection rate.

Results of the numerical simulation by DFH are presented
in Fig. 7. Soon after injection is started, fluid of phase B forms
a spill with irregular pattern [Fig. 7(a)]. The irregular shape
is explained by the heterogeneity in the disjoining potential
used in the simulation (Fig. 6). With more phase B injected
the spill grows [Fig. 7(b)] until the entire surface is covered
[Fig. 7(c)]. The thickness of phase B’s film is nonuniform
following the heterogeneity in the disjoining potential. In the
course of the continued injection, the film grows until it reaches
equilibrium thickness. Then, responding to the extra phase
B fluid arriving and film thickness going above equilibrium
thickness, the film starts bulging [Fig. 7(d)] and forming bulk
phase, which is more energy favorable than film at places far
enough (i.e., above film at equilibrium thickness) from the
bottom of the model. A bulge grows to a drop absorbing the

extra fluid. Thus, at this stage the system arrives to a state in
which it has both film and bulk fluid belonging to the same
phase. Qualitatively, this solution is similar to that of Case 3 of
Sec. III A, but it was reached from different initial condition
and with heterogeneous properties of the solid surface. Also,
there is a composition gradient within phase B that is evident
from Fig. 8, demonstrating distribution of components 2 and 3
related to the state shown in Fig. 7(d). While phase B forms a
perfectly continuous cluster, the components 2 and 3 within it
are distributed essentially nonuniformly following the pattern
contained in corresponding disjoining potentials.

D. Capillary condensation

Another phenomenon observed in nanoscale fluid systems
is capillary condensation that occurs in small cracks and pores
in thermodynamic conditions below the vapor pressure, so that
the condensed liquid is unstable in the bulk. The necessary con-
ditions for this phenomenon require that the surface is wetted
by the liquid, and the pore system possesses sufficiently large
specific surface. More generally, the capillary condensation
means the appearance of the new fluid phase in capillaries and
pores, which is thermodynamically unstable in the bulk but

FIG. 8. Numerical simulation results in the model with heterogeneous bottom surface properties. 3D view of (a) component 2 concentration,
(b) component 3 concentration. Concentrations are colored according to the color palette. The range [0; 0.4] is semitransparent.
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FIG. 9. Numerical simulation results of two-phase capillary
condensation in the closed pore system. Separate images (a) through
(d) show 3D view of consecutive states of the system. Phase A is
shown in semitransparent blue (light gray) and phase B is shown in
semitransparent red (dark gray); other colors (shades of gray) indicate
transition zone.

is favored by specific thermodynamic and wetting conditions
in restricted geometry. This phenomenon is important because
it may affect greatly properties of materials such powders,
membranes, and even rocks making the properties dependent
on relative humidity. Capillary condensation has been a subject
of study for many years and its description can be found
in many books; see, e.g., Refs. [57,64–66]. However, an
easy quantitative description based on the well-known Kelvin
equation is only possible for the simplest case of two-phase,
one-component fluids such as liquid water and water vapor.
No such description exists for more complex cases involving
compositional fluids and more than two phases, therefore,
numerical simulation is required. Here we demonstrate that
capillary condensation in complex fluid systems can be directly
modeled by DFH.

1. Two-phase mixture

We begin with the case of two-phase, two-component
mixture with the same properties as in Sec. III A. The mixture,
containing 95% of component 1 and 5% of component 2
(at this composition the mixture is thermodynamically stable
in the bulk), is put into a closed pore system consisting
of a large spherical pore with radius 50 nm and a thin
capillary with radius 12 nm and length 50 nm (Fig. 9). To
make this geometry convenient for numerical simulation, the
whole figure was inscribed into parallelepiped with dimensions
150 nm × 101 nm × 101 nm discretized using 150 × 101 ×
101 grid. The cells within the parallelepiped, but outside the
pore system were made solid (impermeable). The disjoining
potential of the second component, φ2 = φ2(r), was the
function of the distance, r , to the solid walls and was calculated
using Eq. (58) with parameters of Case 1 from Sec. III A; thus,
the walls of the model were wetted by phase B.

