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Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer:
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We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at
the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of
the interfacial transition region �fp of the one-domain representation is very small compared to the macroscopic
length scale L. The analysis leads to an equivalent two-domain representation where transport phenomena in the
transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive
dividing interface � between the homogeneous fluid and porous regions. These jump conditions are thus stated
up to first-order in O(d/L) with d/L � 1. The originality and relevance of this asymptotic model lies in its
general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the
commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that
case, the comparison between the present model and the different models available in the literature gives explicit
expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional
flows, the general asymptotic model yields the different components of the jump conditions including a new
specific equation for the cross-flow pressure jump on �.
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I. INTRODUCTION

Due to its interest for industrial or natural configurations,
transport phenomena between a fluid and a porous layer have
been the subject of intense research activity from the pioneer-
ing study by Beavers and Joseph [1], where a Poiseuille flow
over a permeable medium was considered. Most theoretical
and experimental studies concerning momentum transport
have used the same configuration in order to characterize
velocity fields at the different scales of the interfacial region.
Experiments mainly focused at the pore scale, where new
measurement techniques, such as particle image velocimetry
(PIV), have provided velocity profiles and estimation of the
size of the interfacial layer for granular and fibrous porous
media [2–8]. Similarly, the development of computational
resources allowed pore-scale numerical simulations (DNS,
lattice-Boltzmann), leading to local representations in the
interfacial region [9–11].

Despite the accuracy of those local (microscopic) de-
scriptions, the complexity of real partially porous systems
involving very different characteristic length scales often
requires an average representation of transport phenomena.
Such a macroscopic modeling is obtained by upscaling the
pore-scale equations giving rise to two average modeling
approaches: the single- and the two-domain models. The
single-domain (or one-domain approach), initially introduced
in Ref. [12], considers the plain fluid and the porous domains as
a continuum where momentum transport is governed by a sin-
gle average equation, valid both in the homogeneous fluid and
porous domains but also in the nonhomogeneous interfacial
region where effective properties (permeability, porosity,...)
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are spatially dependent (Fig. 1). This single-domain model
was recently theoretically derived, using the volume averag-
ing method [13], for momentum [14] and convective mass
transport [14]. It is worth mentioning that the derivation of the
single average equation (or generalized transfer equation) can
be free of length-scale constraint. Associated closure problems
were also established and numerically solved for schematic
interfacial structures in order to define the position-dependent
effective transport properties. The single-domain has been
widely used in numerical studies for practical configurations,
but due to the difficulty to describe the local interfacial layer,
the porous domain is generally assumed to be homogeneous
and the transition between the fluid and the porous regions
is represented by Heaviside functions; see Ref. [15] for the
corresponding mathematical model.

In the two-domain approach, averaged transport equations
in the fluid layer and the porous region, assumed to be
homogeneous, are coupled at a virtual interface, also called
“discrete interface” (or “dividing surface”) through jump
boundary conditions (Fig. 2). The derivations of these latter,
the determination of associated jump coefficients and the
location of the interface, are actually very challenging. Using
Stokes and Darcy equations in the fluid and porous regions,
respectively, Ref. [1] introduced a semiempirical slip velocity
boundary condition, where the dimensionless slip coefficient
is found to be dependent on the local structure of the interfacial
region and the location of the interface [16]. The introduction
of the slip jump condition was actually a mathematical neces-
sity, but its relevance was proved due to the good agreement
with the experiments (remember that the comparison was
concerning the flow rate). The theoretical studies performed
during the past two decades have shown that these jump
boundary conditions actually represent the integration of
transport phenomena over transition layer. The use of the
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FIG. 1. One-domain modeling: nonhomogeneous continuous in-
terregion of thickness d .

Darcy-Brinkman equation in the porous domain instead of
Darcy’s one gave rise to significant modeling alternatives.
Indeed, assuming continuity of velocities at the interface,
Refs. [17,18] derived, using the volume averaging method, a
tangential stress jump condition whose jump coefficient is also
found to be dependent on the local geometry of the interfacial
region. Recently, Ref. [19] introduced a new methodology for
the derivation of boundary conditions for both the velocity and
the stress. The jump coefficients and the location of the discrete
interface are obtained from the solution of an ancillary closure
problem related to macroscopic deviations. A similar model
involving two jump coefficients was previously obtained using
matched asymptotic expansions method [20]. It is worth
noting that both of the above methodologies are based on the
combination of the single- and the two-domain approaches. In
fact, jump boundary conditions in the two-domain approach
actually result from the integration of transport phenomena in
the interfacial transition layer of the single-domain approach
[21]. This is also the case for the asymptotic analysis developed
in the present study.

As previously said, most of the previous studies consider
the 1D tangential flow and heat and mass transfer and very
few attempts have been performed for bidimensional configu-
rations where normal component of the velocity exists at the
fluid-porous interface [22–24]. This is also the case for thin
film flows on a porous substrate where height modulations give
rise to nontangential velocities at the fluid-porous interface
[25,26].

FIG. 2. Two-domain modeling: fictive dividing surface � whose
location is at z� .

The objective of the present study is to propose an
asymptotic modeling of a bidimensional steady, noninertial,
and incompressible viscous flow with normal transfer of
momentum, energy, and mass in a fluid-porous single-domain
�, see Fig. 1, in order to derive the jump conditions associated
to the two-domain description. This analysis is based on the
hypothesis d/L � 1, where d is the thickness of the transition
layer �fp while L represents a characteristic length scale of
the system. As previously said, this modeling leads to replace
the transport phenomena description in the thin inter-region by
algebraic jump conditions at a fictive rectilinear interface � at
the order one of d/L; see Fig. 2. Such an asymptotic modeling
has been successfully carried out for other physical problems,
e.g., scalar diffusion-reaction [27,28] or flow in fractured
porous media [29,30]. Indeed, the asymptotic modeling for
an elliptic problem neglecting the tangential derivative terms
amounts to reduce a model with a diffuse or spread interface
[31] to a model with a sharp interface [32]. By an ad hoc
generalization to multidimensional vector problems, this has
led to a fictitious domain model with the so-called jump
embedded boundary conditions(JEBC) linking the jumps of
both the stress tensor and the velocity or the displacement
vector at the interface, proposed in Refs. [33–35] for viscous
flow or elasticity problems.

This paper is organized as follows: Sec. II presents the
governing equations for momentum transport in the fluid-
porous system. In Sec. III, the multidimensional asymptotic
model is developed and the jump boundary conditions at
the fluid-porous interface are obtained. Comparisons with
different existing models are detailed in Sec. IV.

II. FLUID-POROUS VISCOUS FLOW MODEL

Let us consider a two-dimensional [36] bounded domain
� ⊂ R2 composed of a pure homogeneous fluid region �f

and a saturated porous medium �fp ∪ �p separated by a
physical interface �fp (Fig. 1). The homogeneous part of the
porous region �p is characterized by its constant porosity
φp and permeability tensor Kp, while φ := φ(x,z) and K :=
K (φ,∇φ) are, respectively, the spatially dependent porosity
and permeability tensor of the nonhomogeneous interfacial
transition layer �fp. For the sake of simplicity, �fp is assumed
to be quasirectilinear of constant thickness d (flat interface),
and therefore the contribution of the curvature terms will be
neglected in the present analysis. Nevertheless, d can be a
slowly varying function of the longitudinal axis coordinate x

(nonflat interface) and the present asymptotic model remains
valid by taking d = d(x). This is the case in many practical
configurations, which will be developed in a separate study.
Let us recall that the upscaling process from the pore scale
�p to the macroscopic scale at the fluid porous interface is
based on the scale separation �p � d (generally, d ≈ 20�p),
since d is found to be twice the size of the averaging volume
[14]. In addition, it is known that the pore length scale
�p ≈ √

Kp and, therefore, d scales as d = O(
√

Kp), meaning
that d is proportional to

√
Kp, i.e., d ≈ C

√
Kp, where C is

a dimensionless constant and Kp := ‖Kp‖. However, it is
important to recall that in some porous structures, d/�p can
be found of the order one [21], but we have in all practical
configurations d/L � 1. Finally, it is worth recalling that
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the asymptotic analysis is based on the integration of the
momentum transport over �fp giving rise to jump conditions
at a fictive interface � whose location is not known a priori.

