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Contribution of electron-atom collisions to the plasma conductivity of noble gases
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We present an approach which allows the consistent treatment of bound states in the context of dc conductivity
in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further
collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of
104 to 105 K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We
suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble
gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In
addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects.
The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom
potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas
is obtained.
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I. INTRODUCTION

Properties of strongly coupled plasmas are of high interest
for laser-induced dense plasmas (warm dense matter, WDM)
and astrophysical systems. Up to now, the description of such
partially ionized plasmas (PIP) is still a challenge because
of the quantum-statistical treatment of the electron-atom (e-a)
collisions in dense matter. In particular, the transport properties
are a necessary input parameter for simulation packages. In the
present work, the electrical conductivity of dense noble gases
is investigated for temperatures of 104 to 105 K and particle
densities below 1022 cm−3 where the plasma is nonideal and
partially ionized.

Fully ionized plasmas (FIP) have been analyzed, starting
from the kinetic theory approach, e.g., by Spitzer [1] using a
Fokker-Planck equation, as well as by Brooks-Herring [2] or
Ziman [3] using the relaxation time approximation, leading
to commonly known analytical formulas for the electrical
conductivity. The electron-ion (e-i) collisions are well de-
scribed in a wide parameter range, whereas the treatment
of e-a collisions is not trivial within an analytical approach.
Within the linear response theory (LRT), the inclusion of
different collision mechanisms is vivid. In recent years, the
influence of electron-electron (e-e) collisions at arbitrary
degeneracy was discussed in Born approximation for a FIP
by Reinholz et al. [4] and Karakhtanov [5]. In contrast to
Spitzer’s value, their correction factor depends on density and
temperature. Nevertheless, these formulas valid for a FIP are
not sufficient for the description of dense partially ionized
noble gases, because the interaction with bound states may
play an important role.

The treatment of bound states within a quantum-statistical
approach is possible if considering a chemical picture. In that
case, the electron-ion bound states are identified as a new
component (atoms). We consider a PIP containing atoms, free
electrons, and singly charged ions. Results for hydrogen are
discussed in Refs. [6–8]. For noble gases at temperatures
and densities considered here, multiply ionized ions are not
relevant. A generalization to multiple ionized states is possible.

For the analysis of e-a collisions, the composition of the
plasma has to be determined from the mass-action laws. The
Saha equation has been studied for a long time by many
authors, e.g., Ebeling et al. [9,10] and Förster [11] using Padé
techniques. As a result, the program package COMPTRA04—for
details, see Ref. [12]—allows the calculation of composition
and transport properties in nonideal plasmas. It has been
successfully applied to metal plasmas; see also Refs. [13,14].
In contrast to this, experimental data for the dc conductivity
of noble gases have been understood only qualitatively; see
Ref. [15]. A temperature-dependent minimum can be observed
as a consequence of the composition, but discrepancies can be
up to two orders of magnitude; see Fig. 7 below. Kuhlbrodt
et al. [15] believe that this results from using the polarization
potential for the e-a collisions. In Ref. [16], Adams et al.
verified this statement comparing the calculated momentum-
transfer cross sections using a polarization potential with
measured data. Subsequently, using the experimental data
for the isolated e-a momentum-transfer cross section and
the composition calculated by COMPTRA04, Adams obtained
quantitatively good agreement with experimental results for
the dc conductivity of noble gases. Recently, new results
from swarm-derived cross sections using different Boltzmann
solvers and Monte Carlo simulations have been compared with
experimental data for the isolated e-a scattering process; see
Refs. [17–19]. Especially for low energies, good agreement
has been found. However, plasma effects like screening of the
e-a interaction are not included by using the transport cross
sections for isolated collisions.

An alternative to using a polarization potential is the
construction of a so-called optical potential [20–23]. Such
a potential model has been successfully applied describing
the e-a momentum-transfer cross sections of all noble gases
in a wide energy region; see Ref. [24]. The downside is the
large number of free parameters and the fact that a uniform
expression for all noble gases has not been available. In
this work, we show that a better approximation of the local
exchange term leads to a universal expression for the cross
section of all noble gases. By adjusting only one free cutoff
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parameter r0 in the polarization term, we find good agreement
with the experimental data.

In order to take into account the plasma environment, the
optical potential for an isolated collision is further modified
by a systematic treatment of statical screening. For a hydrogen
plasma, screening of the e-a potential within the second order
of perturbation, but neglecting the exchange effects, has been
discussed by Karakhtanov [25]. Similar characteristics, e.g.,
a repulsive e-a potential at large distances, are found for the
noble gases in the present work.

A brief presentation of the fundamental expressions is given
in Sec. II. The construction of an optical potential for the e-a
interaction in dense plasmas is shown in Sec. III and results
including a comparison with experimental data are presented
in Sec. IV.

II. ELECTRICAL CONDUCTIVITY IN
T MATRIX APPROXIMATION

A. Transport properties and equilibrium correlation functions

We start from a systematic quantum statistical approach, the
linear response theory (LRT). According to the fluctuation-
dissipation theorem, transport coefficients are related to
equilibrium correlation functions. For instance, the well-
known Kubo formula, see Refs. [26,27], relates the optical
conductivity to the current autocorrelation function,

σ (ω) = e2β

3m2

1

�N
〈P1; P1〉ω+iε , (1)

with β = 1/(kBT ) (inverse temperature). Due to the large ion
mass, only the electron contribution to the current is considered
(adiabatic limit), and m is the electron mass. �N denotes
the volume of the system containing Ne electrons so that the
electron density is ne = Ne/�N. The current density is

je = e

m

1

�N
P1, and P1 =

∑
k

h̄ka+
k ak (2)

is the total momentum of the electrons. a+
k , ak , and a+

k ak

denote the creation, annihilation, and occupation numbers,
respectively, of the single-electron state k = {k,s} with wave
number k and spin quantum number s = ±1/2. The autocorre-
lation function 〈P1; P1〉ω+iε is defined as the Laplace transform
according to

〈A; B〉z =
∫ ∞

0
dteizt (A(t)|B) (3)

of the quantum statistical correlation function given by the
Kubo scalar product

(A(t)|B) =
∫ 1

0
dλTr{A(t − ih̄βλ)B†ρeq}. (4)

The average is performed with the equilibrium statistical oper-
ator ρeq = exp[β(H − μN )]/Tr exp[β(H − μN )], where H

is the Hamiltonian of the plasma and μ is the chemical poten-
tial. The time dependence A(t) = exp[iH t/h̄]A exp[−iH t/h̄]
is given by the Heisenberg picture. In the classical limit, the
expressions for the correlation functions become more simple.
They can then be evaluated, e.g., by molecular dynamical
(MD) simulations.