Results of the numerical simulation are presented in Fig. 9.
Initially, there is no condensate in the model [Fig. 9(a)] as
component 2 is completely dissolved in phase A. Figure 9(b)
shows that condensation begins in the corners at the end

FIG. 10. Numerical simulation results of three-phase capillary
condensation in the closed pore system. Separate images (a) through
(d) show 3D view of consecutive states of the system. Phases A, B,
and C are shown in semitransparent red, green, and blue, respectively.

of the thin capillary where the curvature is highest. Then
the condensate accumulates gradually with forming meniscus
[Fig. 9(c)]; the accumulation continues until the system
reaches the equilibrium [Fig. 9(d)].

2. Three-phase mixture

A similar simulation is possible for the three-phase,
three-component mixture. For this simulation we used
the mixture with properties as follows: ρA = 1000 kg/m3,
ρB = 800 kg/m3, ρC = 920 kg/m3, m1 = 18 kg/kmol, m2 =
100 kg/kmol, m3 = 80 kg/kmol, ηA = 0.001 Pa · s, ηB =
0.002 Pa · s, ηC = 0.003 Pa · s, γAB = 0.02 N/m, γBC =
0.01 N/m, and γCA = 0.015 N/m, where ρA, ρB,ρC are mass
densities of phases A, B, and C; m1,m2,m3 are molar masses
of components 1, 2, and 3; ηA, ηB, ηC are shear viscosities of
phases A, B, and C; and γAB, γBC, γCA are interfacial tensions
between pairs of phases A-B, B-C, and C-A, respectively. The
phases are defined in such a way that phase A consisted of
100% of component 1, phase B consisted 100% of component
2, and phase C consisted 100% of component 3.

The model geometry used here was the same closed-pore
system that was employed in the previous two-phase scenario.
Also, similar to the previous case, the disjoining potential
was the function of the distance to the solid walls and was
calculated using Eq. (58) with parameters of Case 1 from
Sec. III A. However, now the potential was assigned to two
components, 1 and 3, thus the walls of the model could be wet
by phases A and C.

Initially, the entire model was filled with uniform ther-
modynamically stable in the bulk mixture containing 2% of
component 1, 95% of component 2, and 3% of component
3, so that components 1 and 3 are dissolved in phase B
[Fig. 10(a)]. Results of the numerical simulation are presented
in Figs. 10(b)–10(d). Similar to the two-phase scenario, con-
densation begins in the corners at the end of the thin capillary
where the curvature is highest. At the very initial stage,
condensation produces a mixture of components 1 and 3 that
is not yet split into phases [Fig. 10(b)]. Indeed, suppose that
a very small volume vessel contains immiscible components
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mixed on the molecular level. Compare it with another vessel
of the same volume containing the same mixture, but having
equilibrium phases separated. The total energy of the mixture
in the second vessel, which is a combination of the bulk energy
of the two phases and the energy of the interfacial surface
may appear bigger that the energy of the thermodynamically
nonequilibrium mixture in the first vessel due to the energy
excess produced by the interfacial surface. And it is only
with the growth in the volumes that the gain in total energy
produced by the interfacial surface can be compensated by
the bulk energy loss obtained through phases’ separation. A
similar effect is known to prevent nucleation of droplets or
bubbles with radius below the so-called critical radius, which
lies generally below 10÷100 nm [67].

Further in the simulation, the volume of the condensate
gradually increases and phases A and C separate [Fig. 10(c)].
Phase A appears at the bottom of the capillary and phase C
accumulates in between phases A and B. This configuration
is explained by the actual selection of the interfacial tensions
that in our case gives γBC < γCA < γAB, while the disjoining
potentials are the same for phases A and C. This means that
it is more energy favorable for phase C, rather than phase A,
to appear in contact with phase B. The last image, Fig. 10(d),
shows the equilibrium configuration.