A. Homogeneous fluid and porous regions

The noninertial incompressible steady flow of a Newtonian
fluid with constant mass density ρ and dynamic viscosity μ,
is governed by the Stokes equations [37] in the fluid domain
�f :

∇ · v = 0 in �f , (1)

−μ�v + ∇p = ρ f in �f . (2)

Here, f denotes a body force like the gravitational one.
The porous region �fp ∪ �p is much more complex and
macroscopic momentum modeling deserves to be explained.
Let us first consider the homogeneous porous structure �p

often characterized by three length scales: the size of the
solid elements �, the size of the representative unit cell
η, and the macroscopic scale L [38]. On this basis, the
derivation of the average momentum equations from the Stokes
equations has been the subject of many studies using different
geometries and methodologies such as asymptotic expansions
and multiscale homogenization, either deterministic [39–48]
or stochastic homogenization for random media [49,50], or
also volume averaging [13,51–53]. Let us emphasize that,
whatever the methodology used and before any simplification
related to scale separations and limit behaviors, the stationary
noninertial macroscopic momentum equation for viscous flow
in homogeneous porous media is governed by the Darcy-
Brinkman form [54,55]:

∇ · v = 0 in �p, (3)

−μ̃ �v + μ K−1
d · v + ∇p = ρ f , in �p, (4)

where μ̃ is the effective viscosity of Brinkman’s term, whereas
K d is the permeability tensor of Darcy’s term; see, e.g.,
Ref. [56] for the use of such a Brinkman model. Remember that
in Eq. (4), v represents the superficial average velocity (also
classically called the filtration velocity), while the pressure p

refers to the intrinsic average pressure. It is important to note
that all the asymptotic analyses that have been performed show
that the viscous diffusion term (Brinkman’s term) is negligible
compared to the friction term (Darcy’s term) in most porous
media, except for porous structures with high porosity and
permeability values. This is the reason why, except for this
latter case, Eq. (4) reduces to Darcy’s law [57]:

μ K−1
d · v + ∇p = ρ f in �p. (5)

More precisely, it is proved in Brillard [44], Rubinstein [49,50],
Marchenko and Khruslov [58], that the macroscopic equation
converges to Brinkman’s law, Eq. (4), as far as �/η → 0 when
η → 0; with � = O(η), Darcy’s law, Eq. (5), is obtained at
convergence when η → 0. Moreover, there exists a critical size
of the solid inclusions: �c := C η3 in 3D or �c := exp(−C η−2)
in 2D with some C > 0 [41,44,46,47]. When �/�c → a > 0,
Brinkman’s law is obtained at convergence for η → 0; when
a = +∞, it leads to Darcy’s law, and the Stokes equation is

recovered when a = 0. For very high porosity and permeability
values, due to the size of the solid elements when � � O(η3)
[41], the friction forces strongly decrease, and for the limiting
case where K d → ∞ (φ → 1), Eq. (4) asymptotically tends
toward the Stokes equation. It is worth mentioning that, in this
case, the effective viscosity also tends to the fluid viscosity
[21]. Besides, the large majority of studies devoted to the
determination of the effective viscosity have concerned sparse
porous structures [59–66], where all expressions are found
to be close to the linear Einstein’s law [67]: μ̃ = μ[1 +
2.5(1 − φ)] that has been established for dilute suspensions.
Attempts have been made for denser beds of spheres with or
without inertia [16,59,65,66], but contradictory behaviors were
obtained. This is, in fact, without any consequence since the
Brinkman term only influences the flow at high porosity and
permeability values. In conclusion, this brief review shows that
the Darcy-Brinkman Eq. (4) is actually valid whatever the type
of porous microstructure, but the Brinkman term is generally
negligible and Darcy’s law is sufficient except for very sparse
porous structures.

B. Heterogeneous porous region

The porous medium under consideration in the present
analysis contains a thin heterogeneous interfacial porous layer
�fp, where averaged properties are continuously spatially
dependent (evolving heterogeneities). Indeed, the porosity
varies from φp in the homogeneous porous region �p to
1 in the fluid �f , while the permeability varies from Kp

to ∞. Therefore, in the large part of the interfacial porous
layer, the Brinkman term is negligible but becomes important
in the vicinity of the plain fluid region. In this transition
layer, the Brinkman term allows the continuous evolution
of the momentum transport between the homogeneous fluid
and porous regions. Moreover, it has been shown that for
nonhomogeneous porous media, the volume averaging method
leads to an additional Brinkman term involving porosity
gradients [[13], Chap. 4]:

−μ̃ �v + μφ−1∇φ · ∇(φ−1v) + μ K−1
d (φ) · v + ∇p

= ρ f in �fp. (6)

In Eq. (6), the permeability tensor K d (φ) a priori depends on
the porosity and its variations. However, it is worth mentioning
that whatever the dependance of K d (φ), the analysis performed
in the present study remains relevant since the objective is
to derive a general form of jump interface conditions for
multi-dimensional flows without providing an explicit form
of the associated coefficients. This is the reason why, despite
the evolving heterogeneities in the transition layer, the scale
separation is assumed to be satisfied, i.e., �p � Lφ,Lv (�p

and Lφ,Lv being the local and macroscopic length scales,
respectively). Therefore, the influence of the porosity gradients
can be neglected for the determination of the permeability
tensor K d (φ). For convenience, Eq. (6) can be written under
the conservative form:

−∇ · (μ̃∇v) + μK−1 · v + ∇p = ρ f in �fp, (7)

where the effective viscosity μ̃ is equal to μ̃ := μ/φ [13] and
the equivalent permeability tensor K := K (φ,∇φ) is defined
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by [68]

K (φ,∇φ)−1 := K d (φ)−1 − φ−3‖∇φ‖2 I, (8)

where I is the unit tensor, since we have

−μ

φ
�v + μ

φ
∇φ · ∇

(
1

φ
v

)
= −μ

φ
�v + μ

φ2
∇φ · ∇v − μ

φ3
‖∇φ‖2v

= −∇ ·
(

μ

φ
∇v

)
− μ

φ3
‖∇φ‖2v.

It is shown in Appendix A that Eq. (8) actually defines
K (φ,∇φ) as a symmetric and positive definite tensor written
as

K (φ,∇φ) =
(

Kτ Kτn

Knτ Kn

)
.

Since there is no porosity gradient in �p, this equation can
be used in �fp ∪ �p. Under these circumstances, the steady
form of the noninertial incompressible viscous flow inside the
fluid-porous system in � is defined by

∇ · v = 0, in �,

−∇ · σ (v,p) = ρ f , in �f , (9)

−∇ · σ (v,p) + μK−1 · v = ρ f , in �fp ∪ �p,

where σ (v,p) represents the pseudostress tensor for a newto-
nian fluid defined by

σ (v,p) := −p I + μ̃ ∇v = −p I + μ

φ
∇v.

Furthermore, the continuity of both the stress and velocity
vectors apply at the interface �fp, that is no jump, n being the
unit normal vector oriented from porous to fluid regions:

[[v]]�fp
= 0 and [[σ (v,p) · n]]�fp

= 0 on �fp. (10)

This set of equations must be supplemented by adequate
boundary conditions on the external frontier � := ∂� sup-
posed to be partitioned in two parts as � = �D ∪ �N . For
example, we usually impose the following Dirichlet condition
for the velocity on �D and an open condition given in stress on
the Neumann boundary �N , ν being the external unit normal
vector on �N :

v = vD, on �D,
(11)

σ (v,p) · ν|�N
= g, on �N.

The fluid-porous flow model Eqs. (9)–(11) can be reformulated
using a single-domain formulation where a single generalized
Brinkman equation with variable coefficients is used to
describe the fluid-porous flow inside the whole domain �. For
instance, a continuous smooth variation of the permeability is
proposed in Ref. [12] with a tanh function from the nominal
permeability in the porous medium to infinity in the plain
fluid; see also Ref. [69]. We also refer to Ref. [70], where
discontinuous permeability variations are introduced with
K s := ε I in an impermeable solid region (and possibly a
viscosity coefficient μs := 1/ε), a permeability tensor Kp in
the porous region and K f := 1/ε I in the pure fluid domain

�f , 0 < ε � 1 being a small penalty parameter that tends to
zero. In that case, the continuity of both the stress and velocity
vectors was implicitly assumed on the physical interface
separating the pure fluid region from the porous medium.
Hence, we can consider the following fictitious domain model
to govern the viscous flow inside the present fluid-porous
system in �:

∇ · vε = 0, in �,

−∇ · σ (vε,pε) + μ K−1
ε · vε = ρ f , in �,

with: K ε := Kp, in �p,

K ε := K (φ,∇φ), in �fp,

K ε := 1

ε
I, in �f ,

μ̃ := μ

φ
in �, and φf := 1 in �f . (12)

Let us point out that the stress and velocity continuity
conditions on �fp in Eq. (10) are now inherently and implicitly
included within the formulation of Eq. (12). This is proved
within a suitable weak formulation by Angot [15]. Then, it is no
more necessary to write them explicitly. We thus refer to Angot
[15] for the mathematical analysis of the models Eqs. (9), (10),
and (12). In particular, it is proved that the solution (vε,pε) of
the fictitious domain model Eq. (12) tends to the solution (v,p)
of the primary fluid-porous model Eqs. (9) and (10) when the
penalty parameter ε tends to zero. More precisely, we have the
following error estimate:

‖vε − v‖H1(�) + ‖pε − p‖L2(�) � C ε,

where C only depends on the data and not on ε, L2(�) denotes
the Lebesgue space of square-integrable functions, and H1(�)
is the standard Sobolev space. We also refer to Ref. [71] for
the corresponding numerical method with finite volumes to
efficiently solve such fictitious domain models.