Within LRT, alternative expressions to evaluate transport
coefficients by equilibrium correlation functions have been
derived. They are more appropriate to perform perturbation
expansions and to give a connection to the kinetic theory
[26,27]. For example, the dc conductivity

σ (ω → 0) ≡ σdc = 3e2n2
e

β

�N

〈Ṗ1; Ṗ1〉iε
(5)

is related to the force autocorrelation function, Ṗ1 =
(i/h̄)[H,P1]. In Born approximation, the well-known Ziman
formula is obtained. However, to be consistent with kinetic
theory and in particular to account for the contribution of
e-e collisions, we have to include higher moments of the
single-particle distribution function (2); see Ref. [8].

Within this paper, we include the third moment P3 =∑
k h̄k (βEk) a+

k ak which describes the current of heat, and
Ek = h̄2k2/(2m). In the low-density limit, the accuracy of this
two-moment approximation is better than 3%; see Ref. [8].
The static electrical conductivity can then be expressed by a
generalized Ziman formula

σ = e2β

m2�N

N2
13d11 + N2

11d33 − 2N11N13d13

d11d33 − d2
13

, (6)

with

Nll′ = 1
3 (Pl|Pl′) , dll′ = 1

3 〈Ṗl ; Ṗl′ 〉iε . (7)

The generalized force-force correlation functions 〈Ṗl ; Ṗl′ 〉iε
contain the generalized forces Ṗl = i[H,Pl]/h̄ = i[V,Pl]/h̄.
V denotes the interaction part of the Hamiltonian H .

B. Partially ionized plasmas

There are different tools to evaluate the equilibrium correla-
tion functions occurring in the expressions (1), (5), and (6) for
the conductivity of a plasma. Depending on the temperature
T and the electron density ne, the intrinsic structure of the
plasma is changing as discussed in Sec. I. The occurrence of
bound states (PIP) or the strongly degenerate electron system
at very high densities require adequate approaches.

For densities higher than the Mott density, which is in
the order of ≈ 1023 cm−3, the bound states are dissolved.
Then at temperatures below T ∼ 105 K, the degeneracy of the
electron system is relevant. DFT-MD simulations have been
successfully applied to evaluate the correlation functions for
these strongly coupled plasmas. Pseudopotentials and structure
factor effects are important ingredients under these conditions.

In the present work, we are interested in the density region
below the Mott density where neutral atoms are formed.
The electrons are nondegenerate but the e-i coupling may
become large as a prerequisite to form bound states. A suitable
approach is the chemical picture. Thus, the ionization degree
and the effective e-a interaction are important signatures to
evaluate the correlation functions. DFT-MD simulations have
not yet been successfully applied to particle densities below
1022 cm−3.

Within the PIP model (chemical picture) we consider the
components c = e,i,a as individual parts of the plasma with
densities ne, ni, na, respectively, and a heavy particle density
nheavy = na + ni. The composition is given by the chemical
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equilibrium (Saha equation). An effective Hamiltonian can be
constructed for the PIP model:

H PIP =
∑
c,k

h̄2k2

2mc

a+
k,cak,c + 1

2

∑
c,c′

Vcc′ . (8)

For our purpose, only the electronic part of the Hamiltonian is
of interest:

H PIP
e =

∑
k

h̄2k2

2m
a+

k ak + Vei + Vea + 1

2
Vee . (9)

The interaction of electrons with ions and atoms is treated like
an external field at fixed positions. Note that, within a Green’s
function approach, the transition from the fundamental plasma
Hamiltonian containing only e and i to the PIP Hamiltonian,
Eq. (8), can be made in a systematic way, performing ladder
summations and cluster decompositions.

For further discussion, we introduce the coupling parameter

	 = e2

4πε0kBT

(
4πne

3

)1/3

(10)

and the degeneracy parameter

� = 2mkBT

h̄2 (3π2ne)−2/3 . (11)

Using the plasma conditions given in Sec. I, the electronic
subsystem is nondegenerate (� > 1) and weakly coupled
(	 < 1).

C. Evaluation of the generalized force-force
correlation functions

Considering the Hamiltonian (9) for the electronic subsys-
tem, the Kubo scalar products in Eq. (7) are evaluated using
the Kubo identity, see Refs. [26,27], as

N11 = ne�Nm

β
, (12)

N13 = 5

2

ne�Nm

β

I3/2(α)

I1/2(α)
, (13)

where Iν(α) = [1/	(ν + 1)]
∫ ∞

0 dx xν/(1 + ex−α) are the
Fermi integrals and α = βμe is the temperature-scaled chem-
ical potential of electrons.

After separating the interaction potential into the e-i, e-e,
and e-a contributions, Eq. (9), the generalized force-force
correlation functions are split into

dll′ = dl′l = dei
ll′ + dee

ll′ + dea
ll′ , (14)

referring to Ref. [4]. Therein, the generalized force-force cor-
relation functions are evaluated in Born approximation using
the statically screened Coulomb potential (Debye potential),

VD(r) = − e2

4πε0

e−κr

r
, (15)

κ2 = κ2
i + κ2

e = βe2ne

ε0

[
1 + I−1/2(α)

I1/2(α)

]
, (16)

for describing the charged particle interaction potentials
Vei(r) = VD(r) and Vee(r) = −VD(r). Note that our quan-
tum statistical approach is not limited by statical screen-

ing; the treatment of dynamical screening is possible—see
Refs. [5,8,28]. Including strong collisions, the correlation
functions are calculated in the T -matrix approximation; see
also Refs. [8,29,30]. For c 
= e we find

dec
ll′ = h̄3nc�N

3π2m

∫ ∞

0
dk k5(βEk)

l+l′
2 −1fk(1 − fk)Qec

T [Vec] ,

(17)

with the Fermi distribution function for electrons fk = (1 +
eβEk−α)−1 and the momentum-transfer cross section