E. Forward and reverse osmosis

An important factor in nanoscale compositional flow is
a possible presence of size exclusion effects when bigger
molecules cannot pass constrictions while smaller ones can.
This phenomenon is directly related to osmosis, in which a
semipermeable membrane is impermeable for solute but not
for solvent [66,68]. It is conventional to distinguish between
forward and reverse osmosis. Forward osmosis is the process in
which solvent penetrates semipermeable membrane separating
two closed vessels until pressure difference between the
destination and the source vessel raises to osmotic pressure;
the latter is consequently defined as the pressure needed to
stop forward osmosis. Reverse osmosis is the processes going
in reverse direction in respect to forward osmosis and starting
when the described above pressure difference is above osmotic
pressure (naturally, this situation is only possible after liquid
injection to one of the vessels). In either case, the flow is
diffusive and is driven by gradients in chemical potentials of
the mixture components. It is necessary to stress that when an
equilibrium state is reached, i.e., chemical potentials at either
side of the membrane became equal, pressures on either side
of the membrane are not equal.

In addition to size exclusion, there are other possible
mechanisms involved in osmosis, e.g., electromagnetic field
influencing mobility of ions and effects related to temperature
gradients. In the numerical modeling examples presented here,
we focus on the size-exclusion mechanism.

In a continuum mechanics-based method such as the
DFH, both forward and reverse osmosis can be modeled
by introducing size-exclusion potentials as functions depen-
dent on local geometry. Such potentials can prevent certain
chemical components from passing through specific types
of geometrical elements. The schematic picture in Fig. 11
explains this idea. The depicted size exclusion potential acts

FIG. 11. Schematic representation of size exclusion potential for
case of nanoscale channel with constriction. Liquid 1 flow occurs
from left to right when p2 − p1 < �po (forward osmosis) and from
right to left when p2 − p1 > �po (reverse osmosis). Liquid 2 never
crosses the constriction.

on component 2 of a two-component liquid and prevents
this component from passing through the constriction; the
solvent (component 1) can pass the constriction freely. The
flow of component 1 will occur from left to right when
pressure difference between pressure in the right chamber (p2)
and the left chamber (p1) is still smaller than the osmotic
pressure (�po > 0), i.e., p2 − p1 < �po; thus, this process,
forward osmosis, happens along pressure gradient. When
p2 − p1 > �po, meaning that pressure difference between the
two chambers overcome the osmotic pressure, liquid 1 flows
from right to left (reverse osmosis).

Numerical simulation of the forward and reverse osmosis
was carried out in the model geometry, consisting of three
identical spherical pores having radius of 40 nm and connected
together with constricted circular channels. Specifically, the
central pore is connected to the left one with the channel having
the minimal diameter of 26 nm, while to the right pore it is
connected with the thinner channel constricted down to 10 nm
diameter [Fig. 12(a)]. For numerical simulation, the model
was inscribed into parallelepiped with dimensions 320 nm ×
81 nm × 81 nm discretized using 320 × 81 × 81 grid. We used
single-phase, two-component liquid mixture with parame-
ters as follows: ρ1 = 1000 kg/m3, m1 = 18 kg/kmol, ρ2 =
820 kg/m3, m2 = 150 kg/kmol, and η = 0.001 Pa · s, where
ρ1,ρ2 are mass densities of components 1 and 2 for pure
substance; m1, m2 are molar masses of components 1 and
2; and η is shear viscosity. The size-exclusion potential acted
on the component 2 and was taken in the form of Eq. (58),
which was treated as a function of the distance to the walls of
the model, with parameters as follows: a1 = 0, a2 = −4.8 ×
1013 N kmol−1, a3 = 1.46 × 105 N m kmol−1, and a4 = 1.5 ×
1017 m−2. The 3D distribution of this size-exclusion potential
is presented in Fig. 12(b). The potential vanishes closer to the
center of the wider channel, while in the narrower channel
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FIG. 12. 3D view of the model geometry (a) and 3D view in cross-section (b) of the size-exclusion potential distribution for forward and
reverse osmosis modeling. The potential values (N m kmol−1) are shown according to the color palette.

the potential remains considerable everywhere to prevent
component 2 from crossing.