III. THEORETICAL DERIVATION
OF THE ASYMPTOTIC MODEL

As underlined in the abstract, the main objective of the
present work is twofold.

(1) First, to propose a general and unified framework to
theoretically derive the multidimensional form of the jump
interface conditions (at the macroscopic scale L), depending
on whether the flow in the porous medium �p is described
either by Brinkman’s law or Darcy’s law and we study
both cases (see Sec. II A); the results being, respectively, in
Sec. III D 1 or III D 2.

The analysis is based on an asymptotic modeling of a very
thin interfacial and nonhomogeneous porous layer �fp, the
thickness of which d = O(

√
Kp) being such that d/L � 1

(see introduction of Sec. II). This enables us to propose an
approximate but multidimensional interface model up to the
order O(d/L), which is original in our knowledge.

(2) Second, to recover all the tangential interface condi-
tions existing in the literature when there is no transverse flow
with v · n|� = 0, each having its own domain of validity, as
detailed in Sec. IV.
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The Brinkman equation in Eq. (9) is further averaged over
the thickness d of the interfacial layer �fp in Sec. III B; see
Fig. 1. The coupled heat (or mass) transfer problem inside �fp

is considered in Sec. III C.

A. Definitions and approximations

Let n be a unit normal vector on the interface � arbitrarily
oriented from �p to �f and τ be a unit tangential vector
on �; see Fig. 2. For any quantity ψ defined all over �,
the restrictions on �f or �p are, respectively, denoted by
ψf := ψ|�f

and ψp := ψ|�p
[72]. For a function ψ having a

jump on �, let ψ− and ψ+ be the traces of ψp and ψf on
each side of �, respectively, and the jump of ψ on � oriented
by n and the arithmetic mean of traces of ψ are defined by

[[ψ]]� := ψ+ − ψ− = (ψf − ψp)|�,

and ψ� := 1
2 (ψ+ + ψ−) = 1

2 (ψf + ψp)|�. (13)

Thus, we have also

ψ
f

|� := ψ+ = ψ� + 1
2 [[ψ]]�,

and ψ
p

|� := ψ− = ψ� − 1
2 [[ψ]]�. (14)

However, the great motivation to introduce the quantities
[[ψ]]� and ψ� for expressing the jump interface conditions
only with these terms was early given by Angot [27]. Indeed,
when there is no jump of the function ψ across �, we have
[[ψ]]� = 0 and then ψ� = ψ|� , and hence the corresponding
interface conditions should easily degenerate to satisfy the
continuity of ψ across �. Furthermore, this also greatly
simplifies both the mathematical and numerical analysis, since
the model has a symmetric form; see also Refs. [28,33].

For a noncentered interface � as in Fig. 2, we shall use the
weighted mean:

ψ
w

� := d/2 − z�

d
ψ− + d/2 + z�

d
ψ+

=
(

1

2
− ξ

)
ψ− +

(
1

2
+ ξ

)
ψ+

= ψ� + ξ [[ψ]]�,

with − 1

2
� ξ := z�

d
� 1

2
. (15)

Besides, for any quantity k, the arithmetic and harmonic means
over the thickness of �fp, respectively, are given by

〈k〉(x) := 1

d(x)

∫ d/2

−d/2
k(x,z) dz,

〈k〉h(x) :=
(

1

d(x)

∫ d/2

−d/2

dz

k(x,z)

)−1

= 1〈
1
k

〉 , (16)

the latter being more accurate when k denotes a diffusion
or permeability coefficient; see Lemma 1 and Remark 1 in
Appendix B.

By reducing the thin interfacial region �fp to a fictive
interface � located in the middle (z� = 0), each physical
variable ψ� on � will be then defined by its cross average value
〈ψ〉 over the thickness of �fp. As a consequence, the modeling
error made in the asymptotic interface model is of the order

of O(d/L), i.e., of first-order. If we now choose to approach
the corresponding integral by the trapezoidal quadrature rule,
which is an approximation at the order of O(d3) for a smooth
function, see Lemma 3 in Appendix B, we have

ψ�(x) := 1

d

∫ d/2

−d/2
ψ(x,z) dz

= 1

2
(ψ(x, − d/2) + ψ(x,d/2)) + O(d2)

= ψ� + O(d2) ≈ ψ�.

For the jump quantities, we have also at the first-order in
O(d/L):

ψ(x,d/2) − ψ(x, − d/2) = [[ψ]]� + O(d/L) ≈ [[ψ]]�.

As mentioned in the Introduction, the jump boundary
conditions at the interface between a fluid and a porous region
depend on the location of the fictive interface � [19,20]. A
reasonable estimation for this location can be the middle of
the interfacial layer �fp, but a more general choice would
be to consider a noncentered position. In that case, ψ�

remains defined by ψ� := 〈ψ〉, but a noncentered “midpoint”
quadrature rule is used to approximate the integral which is
only at the order of O(d2); see Lemma 2.

Thus, we have

ψ�(x) := 1

d

∫ d/2

−d/2
ψ(x,z) dz

= ψ(x,z�) + O(d) = ψ
w

� + O(d)

≈ ψ
w

� = ψ� + ξ [[ψ]]�.

Hereafter, all the vector or tensor quantities are written within
the local curvilinear reference basis (τ , n). For example, a
vector quantity v reads

v = vτ τ + vn n with vτ := v · τ , vn := v · n.

Since the interface � is supposed to be quasirectilinear,
the contribution of the curvature terms will be neglected
everywhere and the curvilinear coordinates are thus (x, z).
Then, ∇τ denotes the tangential nabla operator, whereas
∂n or ∂z denotes the normal partial derivative. We use the
dimensional analysis to compare the orders of magnitude and
justify the approximations by choosing the reference velocity
V being, for example, the value of the uniform incoming flow
at infinity. This will enable us to neglect the contribution of all
tangential derivatives at the interface up to the order O(d/L).

B. Jump interface conditions for the stress and velocity vectors

The asymptotic model for the momentum transfer is derived
by integrating Eqs. (9), (10), or (12) over the thickness of
the interfacial layer �fp using the hypothesis d/L � 1 and
the approximations detailed in Sec. III A. Then, the averaged
transfer is described at the fictive dividing interface � through
suitable algebraic jump interface conditions at the first-order in
O(d/L). We first consider the simplest choice when the fictive
interface � is centered inside �fp, i.e., with the dimensionless
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coordinate ξ := z�/d = 0. The modifications involved by ξ 
=
0 with −1/2 � ξ � 1/2 are later given in Sec. III D 3.

1. Jump condition for mass conservation

By integrating the continuity equation in Eqs. (9) or (12)
over the thickness of the interfacial region �fp, we have∫ d/2

−d/2
∇ · v dz = 0.

Since the left-hand side reads∫ d/2

−d/2
∇ · v dz =

∫ d/2

−d/2
∇τ · v dz +

∫ d/2

−d/2
∇n · v dz

=
∫ d/2

−d/2
∇τ · v dz +

∫ d/2

−d/2
∂n(v · n) dz

= ∇τ · (d 〈v · τ 〉)

+ (v · n(x,d/2) − v · n(x, − d/2)),

the equation becomes

∇τ · (d 〈v · τ 〉) + (v · n(x,d/2) − v · n(x, − d/2)) = 0.

Using the trapezoidal quadrature rule to approximate the
integral in the first term, we get the equality

∇τ · (d v · τ�)︸ ︷︷ ︸
O(V d/L)

+ [[v · n]]�︸ ︷︷ ︸
O(V )

= 0.

By neglecting now the first term, which is a tangential
derivative of the order of O(V d/L), with respect to the other
term in O(V ), it yields the algebraic jump interface condition
below at the first-order in O(V d/L):

[[v · n]]� = 0 on �. (17)

As naturally expected [22,23], the incompressible flow pro-
duces no jump of normal velocity component when there is
no mass source, and we have [[v · n]]� = 0 and then v · n� =
v · n|� . This is recently confirmed both by homogenization
and direct numerical simulation in Ref. [73].