Qec
T = 2π

∫ 1

−1
d(cos ϑ) [1 − cos ϑ]

(
dσ ec

d�

)
. (18)

Because of momentum conservation, the e-e contributions
in d1l vanish: dee

1l = 0. Only the correlation function d33

contains e-e collisions explicitly. In the region of partially
ionized noble gases, the plasma is nondegenerate (� > 1),
and the e-e correlation function can be expressed as

dee
33 = 8n2

e�N

3
√

πβ

√
m

β

∫ ∞

0
dP P 7e−P 2

Qee
v [Vee] , (19)

with the viscosity cross section

Qee
v = 2π

∫ 1

−1
d(cos ϑ) [1 − cos2 ϑ]

(
dσ ee

d�

)
. (20)

More general formulas for dee
33 are given in Refs. [4,8]. The

cross sections are calculated via the partial wave decomposi-
tion (c = i,a)

Qec
T (k) = 4π

k2

∞∑
�=1

� sin2
[
δec
�−1(k) − δec

� (k)
]
, (21)

Qee
v (k) = 4π

k2

∞∑
�=1

[
1 + (−1)�

2

]
�(� + 1)

2� + 1

× sin2 [
δee
�−1(k) − δee

�+1(k)
]
, (22)

with the k-dependent scattering phase shifts δ�(k). The phase
shift calculations are performed using Numerov’s method.
Recently, the e-i transport cross section has been discussed
in detail by Rosmej [31]. In general, at temperatures T <

105 K, the convergence with respect to the number of
relevant phase shifts is fast. The number increases with rising
temperature. However, for high temperatures, T > 106 K, the
Born approximation (BA) is applicable (c 
= e):

(
dσ ec

d�

)
BA

= m2�2
N

4π2h̄4 |Ṽ (q)|2 , (23)(
dσ ee

d�

)
BA

= m2�2
N

16π2h̄4 |Ṽ (q)|2
(

1 − 1

2

∣∣∣∣ Ṽ (q ′)
Ṽ (q)

∣∣∣∣
)

, (24)

with the Fourier transformed potential Ṽ (q) =
�−1

N

∫
d3r eiqrV (r) and the transferred momenta

q = |q| = |k − k′| = 2k sin(ϑ/2) and q ′ = |q′| = |k + k′| =
2k cos(ϑ/2).
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III. ELECTRON-ATOM INTERACTION
IN DENSE PLASMA

A. Optical potential for isolated systems

Within the Green’s function technique, the treatment of
the e-a interaction was expanded up to the second order of
perturbation by Redmer et al. [32]; see also Ref. [25]

Vea = V (1) + V (2) + Vex . (25)

The nonlocal exchange term Vex had been neglected in
Refs. [25,32]. In this work, we consider the role of exchange
in a local approximation; see Sec. III B.

The first-order term V (1) describes the Coulomb interaction
between the free electron with the nucleus as well as with
the shell electrons forming the atom. This part is commonly
known as the Hartree-Fock potential V (1) ≡ VHF(r) given by

VHF(r) = − e2

4πε0r

∫ ∞

r

dr1 4πr1ρ(r1)(r1 − r), (26)

see also Appendix A, where ρ(r) is the shell electron density in
the target atom, which is calculated using the atomic Roothaan-
Hartree-Fock wave functions [33]. For large distances, VHF(r)
decreases exponentially.

In contrast, the interaction between electrons and neutral
particles has been obtained by Born and Heisenberg [34] to
be Vea(r → ∞) ∝ −r−4 at large distances. Using the Green’s
function technique, Redmer et al. gave the same behavior in the
second-order perturbation, which is related to the polarization
potential V (2) ≡ VP; see Ref. [32]. In the following, we use the
polarization potential

VP(r) = − e2αP

8πε0(r + r0)4
(27)

as given by Paikeday [35], where αP is the dipole polarizability.
r0 is a cutoff parameter in the order of the Bohr radius a0 and
will be used as a fitting parameter.

In general, the polarization potential depends on the energy
of the free electrons. However, Paikeday obtained only a weak
energy dependence, which is negligible for our considerations;
see Ref. [35]. A number of other analytical expressions
for the polarization potential have been suggested before;
see Refs. [21,32,36,37]. The cutoff parameter r0 has also
been determined in different ways. In Ref. [32], r0 was
taken to give the correct value for VP(r = 0). Mittleman
and Watson [38] derived an analytical formula considering
semiclassical electrons, r0 = [αPa0/(2Z1/3)]1/4. Nevertheless,
at short distances, the finite value of the polarization term
is negligible in contrast to the dominant divergent Coulomb
interaction in the Hartree-Fock term. Therefore, it seems to be
desirable to choose r0 to be optimal at intermediate distances.
For instance, Paikeday [35] adjusted the cutoff parameter
using the experimental data for the differential cross section
for e-a collisions at intermediate energies. For positron-atom
collisions (no exchange part), Schrader adjusted the cutoff
parameter using experimental data for the scattering length;
see Ref. [37]. The values for their cutoff parameters r0 are
given in Table I, together with our results.

In this work, the cutoff parameter for each noble gas is
adjusted in order to reproduce the experimentally determined
low-energy behavior of the momentum-transfer cross section,

TABLE I. Cutoff parameter r0 in units of a0.

r0[a0] He Ne Ar Kr Xe

Present work 1.00 1.00 0.86 0.92 1.00
Mittleman [38] 0.86 0.89 1.21 1.27 1.38
Paikeday [35] 0.92 1.00 2.89 3.40
Schrader [37] 1.77 1.90 2.23 2.37 2.54

given in Refs. [39] and [40] for helium and neon, respectively.
For argon, krypton, and xenon, the so-called Ramsauer-
Townsend effect had been experimentally observed for the
total cross section by Ramsauer [41] and Townsend [42]. For
these heavier noble gases, we chose r0 using the position and
value of the Ramsauer minimum in the momentum-transfer
cross section, which were given in Refs. [43–45].