To model forward osmosis we used the problem statement
as follows. The central spherical pore of the model was filled
with the uniform mixture of two components containing 90%
(molar) of component 1 and 10% (molar) of component 2;
the rest of the model was filled with 100% of component
1 [Figs. 13(a) and 13(c)]. This distribution corresponded
to a constant pressure throughout the model [Fig. 13(e)].
Still, the distribution is nonequilibrium in respect to chemical
potentials.

The numerical simulation was carried out until equi-
librium solution (i.e., osmotic equilibrium) was reached
[Figs. 13(b), 13(d), and 13(f)]. Between the central and the left
pores, component 2 could pass freely through the center of the
connecting channel, because the size-exclusion potential there
vanishes and remains sufficiently big only near the walls of the
channel. As a result, in equilibrium solution, both said pores on
either side of the channel become filled with mixture of equal
composition [Figs. 13(b) and 13(d)]. Equilibrium pressure in
these two pores is also identical [Fig. 13(f)]. However, as
expected, there is difference in both composition and pressure
between the central pore and the right pore that are connected
with the thinner channel and where the size-exclusion potential
is big everywhere across. Here, component 2 could not pass the

constriction of the channel. As a result, the forward osmotic
process took place, in which a portion of component 1 passed
through from the right pore despite the fact that such flow has
reduced pressure in the right pore; i.e., the flow has occurred
along pressure gradient.

Let us now turn to modeling of the reverse osmosis. The
problem statement was as follows. The entire model was filled
uniformly with component 1 at reference density [Fig. 14(a)].
Component 2 was added to the central spherical pore so that
it amounted to 9.3% molar concentration [Fig. 14(c)]. As a
result, in the initial time moment, pressure in the central pore
was elevated above reference pressure [Fig. 14(e)]. Numerical
simulation was carried out until equilibrium solution was
reached.

Results of the numerical simulation by DFH are presented
in Figs. 14(b), 14(d), and 14(f). Because component 2 could
pass freely through the center of the wider constriction
on the left, in equilibrium solution, both the left and the
central pores become filled with mixture at equal composition
[Figs. 14(b) and 14(d)], similar to the case of the forward
osmosis simulation. Equilibrium pressure is also equal in the
both pores. But again, as was in the forward osmosis scenario,
the equilibrium solution is absolutely different in the pore
on the right. Component 2 could not pass the constriction.
Consequently, reverse osmosis process took place, in which

FIG. 13. 3D view in cross-section of the initial conditions (a, c, e) and the equilibrium solution (b, d, f) in the forward osmosis numerical
simulation. Panels (a) and (b) show distribution of component 1 molar density, (c) and (d) show distribution of component 2 concentration, and
(e) and (f) show distribution of pressure. Some of the numerical ranges are made semitransparent. The values of the parameters are shown in
colors according to the color palettes.
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FIG. 14. 3D view in cross-section of the initial conditions (a, c, e) and the equilibrium solution (b, d, f) in the reverse osmosis numerical
simulation. (a) and (b) show distribution of component 1 molar density, (c) and (d) show distribution of component 2 concentration, and (e) and
(f) show distribution of pressure. Some of the numerical ranges are made semitransparent. The values of the parameters are shown in colors
according to the color palettes of Fig. 13.

component 1 passed from the rest of the model to the
right chamber until pressure difference at either side of the
constriction reduced down to osmotic pressure.

IV. CONCLUSION

In this paper, we presented the description of liquid
nanoflow phenomena in the frame of DFH. The new element
introduced in the DFH modeling technique is the external
potential depending on spatial coordinates. For a continuum
mechanics-based method such as DFH, the external potential
is a convenient way to deliver consistent description of the
key nanoscale phenomena related to disjoining pressure and
size-exclusion effects.