2. Jump conditions for momentum transport

The integration of the momentum equation in Eq. (9) or
Eq. (12) over the thickness of the interfacial region �fp gives

−
∫ d/2

−d/2
∇ · σ (v,p) dz +

∫ d/2

−d/2
μ K (φ,∇φ)−1 · v dz

=
∫ d/2

−d/2
ρ f dz = d 〈ρ f 〉. (18)

For the first term in Eq. (18), we have in the 2D tensor form

σ (v,p) :=
(

στ στn

σnτ σn

)
,

hence

∇ · σ (v,p) :=
⎛⎝ 2∑

i,j=1

∂xj
σij

⎞⎠ =
(

∂τστ + ∂nστn

∂τσnτ + ∂nσn

)
.

Thus, neglecting the tangential derivatives in O(d/L), it yields
up to O(d/L)

−
∫ d/2

−d/2
∇ · σ (v,p) dz = −

(
∂τ (d 〈στ 〉) + [[στn]]�
∂τ (d 〈σnτ 〉) + [[σn]]�

)
≈ −

(
[[στn]]�
[[σn]]�

)
= −[[σ (v,p) · n]]�.

Indeed, we have to compare the tangential derivatives:

|∂τ (d 〈στ 〉)| = O

(
μV

L

d

L

)
,

|∂τ (d 〈σnτ 〉)| = O

(
μV

L

d

L

)
,

to the term

|[[σ (v,p) · n]]�| = O

(
μV

L

)
.

The last term of Darcy’s drag in the left-hand side of Eq. (18)
is estimated in vector form using the approximation of the
generalized average from Corollary 1 and proved in Lemma 4
in Appendix B. It yields∫ d/2

−d/2
μ K−1 · v dz = μd〈K−1〉 · v�

+O(μ ‖K−1‖ ‖∇v‖ d2).

Thus, it amounts to neglect the error term of order
O(μV d/K d/L) compared to the term in O(μV d/K),
which holds. It gives then the approximation∫ d/2

−d/2
μ K−1 · v dz ≈ μd〈K−1〉 · v�.

Hence, we get the following approximation of Eq. (18) in
vector form up to O(d/L):

[[σ (v,p) · n]]� = μd K−1
� · v� − d 〈ρ f 〉 on �,

K� being the effective permeability defined by

K� := 〈K (φ,∇φ)−1〉−1 := 〈K (φ,∇φ)〉h, on �. (19)

For instance, in the case of a diagonal permeability tensor
K (φ,∇φ) inside �fp, the effective permeability tensor on �

reads

K� :=
(〈Kτ (φ,∇φ)〉h 0

0 〈Kn(φ,∇φ)〉h
)

.

Equation (19) physically means the force balance on �.
Moreover, Eq. (19) can be viewed as a generalized form of the
stress jump interface condition derived by Ochoa-Tapia and
Whitaker [17], for multidimensional flows with [[v · n]]� = 0
from Eq. (17) and [[v · τ ]]� 
= 0; see Sec. IV B.

Since the above interface condition expresses the jump
of the pseudostress vector on �, we also integrate over �fp the
equation defining σ (v,p) · n:

σ (v,p) · n := −p n + μ̃ ∇v · n in �fp, with μ̃ := μ

φ
,

(20)
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in order to obtain a suitable approximation of the mean stress
vector on �.

By approaching the two sides of the equality Eq. (20)
with the trapezoidal rule from Lemma 3, it yields on one hand∫ d/2

−d/2
σ (v,p) · n dz = d 〈σ (v,p) · n〉 ≈ d σ (v,p) · n�.

(21)

On the other hand, we have∫ d/2

−d/2
σ (v,p) · n dz = −d 〈p〉 n +

∫ d/2

−d/2

μ

φ
∇v · n dz

≈ −d p� n +
∫ d/2

−d/2

μ

φ
∇v · n dz. (22)

It remains to approximate the last term with the tensor ∇v

reading in 2D

∇v := (
∂xj

vi

)
1�i,j�2 =

(
∂τv · τ ∂nv · τ

∂τv · n ∂nv · n

)
.

Then, the last term in Eq. (22) is approximated as follows by
Corollary 1 and neglecting again the tangential derivatives up
to O(d/L), as in Sec. III B 1:∫ d/2

−d/2

μ

φ
∇v · n dz ≈ μ 〈φ−1〉

∫ d/2

−d/2
∇v · n dz

≈ μ 〈φ−1〉
(

[[v · τ ]]�
[[v · n]]�

)
.

Indeed, using Corollary 1, the terms including the tangential
derivatives scale as

|μ∂τ (d v · τ�)| = O

(
μV

d

L

)
,

|μ∂τ (d v · n�)| = O

(
μV

d

L

)
,

and can be thus neglected with respect to the jump terms

|μ [[v · τ ]]�| = O(μV ), |μ [[v · n]]�| = O(μV );

the error term from Corollary 1 being in O(μ ‖∇v‖ d2) =
O(μV d2/L). Moreover, the modeling error to get the jumps
on � is also in O(μV d/L), as explained in Sec. III A, and is
thus negligible in front of the other terms in O(μV ).

Hence, combining Eqs. (21) and (22) with the previous
approximations, we get the condition for the mean viscous
stress vector on � up to O(d/L):

σ (v,p) · n� + p� n = μ

φ�

[[v]]�
d

on �, (23)

where φ� is the effective surface porosity on �:

φ� := 1

〈φ−1〉 := 〈φ〉h. (24)

We can observe that the mean viscous stress vector
σ v(v) · n� := σ (v,p) · n� + p� n on � linearly depends on
a constant normal gradient of the velocity vector across �.
Moreover, using [[v · n]]� = 0 from Eq. (17), Eq. (23) can be
viewed as a generalized form of the velocity jump interface

condition of Beavers and Joseph [1] for multidimensional
flows; see Sec. IV A.

3. On the pressure jump on �

The existence of a pressure jump at a fluid-porous interface
in the case of a transverse or oblique flow has been a subject
of controversy for a long time; see, e.g., Refs. [22,24,74].
However, this jump was recently confirmed using both homog-
enization in Refs. [73,75] and direct numerical simulations
[73,76].

The present asymptotic model allows us to calculate the
pressure jump on � using Eqs. (20) and (19). On the one
hand, we have with the latter

[[σ (v,p) · n]]� · n = μd
(
K−1

� · v�

) · n − d 〈ρ f · n〉.
On the other hand, we have also from Eq. (20) and the
calculations in Sec. III B 2

[[σ (v,p) · n]]� · n = −[[p]]� +
[[

μ

φ
∇v · n

]]
�

· n

= −[[p]]� + μ

[[
1

φ
∂n(v · n)

]]
�

.

Combining the above equations, we get the equation for the
pressure jump on � up to O(d/L):

μ
(
K−1

� · v�

) · n + [[p]]�
d

− μ

[[
1
φ

∂n(v · n)
]]

�

d

= 〈ρ f · n〉 on �. (25)

This equation also reads with

K−1
� : = M� =

(
Mτ Mτn

Mnτ Mn

)
,

[[p]]� = −μd(Mnτ v · τ� + Mn v · n�)

+μ

[[
1

φ
∂n(v · n)

]]
�

+ d〈ρ f · n〉.

It is interesting to observe that the mean velocity across
� satisfies an equation of Brinkman’s type with a constant
transverse gradient of pressure. Let us point out that, to our
knowledge, Eq. (25) is new.

For instance, in the case of a diagonal permeability
tensor K (φ,∇φ) in �fp and using v · n� = v · n|� , Eq. (25)
degenerates to the following transverse Darcy’s law if the
viscous term can be considered as negligible:

v · n|� = −〈Kn(φ,∇φ)〉h
μ

(
[[p]]�

d
− 〈ρ f · n〉

)
on �,

(26)

when [[
1

φ
∂n(v · n)

]]
�

≈ 0.

Equation (26) generalizes the pressure jump below derived by
Kubik and Cieszko [74]:

[[p]]� = −α0
μ√
Kp

v · n|�,

with α0 a positive dimensionless coefficient.
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In particular, for the 1D channel shear flow, i.e., with v · n =
0 and f · n = 0, Eq. (26) or (25) with a diagonal permeability
tensor K (φ,∇φ) shows that [[p]]� = 0 and the pressure field
is continuous through the interface �. This result validates an
assumption that is generally admitted by most authors [22–24].
However, [[p]]� can be nonzero but possibly weak, if K (φ,∇φ)
is not diagonal even for the 1D flow, and satisfies from Eq. (25)

[[p]]� = −μd Mnτ v · τ�.