With Eqs. (26) and (27), the e-a interaction, Eq. (25), is
referred to as the (local) optical potential [20,23]

Vopt(r) = VHF(r) + VP(r) + Vex(r) , (28)

if the exchange contribution is approximated by a local field.

B. Approximation of the exchange potential

The exchange contribution in the optical potential, Eq. (28),
is considered in a local field approximation. This generally
accepted exchange potential was derived in a semiclassical
approximation (SCA) [46–48]:

V SCA
ex [r,KRT(r)] = h̄2

4m

{
K2

RT(r)

−
√

K4
RT(r) + 4me2

h̄2ε0
ρ(r)

}
, (29)

with a local electron-momentum K(r), which is here taken in
the version of Riley and Truhlar [47,48]

K2
RT(r) = k2 + 2m

h̄2 [|VHF(r)| + |VP(r)|] . (30)

For a free-electron gas, Mittleman and Watson [49] derived
the local exchange potential, see also Ref. [47],

V M
ex [r,K(r)] = − e2

4πε0

2

π
KF(r)F

(
K(r)

KF(r)

)
, (31)

with the Fermi momentum KF(r) = [3π2ρ(r)]
1/3

and the
function

F (η) = 1

2
+ 1 − η2

4η
ln

∣∣∣∣η + 1

η − 1

∣∣∣∣ . (32)

Alternatively, Hara [50] included the ionization potential I

into the local electron-momentum

K2
H(r) = k2 + 2

2m

h̄2 I + K2
F(r) . (33)

When inserting K(r) = KH(r) in Eq. (31), the exchange term
is labeled as Hara’s free-electron-gas exchange approximation
(FEH). It has been discussed by Hara as well as by Riley
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TABLE II. e-He, e-Ne, and e-Ar partial wave phase shifts δ� (in rad) for � = 0,1,2 omitting the polarization term, VP = 0, in the optical
potential, Eq. (28). (1) Numerical results in static-exchange approximation (SEA), Refs. [51–53]; (2) present work (RRR), Eq. (31) with (34);
(3) semiclassical exchange approximation (SCA), Eq. (29); (4) Hara’s free-electron-gas exchange approximation (FEH), Eq. (31) with (33);
and (5) Riley-Truhlar’s free-electron-gas exchange approximation (FER), Eq. (31) with (30).

Helium δ0 δ1 δ2

ka0 (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

0.10 2.994 2.993 3.006 2.957 3.337
0.25 2.776 2.770 2.783 2.691 3.043
0.50 2.436 2.412 2.422 2.304 2.648 0.043 0.045 0.076 0.023 0.218
0.75 2.139 2.093 2.111 2.001 2.332 0.110 0.101 0.146 0.064 0.316 0.005 0.006 0.009 0.004 0.013
1.00 1.890 1.835 1.856 1.769 2.071 0.183 0.159 0.205 0.116 0.359 0.014 0.015 0.020 0.010 0.025
1.50 1.522 1.473 1.491 1.446 1.654 0.284 0.247 0.279 0.212 0.367 0.042 0.041 0.047 0.035 0.053

Neon δ0 δ1 δ2

ka0 (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

0.20 6.072 6.104 6.179 6.028 7.716
0.30 5.965 6.004 6.069 5.902 7.056
0.40 5.857 5.899 5.947 5.779 6.648
0.50 5.748 5.789 5.820 5.659 6.361 3.040 3.052 3.030 2.917 3.196 0.004 0.005 0.008 0.002 0.016
0.70 2.933 2.949 2.909 2.785 3.124
0.80 2.873 2.890 2.845 2.724 3.073
0.90 5.321 5.349 5.333 5.215 5.626 2.812 2.828 2.781 2.667 3.017
1.00 5.219 5.243 5.222 5.114 5.480 2.751 2.766 2.719 2.615 2.958 0.065 0.059 0.075 0.034 0.127

Argon δ0 δ1 δ2

ka0 (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

0.10 9.274 9.266 9.374 9.249 11.858 6.279 6.276 6.279 6.275 6.318
0.25 9.045 9.015 9.141 8.987 10.628 6.227 6.193 6.213 6.192 6.381 0.002 0.002 0.004 0.001 0.031
0.50 8.647 8.580 8.658 8.561 9.250 6.001 5.901 5.938 5.909 6.214 0.045 0.035 0.061 0.024 0.815
0.75 8.249 8.164 8.206 8.162 8.536 5.702 5.583 5.613 5.604 5.901 0.277 0.185 0.284 0.150 1.963
1.00 7.875 7.790 7.808 7.798 8.030 5.411 5.305 5.320 5.333 5.575 0.860 0.581 0.782 0.536 2.008
1.50 7.252 7.170 7.163 7.182 7.288 4.923 4.861 4.854 4.892 4.996 1.644 1.539 1.614 1.594 1.877

and Truhlar [47] that KH(r) leads to a wrong asymptotic
behavior of the exchange potential for large distances. Some
modifications have been suggested in Refs. [22,47]. Riley and
Truhlar discussed Eq. (30) for the local electron momentum.
After inserting K(r) = KRT(r) in Eq. (31), the exchange
term is labeled as Riley-Truhlar’s free-electron-gas exchange
approximation (FER).

In this work, we suggest a modification of the local
electron momentum of Riley and Truhlar, Eq. (30), by adding
the momentum-free exchange term V M

ex (r,0) = − e2

4πε0

2
π
KF(r),

leading to

K2
RRR(r) = k2 + 2m

h̄2

[|VHF(r)| + |VP(r)| + ∣∣V M
ex (r,0)

∣∣] .

(34)

For verification of our proposed optical potential, we
consider a numerical solution of the scattering problem
in first order of perturbation, which has been neglecting
polarization effects. The scattering phase shifts have been
calculated within a static-exchange approximation (SEA)
using a nonlocal exchange term; see Refs. [51–53]. For a
consistent comparison, we performed our calculation omitting
the polarization potential (VP = 0) in Eqs. (28), (30), and
(34). In Table II, the results of the phase shift calculations
for different proposed local exchange potentials are shown in
comparison to the numerical results for the nonlocal exchange

term. The latter calculations have been performed by Duxler
et al. [51] for helium, by Thompson [52] for neon and argon,
and by Pindzola and Kelly [53] for argon.