Various liquid nanoflow phenomena were captured and
highlighted in the numerical results presented in this paper. We
began with modeling of various types of disjoining pressure
isotherms corresponding to complete wetting, partial wetting,
and nonwetting. The nanoscale feature that was reproduced
in numerical simulations is the presence of the nanometer
scale thin film in cases exhibiting nonwetting or only partial
wetting with respect to the bulk phase. Disjoining pressure
profiles obtained from the numerical simulation results are in
conformance with the published data.

Then we presented the modeling of spreading dynamic
phenomena. The demonstrated effects include film precursor
and anomalous non-Newtonian rheology of the traveling film.

Next, we presented a numerical simulation of the two-phase
three-component (i.e., compositional) system in contact with
the surface exhibiting heterogeneous properties. In addition
to already successful incorporation of bulk and film phase
coexistence, the numerical simulation results of this case
demonstrate selective adsorption of components in accordance
with wetting preferences of the surface.

Further on, we presented the capillary condensation for both
two-phase and three-phase systems.

Finally, we demonstrated the numerical simulation of
osmotic effects related to size-exclusion mechanism. Both
forward and reverse osmosis were reproduced.

Our results demonstrate the way that the key liquid
nanoflow phenomena and mechanisms can be captured in the
frame of the continuum mechanics combined with the density
functional theory.
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APPENDIX: HELMHOLTZ FREE-ENERGY MODEL
EXPRESSIONS USED IN NUMERICAL SIMULATIONS

This appendix contains description of the model Helmholtz
free energy used in numerical simulation of examples present
in this paper. We followed our previous experience in numeri-
cal modeling by DFH [2,13,15,69,70].

For homogeneous liquid (phase A) in thermodynamic
equilibrium in the vicinity of some fixed state, Taylor series
expansion for Helmholtz free energy density can be used in
the form

fA(ni) = fA0 + fAi(ni − niA) + 1
2fAij (ni − niA)(nj − njA),

(A1)

where niA,i = 1, . . . ,M are molar densities of the fixed state
(phase A). Expansion coefficients fA0 and fAi vanish from
hydrodynamic equations when Helmholtz energy in the form
of Eq. (A1) is used; therefore, only symmetric matrix fAij

is relevant for modeling. This matrix is positive-definite for
locally thermodynamically stable states. Coefficients fAij are
related to the bulk modulus of phase A, KA, by the expression
KA = fAij niAnjA. In the case when there is more than one
phase, the Helmholtz energy model for other bulk phases
is similar to Eq. (A1). The number of parameters in matrix
fAij depends on the number of chemical components. Some
of the parameters can be used to fit experimental data or
an equation of state [52]. The residual free parameters, if
there are any, can be factored out by assuming additional
symmetries of the matrix, for example, in a way that is
most beneficial for efficiency of practical calculations. In two-
and three-phase compositional mixtures, to obtain Helmholtz
energy function f (ni) for an arbitrary set of molar density
values ni (not necessarily close to any bulk phase), we use
numerical interpolation procedures.
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For surface Helmoltz free-energy density, we use the
numerical model expression

f∗ = ξini + ξ0. (A2)

Parameters ξ0, ξi are chosen to be consistent with the system
of two (in two-phase case) linear algebraic equations,

f∗A = ξiniA + ξ0, f∗B = ξiniB + ξ0, (A3)

where f∗A,f∗B are known values of surface energy density for
phases A and B. The surface energy densities are related with

the contact angle θ by the Young equation cos θ = f∗B−f∗A

γAB
.

The residual degrees of freedom in the system Eq. (A3) can be
factored out by fitting experimental data or surface equations
of state. In the three-phase case, there are three equations in
the system Eq. (A3) as well as there are three contact angles.
In the two-phase, three-component case of Sec. III C, there
is one equation with phase A and two equations with phase
B, because phase B is considered compositional and formed
of two components. The latter two equations enable one to
introduce dependence of surface energy on composition of
phase B.
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