Hence, the multidimensional flow a priori involves a
nonzero jump of the pressure field across the interface as
soon as there is a non-zero transverse flow at the interface.
Moreover, by combining Eq. (23) with Eq. (17), we get the
normal component of the mean viscous stress vector by

σ (v,p) · n� · n + p� = 0 on �. (27)

This links the mean normal stress with the mean pressure on �,
the pressure jump verifying the transverse Brinkman’s Eq. (25)
or Darcy’s Eq. (26) with v · n� = v · n|� .

C. Jump interface conditions for a scalar
potential and normal flux

Let us now consider the convection-diffusion-reaction
problem governing, for example, the heat or mass transfer
inside �, the scalar potential θ being either the temperature or
the mass concentration of a solute transport [13,77,78]:

− ∇ · (A · ∇θ ) + v · ∇θ = f in �, (28)

with

ϕ(θ ) := −A ·∇θ + v θ and A :=
(

Aτ Aτn

Anτ An

)
, (29)

where ϕ(θ ) and A are the advection-diffusion flux vector and
an symmetric positive definite diffusion tensor, respectively.
Furthermore, the volumic source term f can be linear or not
like, for example, a reaction term. The effective diffusivity
tensor A|�fp∪�p

inside the porous medium may potentially
include a dispersion part. These equations are supplemented by
adequate boundary conditions on the external frontier � := ∂�

supposed to be partitioned in two parts as � = �D ∪ �N . For
example, we usually impose the following Dirichlet condition
on �D and Fourier-Neumann condition on �N , ν being the
external unit normal vector on �N :

θ = θD on �D,

ϕ(θ ) · ν|�N
= γ θ + g on �N, with γ � 0. (30)

By integrating in two different ways the normal flux
ϕ(θ ) · n over the thickness of �fp, we get with Eq. (28)
using the trapezoidal quadrature rule from Lemma 3 and the
approximation of the generalized average (iii) from Lemma 4∫ d/2

−d/2
ϕ(θ ) · n dz := −

∫ d/2

−d/2
Anτ ∇τ θ dz

−
∫ d/2

−d/2
An ∇nθ dz +

∫ d/2

−d/2
v · n θ dz

≈ d ϕ(θ ) · n�

≈ −d 〈Anτ 〉h ∇τ θ�

−〈An〉h [[θ ]]� + d v · n� θ�.

Indeed, the advection velocity v · n in the last term, which can
be positive or negative, is first written using the decomposition
of any real quantity within the positive and negative part as

v · n = (v · n)+ − (v · n)−,

with

(v · n)+ := max(v · n,0) � 0,

(v · n)− := max(−v · n,0) = (−v · n)+.

Then, with the positive quantities (v · n)+, (v · n)− � 0, we
can apply (ii) in Lemma 4 for the two parts and we have using
also the trapezoidal rule:∫ d/2

−d/2
v · n θ dz =

∫ d/2

−d/2
(v · n)+ θ dz −

∫ d/2

−d/2
(v · n)− θ dz

≈ d (v · n)+� θ� − d (v · n)−� θ�

≈ d (v · n)+ − (v · n)−� θ� = d v · n� θ�.

Since now |d 〈Anτ 〉h ∇τ θ�| = O(A�d/L), � being a
reference value of the scalar potential θ , this tangential
differential term can be neglected at the order of O(d/L) with
respect to the other terms in O(A�) or O(�V d). Thus, we
obtain the following equality up to O(d/L):

ϕ(θ ) · n� = −〈An〉h [[θ ]]�
d

+ v · n� θ� on �. (31)

Let us notice that the mean normal flux of diffusion on �

satisfies Fourier’s law with a constant transverse gradient
across �.

Now, we similarly integrate Eq. (28) written in the conser-
vative divergential form:

∇ · ϕ(θ ) = f in �. (32)

Still, integrating Eq. (32) with Lemma 3 and Corollary 1, we
have using the mass conservation equation ∇ · v = 0

∇τ · (d ϕ(θ ) · τ�) + [[ϕ(θ ) · n]]� = d〈f 〉.
By neglecting again the tangential derivative term of order of
O(�V d/L), we get the following equality up to the order
O(d/L):

[[ϕ(θ ) · n]]� = d〈f 〉 on �. (33)

From Eq. (33), we find that when there is no heat or
mass source, 〈f 〉 = 0, then there is no flux jump on �:
[[ϕ(θ ) · n]]� = 0, and the heat flux is given by Eq. (31) with a
temperature jump only.

It is interesting to notice that the algebraic jump interface
conditions Eqs. (31) and (33) are of the form proposed in
Refs. [27,28] for scalar diffusion-reaction problems, i.e., when
the fluid velocity vanishes v = 0. Moreover, the case of
advection-diffusion is also numerically studied in Ref. [32].
The submodel with no flux jump, i.e., [[ϕ(θ ) · n]]� = 0, and
thus ϕ(θ ) · n� = ϕ(θ ) · n|� , was previously considered in
Ref. [79]. Moreover, it was also proved in these works that this
set of conditions on � leads to a mathematically well-posed
elliptic problem in the whole domain �.
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D. Asymptotic model with the first-order algebraic jump
interface conditions

Here we summarize the first-order asymptotic model
derived in the previous sections for the multidimensional
viscous fluid flow with coupled heat or mass transfer inside
the fluid-porous system; see Fig. 2.

1. Stokes/Darcy-Brinkman asymptotic model for a centered
fictive interface

The set of equations corresponds to a Stokes/Darcy-
Brinkman transmission problem inside �f ∪ �p, coupled with
the advection-diffusion-reaction equation of the passive scalar:

∇ · v = 0, in �f ∪ �p, (34)

− μ�v + ∇p = ρ f , in �f , (35)

− μ̃ �v + μ K−1 · v + ∇p = ρ f , in �p, (36)

− ∇ · (A · ∇θ ) + v · ∇θ = f, in �f ∪ �p, (37)

and completed by the so-called first-order algebraic jump
interface conditions (AJIC) on the interface � separating now
the pure fluid domain �f from the porous domain �p:

[[v · n]]� = 0, (38)

− [[σ (v,p) · n]]� + μd K−1
� · v� = d 〈ρ f 〉, (39)

σ (v,p) · n� + p� n − μ

φ�

[[v]]�
d

= 0, (40)

[[ϕ(θ ) · n]]� = d 〈f 〉, (41)

ϕ(θ ) · n� + 〈An〉h [[θ ]]�
d

− v · n� θ� = 0. (42)

For example, the scalar potential θ may denote either the
temperature field for heat transfer or the mass concentration
of a solute transport. To close the system of Eqs. (34)–(41),
suitable boundary conditions on the external border � :=
�D ∪ �N of � must be added, e.g., Eq. (11) for the fluid
flow and Eq. (30) for the heat or mass transfer.

Moreover, the pressure field inside each subdomain �f or
�p is the Lagrange multiplier to verify the equality constraint
defined by the mass conservation equation ∇ · v = 0. We refer
to Ref. [71] for an efficient numerical solution of flow problems
with divergence constraint by the augmented Lagrangian
technique. Since the pressure is only defined up to an additive
constant (different for each subdomain), the two constants can
be possibly adjusted so that the pressure jump on � satisfies
Eq. (25).

2. Stokes/Darcy asymptotic model

Finally, the above asymptotic model also holds when the
flow in the porous domain �p is supposed to be governed by the
Darcy equation, neglecting the viscous Brinkman’s correction
by letting formally the effective viscosity μ̃p := μ̃|�p

= ε tend
to zero; see Ref. [35] for the theoretical justification of the
passing to the limit when ε → 0+. Indeed, we can show that
the viscous dissipation energy μ̃ ‖∇v‖2

L2(�p) inside �p tends

to 0 as soon as μ̃ → 0. Moreover, Angot et al. [80] calculated
the boundary layer due to passing from the Brinkman’s model
to the Darcy model in the porous subdomain in the case of
jump embedded transmission conditions by using the so-called
WKB asymptotic expansion. Then, the asymptotic expansion
is rigorously justified by proving the convergence and uniform
error estimates; see Ref. [80].

Then, the Stokes/Darcy asymptotic model is formally
obtained by replacing the Darcy-Brinkman equation in �p

Eq. (36) by the Darcy one:

μ K−1 · v + ∇p = ρ f in �p. (43)

This also assumes to consider, in the jump interface conditions
Eqs. (38) and (40), the trace on � of the stress vector in the
porous domain �p as defined by

σ (v,p)p · n|� := −p
p

|� n on �. (44)

3. Asymptotic model for a noncentered fictive interface

If the fictive interface � is not supposed to be centered
inside the interfacial region �fp, its position is given by the
dimensionless parameter ξ := z�/d; see Fig. 2. Then, using
now the approximations defined in Sec. III A to derive the
algebraic jump interface conditions, it is an easy matter to
verify that the new set of interface conditions is exactly the
same as in Eqs. (38)–(42), except that all the mean physical
variables on � of the type ψ� are to be replaced by the
weighted ones ψ

w

� defined by

ψ
w

� = ψ� + ξ [[ψ]]�, with − 1

2
� ξ := z�

d
� 1

2
.