For helium, argon, and neon, we obtain that FEH
underestimates and FER overestimates the effect of exchange.
This is in accordance with Riley and Truhlar’s calculations
for helium and argon; see Ref. [47]. Both expressions, FEH
and FER, are not satisfying for the treatment of the exchange
part. The frequently used SCA, Eqs. (29) and (30), as well as
the present work (denoted as RRR), Eqs. (31) and (34), are
in good agreement with the SEA phase shifts. Note that for
high wave numbers ka0  1, both potentials, SCA and RRR,
have the same asymptotic behavior. For small wave numbers
ka0 � 0.5, the proposed RRR leads to the best results,
with an error of � 0.1 rad. This is relevant for the different
characteristics in the momentum-transfer cross sections. For
instance, the simple structure for helium as well as the shoulder
in neon, see Fig. 2 below, are influenced by the exchange part.

For the determination of the optimal value of the parameter
r0 in the polarization term, Eq. (27), as explained at the end of
the previous subsection, the calculation of the e-a momentum-
transfer cross section, Eq. (21), has been performed for the full
optical potential, Eq. (28), including the polarization term,
Eq. (27), as well as with the polarization potential in the
exchange term, Eq. (31) with (34). As a result, the values
given in Table I above are obtained.
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C. Plasma effects

As a dominant plasma effect on the electron-atom interac-
tion, we now discuss the screening of each term of the optical
potential,

V s
opt(r) = V s

HF(r) + V s
P (r) + V s

ex(r) . (35)

The effect of the plasma on the polarization potential was
already extensively investigated. A screening factor was
suggested by Redmer and Röpke [54]

V s
P (r) = VP(r) e−2κr (1 + κr)2 , (36)

with the screening parameter κ defined in Eq. (16), which will
be used in our calculations.

For the screened Hartree-Fock term, the Coulomb inter-
action in Eq. (26) for the isolated system can be replaced
by a Debye potential. For partially ionized hydrogen plasma,
this was done by Karakhtanov [25]. In Appendix A, we have
derived the following expression:

V s
HF(r) = e2

4πε0

[
− Ze−κr

r
+ I1 + I2 + I3

]
, (37)

I1 = e−κr

κr

∫ r

0
2πr1ρ(r1)eκr1 dr1 , (38)

I2 = −e−κr

κr

∫ ∞

0
2πr1ρ(r1)e−κr1 dr1 , (39)

I3 = eκr

κr

∫ ∞

r

2πr1ρ(r1)e−κr1 dr1 , (40)

where Z is the charge number of the nucleus. The asymptotic
behavior of the screened Hartree-Fock term, Eq. (37), is
derived in Appendix B. Note that at large distances, r → ∞,
it becomes repulsive. For intermediate screening parameters
0 < κa0 < 1, expression

V s
HF(r) = Ze2

4πε0

e−κr

r
C0 [(κa0)2 + O(κ4)] , (41)

C0 = Z−1

6

∫ ∞

0

(
r1

a0

)2

4πr2
1 ρ(r1) dr1 , (42)

can be used. C0 is an element-specific constant; see Table III
in Appendix A for the noble gases. For hydrogen, the exact
value is CH

0 = 1/2.
For the screened exchange term in Eq. (35), we replace

the Hartree-Fock and polarization term in Eq. (34) by their
screened versions, Eq. (36) and Eq. (37), respectively.

In the unscreened case, Eq. (28), the polarization term is
the main contribution to the optical potential at large distances,
regardless of the chosen Hartree-Fock term. For the screened
optical potential, Eq. (35), the Hartree-Fock term is dominant,
and the screened optical potential becomes repulsive, for all
noble gases. Karakhtanov [25] obtained the same asymptotic
behavior for partially ionized hydrogen.

Exemplarily, the screened optical potential, Eq. (35), for the
e-Ar interaction is shown in Fig. 1. Beside the isolated case
(κa0 = 0), the potential is calculated at the plasma conditions
κa0 = 0.05 and 0.1. For a temperature of 20 000 K, this is
related to heavy particle densities nheavy = 1.9 × 1020cm−3

and 1.5 × 1021cm−3, respectively. At large distances, the

0 10 20 30 40
r/a0

0

-1

-2

2 
V

(r
) r

2 /a
02  [H

ar
tre

e]

0.1
0.1 (asymptote)
0.05
0.05 (asymptote)
0 (unscreened) Ar

κa0

FIG. 1. Screened optical potential, Eq. (35), for electron-argon
interaction at zero wave number (k = 0) for different screening
parameters κa0 in comparison to the unscreened optical potential,
Eq. (28). The asymptotes, Eq. (41), are also shown.

screened optical potential can be approximated by the asymp-
totic Hartree-Fock term, Eq. (41). The e-Ar potential becomes
repulsive. At short distances, the plasma surrounding can be
neglected, and screening effects are not relevant. A similar
behavior is obtained for all other noble gases as well.

IV. RESULTS

A. Momentum-transfer cross section

The momentum-transfer cross sections for the electron-
atom interaction of noble gases, Eq. (21), for isolated collisions
are calculated using the phase shifts for the optical potential,
Eq. (28), with Eqs. (26), (27), (31), and (34). The results are
shown in Fig. 2, in comparison to experimental data for He
[39,55–57], Ne [40,57,58], Ar [43,57,59–61], Kr [44,61,62],
and Xe [45,63,64] as well as results from theoretical calcula-
tions [24].

We observe an overall good agreement between our
calculations and the measured data. We find that the simple
behavior in the case of helium as well as the more complex
structure of the momentum-transfer cross section for the other
noble gases is well described by the optical potential given
here. For low and intermediate energies, the shoulder for neon
[40] as well as the Ramsauer minimum obtained for argon
[43], krypton [44], and xenon [45] are reproduced. Deviations
between calculated and measured values at larger values of
the wave number k are found for argon and krypton. These
discrepancies may be resolved by further experimental and
theoretical investigations.

The results by Adibzadeh and Theodosiou [24], see Fig. 2,
are from calculations using a different optical potential. For
each element, exchange and polarization potential are specif-
ically constructed adjusting four parameters. In our approach,
this large number of fitting parameters is not required. Based on
a general form of the exchange potential, the cutoff parameter
r0 for the polarization potential, Eq. (27), is the only parameter
fitted to element specific data; see Table I. The maximum
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FIG. 2. Momentum-transfer cross section for the noble gases: (a) He, (b) Ne, (c) Ar, (d) Kr, and (e) Xe. The calculations are performed
using the optical potential Eq. (28) in the present work (full line), Eqs. (26), (27), (31), and (34), in comparison with the optical potential used
in [24] (crosses). Also shown are experimental data [39,40,43–45,55–64].

near ka0 ≈ 0.8 for the heavier noble gases argon, krypton,
and xenon, as calculated by Adibzadeh and Theodosiou, is
lower than the maximum obtained from our optical potential.
This difference can be explained by the different choice of the
exchange and polarization term.

B. Screening effects on the momentum-transfer cross section

In the following, we discuss the effect of the plasma
environment on the momentum-transfer cross section Qea

T (k)
for the electron-atom interaction of noble gases, Eq. (21),
calculating the phase shifts for the screened optical potential,
Eq. (35), with Eqs. (36) and (37). Figure 3 shows the results for

helium and argon. As also known from the e-i interaction, the
plasma environment affects the transport of slower electrons
more than faster ones.

First we consider argon; see Fig. 3(a). For increasing
screening parameters κa0, see inset, the momentum-transfer
cross section for slow electrons drops rapidly. Reaching
κa0 ≈ 0.025, the Ramsauer minimum is dissolved. This is
a consequence of the decreasing zeroth scattering phase
shift for the screened optical potential in contrast to the
isolated system δscreened

0 (k) < δisolated
0 (k). Up to this screening

parameter, discrepancies of the momentum-transfer cross
section between the isolated system and the plasma are still
negligible for intermediate and high energies (ka0 � 0.2).

063208-7



S. ROSMEJ, H. REINHOLZ, AND G. RÖPKE PHYSICAL REVIEW E 95, 063208 (2017)

0 0.5 1 1.5 2
k a0

0

5

10

15

20

25

30
Q

Tea
[Å

²]

0.2
0.1
0.05
0.03
0 0 0.1 0.20

1

2 0
0.005
0.010
0.015
0.020
0.022

κ a0

Ar

(a)

0 0.5 1 1.5 2
k a0

0
1
2
3
4
5
6
7
8
9

10

Q
Tea

[Å
²] 0.2

0.1
0.05
0.03
0

κ a0

He

(b)

FIG. 3. Screening effects on the momentum-transfer cross section for (a) argon and (b) helium at various screening parameters κ .

For dense plasmas, κa0 > 0.025, the then repulsive
screened optical potential reduces the zeroth scattering phase
shift to δ0(k) < 3π . The Ramsauer minimum stays dissolved,
the momentum-transfer cross section increases. A new mini-
mum, which appears in the momentum-transfer cross section,
is a result of phase shifts for higher l which is not the
Ramsauer effect. The depth of the minimum rises with the
screening parameter κ , and the minimum’s position shifts
to higher energies. Furthermore, the maximum’s position is
also shifted to higher energies and the height itself decreases.
The same principle behavior is also obtained for krypton and
xenon.

Now, we consider helium; see Fig. 3(b). The scattering
phase shifts for the screened optical potential are smaller
than for the isolated system. Because of δscreened

0 < δisolated
0

< π , the momentum-transfer cross section increases for
rising screening parameters κ . A minimum appears in the
momentum-transfer cross section as a consequence of the
first scattering phase shift δ1. Similar to argon, for stronger
screening parameters κ , the minimum’s depth increases
and its position shifts to higher energies. At κa0 ≈ 0.1,
the minimum changes to a saddle point and for further
increasing screening parameters κ an inflection point is
obtained. For neon, we obtain a similar behavior as for
helium.

C. Correlation functions

For partially ionized systems, the composition has to
be known to calculate the influence of the electron-atom
contribution. The composition of the noble gases for a given
temperature T and a mass density ρ was calculated with
COMPTRA04 [12].

As an example again, the ionization degree αion =
ne/nheavy in dependence on the heavy particle density nheavy =
ρNA/M = na + ni, in Fig. 4(a), and on the degeneracy param-
eter �, in Fig. 4(b), is shown at T = 20 000 K. At low densities,
the plasma is fully ionized, na ≈ 0, with singly charged ions,
αion ≈ 1. For intermediate densities, the ionization degree
develops a minimum. For high densities, bound states are
dissolved by the Mott effect, and the plasma becomes fully
ionized na ≈ 0. This behavior of the ionization degree is

characteristic for other temperatures, too. The strength and
the position of the minimum depends on the temperature.
For lower temperatures, the fraction of atoms is higher; see
Ref. [7].

Knowing the composition of the plasma and the different
contributions to the momentum-transfer cross section, the
correlation functions have been calculated using the formulas,
Eqs. (17) and (19), given in Sec. II C. For T = 20 000 K, the
correlation functions d11/d and d33/d are shown in Figs. 5(a)
and 5(b), respectively, where

d = 4

3

√
2πmβ[(nee

2)/(4πε0)]2�N. (43)

The different contributions (e-i, e-a, and e-e) are presented
separately for comparison. As implied in Fig. 4, the atomic
contribution is most relevant at the minimum of the ionization
degree and becomes weaker for higher densities as a conse-
quence of the Mott effect. Despite the small ionization degrees
at intermediate densities, the charged particle contributions to
the correlation functions are dominant, e.g., at � > 1000 for
helium and � > 100 for neon. This fact can be explained by
the weakness of the e-a interaction in contrast to the charged
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Xe
Kr
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FIG. 4. Ionization degree of partially ionized noble gases at T =
20 000 K according to Ref. [12] (a) as a function of nheavy, × indicates
the value of � = 100, + the value � = 10; and (b) as a function of
�, ∗ indicates the value nheavy = 1021 cm−3.
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FIG. 5. Correlation functions (a) d11 and (b) d33 relative to
d , Eq. (43), for the different considered scattering mechanisms
e-i (dashed line), e-e (dash-dotted line), and e-a (full lines) at
T = 20 000 K (two scales).