(45)

Let us observe that the jump conditions derived by upscaling
in Ref. [19] will be recovered in Sec. IV C with the present
asymptotic model only in the case of a noncentered fictive
interface.

4. First comments on the asymptotic model

The present asymptotic model, Eqs. (34)–(42), is relatively
simple since it is not stated upon upscaling methods from the
microscopic pore scale to the macroscopic one by multi-scale
homogenization [39,81–83] or volume averaging [13,84].
Its derivation already assumes the macroscopic equations
and then averages the different kind of transfer in the thin
interfacial region to reduce them to suitable jump conditions
on a fictive interface. Hence, the asymptotic model suffers
from the lack of information at the microscopic scale, and it
must be calibrated by correlation with more complete models
coming from upscaling methods or with experiments. That
will be the subject of Sec. IV. In particular, this model
cannot predict the practical values of effective properties at the
interface �, i.e., porosity, permeability, diffusion coefficients,
or slip coefficients, neither the thickness d of the interfacial
layer nor the position of the fictive inner interface defined
by ξ := z�/d. Indeed, the parameters d and ξ remain free
parameters, although ξ = 0 is the most simple and natural
choice for the present practical model.

Besides, when the interfacial region �fp is likely to
represent the viscous boundary layer between the pure fluid
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and the porous medium, it is well-known that its thickness d

is of the order of O(
√‖Kp‖); see, e.g., Refs. [1,85,86]. In our

framework, we have thus d = O(
√

Kp), and we shall state the
scaling as

d(φ�) = c(φ�)
√

Kp, (46)

where c(φ�) is a dimensionless function.
Then, the flow in the homogeneous porous domain �p

can be described by the Darcy’s Eq. (43), so neglecting the
Brinkman’s viscous correction as explained in Sec. III D 2.

However, the present asymptotic modeling has the great
advantage to directly derive the general vector form of the
jump interface conditions governing the 2D or 3D viscous flow
and heat or mass transfer at a fluid-porous interface. Indeed, as
shown in the previous sections, the jumps of all scalar or vector
physical quantities are inherently included in the asymptotic
formulation. Another original feature of our model is that the
interface conditions take the form of equations connecting
the jump of all physical variables with the arithmetic mean of
traces on each side of �, as proposed in Refs. [27,28] for scalar
elliptic problems or in Refs. [33,34] for the generalization to
vector problems.

IV. COMPARISON WITH EXISTING INTERFACE
CONDITIONS

Let us now compare the general asymptotic model
Eqs. (34)–(42) with existing interface conditions in the
literature. The following comparisons give the scaling of the
dimensionless function c(φ�) introduced in Eq. (46) and give
the scaling of the slip coefficients introduced by Beavers and
Joseph αbj and Ochoa-Tapia and Whitaker βotw.

A. Comparison with Beavers and Joseph [1]

The semiempirical slip condition of the tangential velocity
at � for a 1D channel shear flow takes the form

∂n(vf · τ )|� = αbj√
Kp

(vf − vp)|� · τ on �, (47)

where the dimensionless slip coefficient αbj is positive and only
depends on the local structure of the interfacial region. Here,
the flow in the homogeneous porous medium �p is described
by Darcy’s law with constant porosity φp and isotropic
permeability coefficient Kp(φp). Very often, Eq. (47) is sim-
plified considering the approximation |vp · τ |�| � |vf · τ |�|
[16]. This was theoretically proved by homogenization in
Refs. [87–89] for the Beavers-Joseph-Saffman condition and
in Ref. [90] for the complete Beavers-Joseph condition. A
full jump slip velocity was also recently derived by periodic
homogenization [73]; see also Refs. [74,91] for previous other
derivations. It is worth recalling that Saffman’s assumption
is generally not satisfied for large porosity and permeability
values (e.g., fibrous porous structures) or for thin fluid layer
[92]. Other comments or limitations of this slip condition have
been formulated [21,23,25,85,86,93–99].

Since in Beavers-Joseph’s configuration, the flow in the
porous domain is governed by Darcy’s law with v · n|� = 0,

the tangential component of Eq. (23) takes the form

μ

2
∂n(vf · τ )|� = μ

d φ�

(vf − vp)|� · τ on �. (48)

The comparison with Eq. (47) using the scaling proposed in
Eq. (46) for the thickness d(φ�) of the viscous boundary layer
in �fp gives for the slip coefficient αbj:

αbj(φ�) = 2
√

Kp

d φ�

= 2

c(φ�) φ�

. (49)

Since the scaling for αbj has been estimated by Ref. [86],

αbj(φ�) = O

(√
μ̃

μ

)
= O

(
1√
φ�

)
, (50)

the scaling of the dimensionless function c(φ�) takes the form

c(φ�) = O

(
1√
φ�

)
, and thus, d(φ�) = O

(√
Kp

φ�

)
.

(51)

Let us now consider the tangential component of Eq. (19)
for a diagonal permeability tensor K (φ,∇φ). We have for a
noncentered interface � with 〈ρ f 〉 = 0 and Darcy’s law in
�p:

μ∂n(vf · τ )|�

= μd

〈Kτ (φ,∇φ)〉h (v · τ� + ξ [[v · τ ]]�) on �. (52)

This equation completes the Beavers-Joseph condition Eq. (48)
by including the dependence on the position ξ of the interface.

Moreover, the pressure jump on � described by Eq. (26) is
another advantageous feature of the present model in the case
of a cross-flow through �.

B. Comparison with Ochoa-Tapia and Whitaker [17,18]

For the same 1D configuration, Ref. [17] considers the
Darcy-Brinkman equation in the porous region and assuming
continuity of velocities at the dividing surface (vf · τ |� =
vp · τ |� := v · τ |�), they derive using the volume averaging
method [13] a shear stress jump boundary condition on �

under the form

∂n(vf · τ )|� − 1

φp
∂n(vp · τ )|� = βotw√

Kp
v · τ |� on �,

(53)

where the dimensionless jump coefficient βotw depends on
the local structure of the interfacial region but also on the
location of the dividing surface. This latter dependence shows
that βotw can be positive or negative [18]. We also refer
to Refs. [14,20,21,100,101] for some further analyses and
precisions about this condition and to Refs. [102–104] for
the coupled heat transfer or Ref. [105] for the inertial effects.

Let us compare the present asymptotic model Eqs. (34)–
(42) with the boundary condition Eq. (53) by taking the
tangential component of Eq. (19) with the hypothesis v · n|� =
0. In the absence of body force and for a diagonal permeability
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tensor K (φ,∇φ), this yields

∂n(vf · τ )|� − 1

φp
∂n(vp · τ )|�

= d(φ�)

〈Kτ (φ,∇φ)〉h v · τ |� on �. (54)

The comparison with Eq. (53) leads to

βotw(φ�) = d(φ�)

√
Kp

〈Kτ (φ,∇φ)〉h . (55)

Let us recall that the thickness d(φ�) of the interfacial
transition layer �fp (which is surely included inside the viscous
boundary layer) verifies Eq. (46):

d(φ�) = c(φ�)
√

Kp. (56)

Under these circumstances, considering Eq. (55) and the
scaling of c(φ�) from Eq. (51), we get for the slip coefficient
βotw:

βotw(φ�) = c(φ�)
Kp

〈Kτ (φ,∇φ)〉h

= O

(
1√
φ�

)
Kp

〈Kτ (φ,∇φ)〉h . (57)

Hence, another consequence of the present asymptotic model
is that the jump coefficients αbj and βotw are of the same order,
and considering Eqs. (50), (51), and (57), we have

βotw(φ�) = O(αbj(φ�)) = O

(
1√
φ�

)
, (58)

with

Kp

〈Kτ (φ,∇φ)〉h = O(1).

C. Comparison with Valdés-Parada et al. [19]

The analysis by Valdés-Parada et al. [19] is based on
the upscaling of momentum transport in the continuity of
the previous study by [17] but without assuming continuity of
the velocity field at the fictive interface �. The authors propose
a new methodology to derive jump boundary conditions for
both the velocity and shear stresses. The analysis is based on
the fact that the difference between the velocity fields from
the single-domain and the two-domain approaches is equal
to macroscopic deviations whose determination is obtained
by solving associated boundary value problems. The first
jump condition obtained, written under the form proposed by
Beavers and Joseph [1], takes the form

∂n(vf · τ )|� − ηfp α ∂n(vp · τ )|�

= α√
Kp

(vf − φp ϑ vp)|� · τ on �, (59)

where ηfp, α/
√

Kp, and ϑ are three jump coefficients that are
defined in terms of macroscopic closure variables. The second
jump boundary condition is given by

∂n(vp · τ )|� − ω ∂n(vf · τ )|�

= φp β√
Kp

(vp − βfp vf )|� · τ on �, (60)

where the coefficients ω, β, and βfp are defined in terms of
integrals of the associated closure variables.

Let us compare the asymptotic model given by Eqs. (19)
and (23) with the above jump boundary conditions. In order
to be general, this comparison is performed for a noncentered
interface � and, therefore, weighted averages are considered
in the asymptotic model. Let us first start with the tangential
component of condition Eq. (23), where in the absence of body
forces and for a diagonal permeability tensor K (φ,∇φ), we
obtain

∂n(vp · τ )|� − φp ∂n(vf · τ )|�

= φp d(φ�)

〈Kτ (φ,∇φ)〉h
(

ξ − 1

2

)(
vp +

(
ξ + 1

2

)(
ξ − 1

2

)vf

)
|�

· τ .

(61)

Let us note that Eq. (61) has exactly the same form of the first
jump condition Eq. (60) derived by Valdés-Parada et al. [19].
The comparison between those two equations leads to the
determination of the coefficients present in Eq. (60):

ω = φp, βfp = − 1

φp

(
ξ + 1

2

)(
ξ − 1

2

) ,

β = −c(φ�)

(
1

2
− ξ

)√
Kp

〈Kτ (φ,∇φ)〉h

= O

[
1√
φ�

(
1

2
− ξ

)]
.

Let us note that the observations made by Valdés-Parada
et al. [19] are satisfied. Indeed, ω is of order one, β is found to
be negative whatever the location of the fictive interface, and
βfp is zero for ξ = −1/2. For ξ = 1/2, βfp → ∞, but in that
case β = 0 and continuity of stress is satisfied.

If we now consider the tangential component of the second
asymptotic condition Eq. (19), we have

∂n(vf · τ )|� − 1

φp

(
ξ − 1

2

)(
ξ + 1

2

) ∂n(vp · τ )|�

= 1

φ� d(φ�)

1(
ξ + 1

2

) (vf − vp)|� · τ . (62)

Again, this jump condition is found to be similar to the the
jump condition Eq. (59) derived using the averaging method
[19]. The comparison leads to the following expressions for
the coefficients:

α = 1

c(φ�) φ�

√
Kp

〈Kτ (φ,∇φ)〉h
1(

ξ + 1
2

)
= O

(
1√
φ�

1(
ξ + 1

2

))
,

ηfp = c(φ�)

(
ξ − 1

2

)√
〈Kτ (φ,∇φ)〉h

Kp

= O

(
1√
φ�

1(
ξ − 1

2

))
, ϑ = 1

φp
.
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Following Ref. [19], we observe that α and ηfp are found to be
of the same order.

The comparisons presented in the above sections illustrate
the relevance of the present asymptotic modeling. Contrary to
Ref. [19], it is found that jump conditions for multidimensional
flow at the dividing surface can easily be obtained. Neverthe-
less, let us recall that this methodology is based on the a
priori knowledge of the one-domain description. Therefore,
the exact form of the different coefficients involved in the
jump conditions require the spatial evolution of the averaged
properties (porosity, permeability,...) in the interregion. As
previously mentioned, this description, which was out of the
scope of the present analysis, has been recently derived by
upscaling local conservation equations in the interfacial region
[19].

D. Comparison with Angot [33,34] multidimensional
asymptotic model

The jump interface conditions Eqs. (31)–(33) for the heat or
mass transfer take the general form proposed in Refs. [27,28]
for scalar diffusion-reaction elliptic problems, the case with
advection being considered in Refs. [31,32].

For the viscous flow problem, the following algebraic
JEBC on � are proposed in Refs. [33,34] as a natural and
multidimensional generalization of scalar problems:

[[σ (v,p) · n]]� = M v� − h on �,

σ (v,p) · n� = S [[v]]� − g on �. (63)

Here, M, S are given transfer matrices and h, g given vector
source terms on �. To our knowledge, it was the first model
introducing the jumps of both the stress and velocity vectors at
the interface for multidimensional viscous flows. This model
is also mathematically analyzed in Refs. [33,35] and Ref. [80]
for fluid-porous viscous flows.

We can notice that the jump interface conditions Eqs. (19)–
(23) and (17) of the present asymptotic model Eqs. (34)–(42)
can be written under the general vector form Eq. (63), except
that the term σ (v,p) · n� in the second equation should be
replaced by the mean viscous pseudo-stress vector on �:

σ v(v) · n� := σ (v,p) · n� + p� n = μ

φ
∇v · n

�

. (64)

Hence, it does not affect the tangential shear flow, but the
present asymptotic model enables us to precise both the
mean normal stress across � with Eq. (27) and the pressure
jump across � with Eq. (25). Furthermore, the present jump
interface conditions for the flow Eqs. (38)–(42) read under the
general vector form

[[v · n]]� = 0 on �,

[[σ (v,p) · n]]� = M v� − h on �, (65)

σ (v,p) · n� + p� n = S [[v]]� − g on �.

We also refer to Refs. [34,35] where the calibration of
Eq. (63) is performed for the shear flow with respect to
either the shear stress jump condition of Refs. [17,18] using
Brinkman’s law in �p or the shear velocity jump condition of
Ref. [1] with Darcy’s law in �p. This is precise for the present
asymptotic model in Secs. IV B and IV A, respectively. Then,

using the general framework Eq. (63) of JEBC and the analysis
proposed in Angot [35], it can be proved that the present jump
interface conditions lead to well-posed Stokes/Brinkman or
Stokes/Darcy coupled problems.

V. CONCLUSION

An asymptotic modeling for the multidimensional viscous
fluid flow and convective transfer at a fluid-porous interface
has been derived. The integration of conservation equations
over the thickness of the nonhomogeneous interfacial layer
present in the one-domain description leads to algebraic jump
boundary conditions at a fictive dividing interface between
the homogeneous fluid and porous regions of the two-domain
approach. The asymptotic analysis has been developed by
considering that the thickness d of the interfacial transition
region �fp is very small compared to the length scale L of
the system and therefore, the jump conditions are stated up to
first-order in O(d/L).

The analysis has been performed for a multidimensional
configuration giving rise to original vector jump boundary
conditions. This general formulation also yields a specific
equation for the pressure jump at the interface. It has been
shown that all the jump conditions derived for the usually 1D-
shear flow are recovered by taking the tangential component
of the asymptotic model. In that case, the comparison between
the asymptotic modeling and the different models available in
the literature gives explicit expressions of the effective jump
coefficients and the associated scaling.

As far as we know, the present model is probably one of
the most general models that can be found in the literature for
the noninertial incompressible viscous flow at a fluid-porous
interface coupled with heat or mass transfer.

APPENDIX A: ON THE TENSOR K (φ,∇φ)

Let us justify that the expression

K (φ,∇φ)−1 := K−1
d − φ−3‖∇φ‖2 I

actually defines the invertible tensor K .
We have the equality

K−1
d − φ−3‖∇φ‖2 I = (I − φ−3‖∇φ‖2 K d )K−1

d

= (I − B) K−1
d , (A1)

with B := φ−3‖∇φ‖2 K d verifying with ‖K d‖ = O(�2)

‖B‖ = φ−3‖∇φ‖2‖K d‖ = O
(
�2/L2

φ

) � 1,

where Lφ denotes the characteristic length scale of porosity
variations. Since ‖B‖ < 1, we get with Neumann series

(I − B)−1 =
+∞∑
k=0

Bk ≈ I + B.

Then, we obtain

K (φ,∇φ) := K d

+∞∑
k=0

Bk ≈ K d + φ−3‖∇φ‖2 K 2
d .
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Moreover, since K d is symmetric and positive definite [13], K
is also a symmetric and positive definite tensor written as

K (φ,∇φ) =
(

Kτ Kτn

Knτ Kn

)
.

APPENDIX B: APPROXIMATION RESULTS

Here, we gather and detail some results of approximation
that are extensively used throughout the paper. The proofs that
are not given can be easily made using standard differential
calculus and Taylor series expansions with integral residual;
see, e.g., Ref. [106].

Lemma 1 (Integral harmonic mean for diffusion). Let us
consider the 1D steady diffusion along the z axis of the scalar
potential u over the interval ]a,b[ (a < b) with no source term
and u satisfying the Dirichlet boundary conditions u(a) := ua

and u(b) := ub. The diffusion coefficient A is supposed to be
spatially variable and denoted by A := A(z).