particle interaction. Note for this that the correlation functions
are given in terms of d, see Eq. (43), which contain the particle
densities. The e-e contribution is explicitly given in d33; see
Sec. II. In the low-density limit, the ratio between e-i and e-e
contributions is dei

33/d
ee
33 → √

2. With increasing density, the
e-e contribution can be neglected because of the Pauli blocking
(see Ref. [4]); only the ionic contribution is important. In
this highly degenerated limit, � � 1, the Ziman formula is
applicable for the calculation of the conductivity. Figures 4 and
5 are analyzed as examples. Similar results are obtained for
partially ionized plasmas at temperatures of T = 104 to 105 K;
see Refs. [7,15]. Above these temperatures, the plasma can be
described by a fully ionized plasma. At lower temperatures,
in the region of condensed matter densities, i.e., 	 > 3, the
formulas in Sec. II should be extended including the ionic and
atomic structure factors.

D. Electrical conductivity for partially ionized noble gases

The electrical conductivity for the noble gases is now
determined using Eq. (6) with the correlation functions
according to Eqs. (12), (13), (17), and (19). The results are
presented in dependence on the heavy particle density nheavy;
see Figs. 6 and 7.

In Fig. 6, the conductivity at a temperature of T =
20 000 K is shown considering several orders of magnitude
for the particle density. A characteristic minimum, which
is also known for hydrogen (see Refs. [7,25]) is observed
for all noble gases at densities where the ionization degree
is the lowest. In Fig. 6(a), the conductivity assuming a
fully ionized plasma (dash-dotted line) as well as a partially
ionized plasma with neglected e-a collisions (dashed line) are
shown for comparison. Because of the reduced number of
charge carriers, the ionization itself already leads to a lower
conductivity. The further strong reduction of the conductivity
is a consequence of e-a collisions. Corresponding to Figs. 4
and 5, the effect is stronger for the lighter elements. As can
be seen, the experimental data are well described by the
PIP using our optical potential. Similarly good agreement
was found by Adams et al. [16], who used the experimental
momentum-transfer cross sections for isolated e-a collisions.
Note that the screening parameters at the experimental con-
ditions are small, κa0 � 0.1. Therefore, the influence of the
plasma environment on the e-a collisions due to screening
is weak. The effect on the conductivity is smaller than
5%.

In Fig. 7, the conductivity of argon and xenon is shown
in dependence on nheavy at three temperatures. For compar-
ison with experimental data, calculations for the particular
experimental conditions are shown as separate points too. The
agreement is within the experimental uncertainty. Calculations
by Kuhlbrodt et al. [15] were performed using COMPTRA04.
Note that for the transport properties, the polarization potential
is implemented for the description of e-a collisions. The results
are up to two orders of magnitude lower than the experimental
data. This supports our finding that the polarization potential
is not sufficient for the description of e-a collisions in

10-2 10-1 100 101 102 103

nheavy [1020cm-3]

103

104

105

σ 
[S

/m
]

FIP     na = 0
PIP   Vea = 0
PIP   Vea = Vopt
experiments

He

Ar

T = 20 000 K

(a)

10-2 10-1 100 101 102 103

nheavy [1020cm-3]

103

104

105

σ 
[S

/m
]

PIP   Vea = Vopt
experiments He

Ne

Ar

Kr
XeT = 20 000 K

(b)

FIG. 6. Conductivity of partially ionized noble gases (PIP) using the optical potential for the e-a interaction (full lines): (a) helium (red)
and argon (green) at 20 000 K in comparison with experimental data (•[65–67]), fully ionized plasma (FIP) model na = 0 (dash-dotted lines)
and neglecting e-a interaction Vea = 0 (dashed lines); and (b) helium (red), neon (orange), argon (green), krypton (blue), and xenon (violet) at
20 000 K in comparison with the experimental data (•[65–67]).
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FIG. 7. Conductivity of partially ionized noble gases (PIP) using the optical potential for the e-a interaction (full lines): (a) argon at
temperatures T = 10 000 K (cyan), 15 000 K (brown), and 20 000 K (black) in comparison with calculations using the polarization potential
[15] (dashed line) and experimental data around these temperatures [67,68] (•, Ref. [67]; �, Ref. [68]; and ♦, calculations at experimental
conditions); and (b) xenon at temperatures T = 10 000 K (cyan), 15 000 K (brown), and 25 000 K (black) in comparison with calculations
using the polarization potential [15] (dashed) and experimental data around these temperatures [67–69] (•, Ref. [67]; �, Ref. [68]; �, Ref. [69];
and ♦, calculations at experimental conditions).

noble gases. Nevertheless, the qualitative behavior of the
conductivity, e.g., the characteristic minimum, is also observed
by Kuhlbrodt et al. [15].

V. CONCLUSION

Within the LRT, general expressions for the transport
properties of partially ionized plasmas are obtained starting
from a quantum-statistical approach. The chemical picture
can be introduced in a systematic way by performing partial
summations of ladder diagrams; see Ref. [70]. Atoms (bound
states) are considered as a new species, and the composition
given by the ionization equilibrium is calculated taking many-
particle effects into account. Semiempirical expressions for
the effective potentials, in particular for the e-a interactions,
can be derived by first-principle approaches.

We have introduced an optical potential to describe the e-a
interaction. A more systematic approach using the Green’s
function method would give an interaction which is nonlocal
and energy dependent. The optical potential used in this work is
motivated by the perturbation theory up to second order, which
combines the Coulomb interaction relevant at short distances
and the polarization potential relevant at large distances. The
exchange contribution is given by an effective local field,
which is determined by the condition that the characteristic
scattering phase shifts of the nonlocal first-order perturbation
theory, the static-exchange approximation, are reproduced.
The many-particle approach using the method of Green’s
functions can be used to find systematic improvements of the
effective interaction model applied in the present work.

We have show that a uniform expression for the optical
potential can be introduced to describe the momentum-transfer
cross section for all noble gases with high precision. Just
one parameter r0 is adjusted, describing the e-a scattering
mechanism. If going beyond the Born approximation, specific
effects, e.g., the Ramsauer-Townsend minimum, appear within
the T -matrix approach.

The optical potential model is extended to describe dense
plasma environment in which screening is relevant. The
effect on the momentum-transfer cross sections has been
discussed. In particular, we have shown that the Ramsauer-
Townsend minimum is modified by plasma effects and might
dissolve, depending on the plasma parameter. Furthermore, the
electrical conductivity is calculated for plasma conditions T =
104 to 105 K and nheavy � 1022 cm−3. The results are in good
agreement with experimental data. We found that screening
effects only have a small influence on the conductivity in the
considered parameter region. The relative changes are smaller
than 5%. This explains why the calculations for the conductiv-
ity using the experimental momentum-transfer cross sections
of isolated atoms [16] are already in reasonable agreement
with the measured data for partially ionized plasmas.

In general, if exploring WDM as well as ultracold gases, the
medium (plasma) effects may become more relevant for the
description of transport properties. For future work, dynamical
screening, the Pauli blocking, the static structure factor and
degeneracy effects on the quantum mechanical T matrix
could be treated within our quantum-statistical approach. At
increasing densities (∼ 1023 cm−3), the Mott effect describes
the dissolution of the bound states. Then, other aspects may be-
come of relevance. Exchange and pseudopotential effects are
consistently described by DFT-MD and PIMC approaches; see
Refs. [71,72]. However, in the region below the Mott density
considered in the present work, DFT calculations are very cum-
bersome and need further improvements to give good results
for partially ionized plasmas. Here, as shown in the present
work, the PIP model describing a multicomponent plasma
with effective interactions allows for an efficient and accurate
treatment of transport properties, such as the dc conductivity.

ACKNOWLEDGMENTS

The authors acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Re-
search Center SFB 652.

063208-10



CONTRIBUTION OF ELECTRON-ATOM COLLISIONS TO . . . PHYSICAL REVIEW E 95, 063208 (2017)

APPENDIX A: SCREENED HARTREE-FOCK POTENTIAL

The Hartree-Fock potential between an electron and an
atom describes the Coulomb interaction between the incoming
electron with the core and the shell electrons given by

VHF(r) = e2

4πε0

[
− Z

r
+

∫
1

|r − r1|ρ(r1) d3r1

]
, (A1)

which is identical to Eq. (26), where the charge number of the
nucleus is expressed as Z = ∫

d3r′ρ(r ′) = ∫ ∞
0 dr ′4πr ′2ρ(r ′)

and ρ(r) is the density of the shell electrons.
For the plasma system, we replace the Coulomb interaction

by a Debye potential

V s
HF(r)= e2

4πε0

[
−Ze−κr

r
+

∫
e−κ|r−r1|

|r − r1| ρ(r1) d3r1

]
. (A2)

The second term in the square brackets can be written as

2π

∫ ∞

0
dr1 r2

1 ρ(r1)
∫ 1

−1
dz

e−κ
√

r2+r2
1 −2rr1z√

r2 + r2
1 − 2rr1z

.

By substituting y =
√

r2 + r2
1 − 2rr1z, we obtain

2π

∫ ∞

0
dr1 r2

1 ρ(r1)
∫ r+r1

|r−r1|
dy

e−κy

rr1
.

By performing the integral over y, we can split the in-
tegral over r1 into three contributions. Finally, we obtain
Eq. (37).

APPENDIX B: ASYMPTOTIC BEHAVIOR FOR THE
SCREENED HARTREE-FOCK POTENTIAL

Expanding the exponential functions in the integrand of I1

and I2 [see Eqs. (38) and (39), respectively], we obtain

I1 = e−κr

κr

∫ r

0
2πr1ρ(r1)

{
1+κr1 + κ2r2

1

2
+ · · ·

}
dr1,

(B1)

I2 = −e−κr

κr

∫ ∞

0
2πr1ρ(r1)

{
1 − κr1 + κ2r2

1

2
− + · · ·

}
dr1,

(B2)

TABLE III. Coefficients Ck in Eq. (B5) for noble gases.

k CHe
k CNe

k CAr
k CKr

k CXe
k

0 0.1974 0.1563 0.2411 0.1830 0.1933
1 0.0324 0.0228 0.0672 0.0568 0.0727
2 0.0050 0.0033 0.0170 0.0165 0.0262
3 0.0007 0.0005 0.0044 0.0044 0.0088
4 0.0001 0.0001 0.0013 0.0011 0.0028

I1 + I2 >
Ze−κr

r
− e−κr

κr

∫ ∞

r

2πr1ρ(r1)

{
1+κr1 + κ2r2

1

}
.

(B3)

For large distances r → ∞, I3 in Eq. (40) is larger
than the last term in Eq. (B3), so that VHF(r) becomes
repulsive.

With I1 = ∫ r

0 dr1... = ∫ ∞
0 dr1... −

∫ ∞
r

dr1..., we find

V s
HF(r) = e2

4πε0

e−κr

r

∫ ∞

0
4πr2

1 ρ(r1)

{
κ2r2

1

3!
+ κ4r4

1

5!
+ · · ·

}
dr1

− e2

4πε0

1

κr

∫ ∞

r

ρ(r1)

r1
sinh[κ(r1− r)] dr1 . (B4)

Since the lower boundary in the second term is r itself and the
shell electron density ρ(r) is zero for distances larger than the
atomic radius, the leading term, for r → ∞, is of the order
O(e−r/a0 ) or weaker; see Ref. [33]. The first term in Eq. (B4)
is in the order of O(e−κr/r). In the limit of κ < 1/a0, the
second term can therefore be neglected. The first term can be
expanded in terms of (κa0)2:

lim
r→∞ V s

HF(r) = Ze2

4πε0

e−κr

r

∞∑
k=0

(κa0)2k+2Ck ,

Ck = Z−1

(2k + 3)!

∫ ∞

0

(
r1

a0

)2k+2

4πr2
1 ρ(r1) dr1. (B5)

The coefficients Ck depend on the element specific density of
shell electrons. The numerical values for the coefficients of
the noble gases are listed in Table III. The sum in Eq. (B5)
converges very fast. Therefore, only the first contribution needs
to be taken into account, which leads to Eq. (41).
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