Then, the Fourier’s diffusive flux ϕ is constant over ]a,b[
and the effective or equivalent diffusion coefficient Ae to the
layer [a,b] is given by the following harmonic integral average
and we have with h := b − a > 0,

Ae := 〈A〉h :=
(

1

h

∫ b

a

1

A(z)
dz

)−1

= 1〈
1
A

〉 ,
and

ϕ = −〈A〉h ub − ua

h
, (B1)

where < . > denotes the arithmetic integral mean.
Proof. Using the Fourier diffusion law ϕ = −A∇u, the

steady 1D diffusion equation reads

dϕ

dz
(z) = − d

dz

(
A(z)

du

dz

)
= 0.

Then, the exact solution verifying the Dirichlet boundary
conditions reads

u(z) = ua + ub − ua∫ b

a
1

A(z) dz

∫ z

a

ds

A(s)
,

thus

ϕ = − ub − ua∫ b

a
1

A(z) dz
= −〈A〉h ub − ua

h
.

�
Remark 1 (Harmonic mean versus arithmetic one for dif-

fusion). More generally, using the harmonic average for
equivalent diffusion coefficients gives far more accurate
results than with the arithmetic one, since the solution is
exact in the above case of Lemma 1. Moreover, with finite
volume discretization methods, it allows the discrete fluxes to
satisfy the local conservativity and consistency properties that
are required for the convergence analysis, even when there
are jumps of u at the interfaces between the finite volumes;
see Ref. [79]. This is not the case with the arithmetic mean of
the diffusion coefficients.

Lemma 2 (Gauss rectangle and midpoint quadrature rules).
Let ω ⊂ Rd be an open bounded set of Rd (d = 1, 2 or 3 in

practice), and let ψ : ω −→ R be a continuously differentiable
function, ψ ′ being its differential.

Then, for all x0 ∈ ω, we have the error estimate∣∣∣∣ψ(x0) − 1

meas(ω)

∫
ω

ψ(x) dx

∣∣∣∣ � ‖ψ ′‖∞ diam(ω).

Hence, it yields
∫
ω

ψ(x) dx = ψ(x0) meas(ω) + O[diam(ω)
meas(ω)].

If x0 is the center of ω and ψ ∈ C2(ω), then the above
approximation of the average < ψ > of ψ over ω is of
second-order in O[diam(ω)2] and usually called the midpoint
quadrature rule.

Proof. The Taylor expansion with integral residual reads for
all x ∈ ω,

ψ(x) = ψ(x0) +
∫ 1

0
ψ ′(x0 + t(x − x0)).(x − x0) dt.

By integrating over ω, we get∣∣∣∣ 1

meas(ω)

∫
ω

ψ(x) dx − ψ(x0)

∣∣∣∣
= 1

meas(ω)

∣∣∣∣∫
ω

∫ 1

0
ψ ′(x0 + t(x − x0)).(x − x0) dt dx

∣∣∣∣
� ‖ψ ′‖∞ sup

x,y∈ω

|x − y| = ‖ψ ′‖∞ diam(ω).

�
Lemma 3 (Trapezoidal quadrature rule). Let ψ : [a,a +

h] −→ R be a twice continuously differentiable function over
the closed bounded interval [a,a + h] ⊂ R (h > 0). Then, we
have ∣∣∣∣∫ a+h

a

ψ(x) dx − h
ψ(a) + ψ(a + h)

2

∣∣∣∣
� max

x∈[a,a+h]
|ψ ′′(x)| h3

12
.

In fact, the assumption ψ ′′ ∈ L1(]a,b[) is sufficient to get
the third-order approximation of the integral by the trapezoidal
quadrature rule.

Lemma 4 (Approximation of the generalized average). Let
ψ : [a,b] −→ R be a continuous function over the closed
bounded interval [a,b] ⊂ R with h := b − a > 0, and let w :
[a,b] −→ R be a positive function and Lebesgue-integrable,
i.e., w ∈ L1(]a,b[) and w � 0. Then,

(i) there exists x0 ∈ [a,b], such that∫ b

a

ψ(x) w(x) dx = ψ(x0)
∫ b

a

w(x) dx.

Moreover, if ψ ∈ C1([a,b]), we have

(ii)
∫ b

a

ψ(x) w(x) dx = ψ(x0) h 〈w〉

= 〈w〉
∫ b

a

ψ(x) dx + O(‖ψ ′‖∞〈w〉h2)

= 〈w〉h
ψ(a) + ψ(b)

2
+ O(‖ψ ′‖∞〈w〉h2).
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If x0 = (a + b)/2 and ψ ∈ C2([a,b]), then the above
approximation of the integral is of third-order in
O(‖ψ ′′‖∞ < w > h3).

If we now assume w ∈ L1(]a,b[) and not necessarily
positive, the approximation from (ii) still holds and we have

(iii)
∫ b

a

ψ(x) w(x) dx

= 〈w〉
∫ b

a

ψ(x) dx + O(‖ψ ′‖∞ < |w| > h2)

= 〈w〉h ψ(a) + ψ(b)

2
+ O(‖ψ ′‖∞ < |w| > h2).

Proof. Since the function ψ is continuous over the compact
set [a,b], ψ is bounded over [a,b], i.e., ψ ∈ L∞(]a,b[), and
with w ∈ L1(]a,b[), we have ψ w ∈ L1(]a,b[). Besides, we
have for all x ∈ [a,b]

m := min
x∈[a,b]

|ψ(x)| � ψ(x) � M := max
x∈[a,b]

|ψ(x)|.

Using the positivity of w and the monotonicity of the integral,
the following inequalities hold:

m

∫ b

a

w(x) dx � I :=
∫ b

a

ψ(x) w(x) dx � M

∫ b

a

w(x) dx.

If now J := ∫ b

a
w(x) dx = 0 with w � 0, it means that w =

0 at least almost everywhere, and thus also I = 0; then, (i)
is trivially verified. In the other case where J 
= 0, we have
dividing by J > 0

m := min
x∈[a,b]

|ψ(x)| � I/J � M := max
x∈[a,b]

|ψ(x)|.

Using the lemma of intermediate values for a continuous
function, it yields that I/J is an intermediate value of ψ , i.e.,
there exists x0 ∈ [a,b] such that ψ(x0) = I/J , which proves
the equality (i).

With the definition of < w >, the equality (i) also reads I =
ψ(x0) h < w >. Hence, using the Gauss rectangle quadrature
to write ψ(x0), x0 being a priori unknown, we get from
Lemma 2 for a noncentered point x0 and meas(]a,b[) =
diam(]a,b[) = h = b − a:∫ b

a

ψ(x) w(x) dx = 〈w〉
∫ b

a

ψ(x) dx + O(‖ψ ′‖∞〈w〉h2),

which shows the first equality of (ii). Now, we use the
trapezoidal quadrature rule to express the integral of ψ , which
yields the last equality of (ii) with Lemma 3.

When w ∈ L1(]a,b[) and not necessarily positive, we
introduce the positive part w+ and negative part w− of w

as follows:

w+(x) := max (w(x),0) � 0,

w−(x) := max ( − w(x),0) = ( − w(x))+,

and thus w = w+ − w−, |w| = w+ + w−.

Hence, w+, w− ∈ L1(]a,b[) are both positive functions and
applying (i) to each part with two points x0, x1 ∈ [a,b] being
a priori different, and then (ii) to each part, we get∫ b

a

ψ(x) w(x) dx = (〈w+〉 − 〈w−〉)
∫ b

a

ψ(x) dx

+O(‖ψ ′‖∞(〈w+〉 + 〈w−〉) h2)

= 〈w〉
∫ b

a

ψ(x) dx + O(‖ψ ′‖∞〈|w|〉h2)

= 〈w〉h
ψ(a) + ψ(b)

2

+O(‖ψ ′‖∞〈|w|〉h2).

This shows (iii) and concludes the proof. �
Then using Lemma 4, the key practical result that is

extensively used in this study reads as follows.
Corollary 1. (Approximation of the generalized average)

Let the function ψ : [−d/2,d/2] �→ R be continuously differ-
entiable and the function w : [−d/2,d/2] �→ R be Lebesgue-
integrable. Then, we have∫ d/2

−d/2
ψ(x) w(x) dx

= 〈w〉
∫ d/2

−d/2
ψ(x) dx + O(‖ψ ′‖∞ < |w| > d2)

= d〈w〉ψ(−d/2) + ψ(d/2)

2
+ O(‖ψ ′‖∞〈|w|〉d2)

= d〈w〉ψ� + O(‖ψ ′‖∞〈|w|〉d2).
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