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Plasma anisotropy around a dust particle placed in an external electric field
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A self-consistent model of plasma polarization around an isolated micron-sized dust particle under the action
of an external electric field is presented. It is shown that the quasineutral condition is fulfilled and the formed
volume charge totally screens the dust particle. The ion focusing and wake formation behind the dust particle are
demonstrated for different ion mean free paths and the external electric fields. It is obtained that at low values of
the external electric field the trapped ions play the main role in the screening of the dust particle charge. For high
external electric fields, the density of trapped ions decreases and the dust particle is screened mainly by the free
ions.
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I. INTRODUCTION

Dusty plasma is an ionized gas that contains solid dust
particles [1–4]. In gas discharge plasma, the dust particles are
normally highly charged by electron and ion fluxes on their
surface. The negatively charged dust particles usually form a
cloud of particles confined by the external electric field. They
strongly interact with each other and can form an ordered
structure of particles, such as chains or crystals (hexagonal
monolayers) [5–7]. Usually, to describe the phenomenon of
dust particle interaction it is assumed that a single isolated
particle interacts with other particles via screened Coulomb
potential, i.e., Debye-Hückel potential. It is shown that the
Debye-Hückel potential is a good approximation for a screened
charge potential and makes it possible to describe many exper-
imental results [8–11]. Such isotropic potential distribution is
useful for qualitative analytical and numerical investigations of
the collective structural and dynamical processes in a complex
plasma and self-organization of dust particles in screened
systems with strong interaction between the particles [12–17].

In most cases typical of gas discharge plasma, dust particles
are located in a plasma flow driven by an external electric field
(strong electric fields in the electrode layer of rf discharge or
in striations of dc discharge). In the presence of the plasma
flow around a dust particle, nontrivial effects arise. One of
the most common and significant phenomena is the ion flux
focusing behind the dust particle [18–28]. In this case, the
spatial distribution of the electric potential around the dust
particle becomes anisotropic. Behind the dust particle a so-
called wake effect [18–36] appears, i.e., an oscillated electric
potential arises downstream of the ion flow.

The plasma flow produced by the action of the external
electric field breaks the spherical symmetry of the plasma
parameters around the dust particle and makes the problem
difficult for analytical consideration. The most common
methods for investigating this effect are a linear response (LR)
method [21,32,37–39] and a “particle-in-cell” (PIC) method
[19,22,24–28,33–35,40–42], which permit one to take into
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account the multicomponent and multiparametric nature of
the problem.

In a lot of presented numerical models, a dust particle
is presented as a pointlike or a finite-sized particle with a
fixed charge. In such models, the electron and ion absorbtion
by the dust particle are usually neglected, and the charge
of the particle does not correspond to its floating potential.
This means that the processes of dust particles charging in
a plasma flow is not taken into account and the condition
of quasineutrality in the plasma around dust particles is not
satisfied. As a consequence, spatial distributions of ion density
and plasma potential cannot be properly considered.

In the paper, a micron-sized dust particle is considered for
typical laboratory dusty plasma conditions. In order to describe
the effect of plasma polarization around the dust particle under
the action of an external electric field, a self-consistent model
is developed. In the model, the process of dust particle charging
and the formation of ion density and electric potential spatial
distributions around the dust particle are considered. The
description of the model is presented in Sec. II. The results of
the calculations are presented in Sec. III. Finally, a conclusion
is presented in Sec. IV.

II. MODEL

A system of an isolated highly charged dust particle and
surrounding plasma of electrons and ions under the action
of an external electric field is considered. The clouds of
electrons and ions of this system screen the dust particle
charge. Ion trajectories are calculated by the Newtonian
motion equations in the Cartesian coordinate system. They are
simulated inside a three-dimensional (3D) cubical region with
dimensions equal to 2L in each direction, where L = 20λi ,
λi = [(kTi)/(4πe2ni)]1/2 is the ion Debye length, and ni and
Ti are the ion density and temperature of the unperturbed
plasma, correspondingly. In the center of the system the
absorbing sphere of radius r0 � λi is placed, which models
the negatively charged dust particle. The electric field (Ez) is
directed along the z axis.

At the very beginning of the calculations, an ion is generated
with random position inside the solution region. A random
initial velocity is assigned to this ion corresponding to a
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Maxwell velocity distribution with the ion mean temperature,
Ti = 300 K. Monte Carlo simulations are used to determine the
initial coordinates of each ion, its initial velocity distribution,
and its free path, l . At every time step, a new position of the ion
is determined with the help of Newtonian motion equations,
and the following conditions are checked: if the ion leaves
the solution region (|x|,|y|,|z| > L), if the ion falls on the
particle surface (r � r0), and if the ion passes its free path. The
realization of the last condition means that a resonant charge
exchange process between the ion and a neutral atom (argon)
takes place. For each particular ion its free path l is generated
according to the exponential distribution, which depends on
the ion mean free path l̄i . The ion mean free path l̄i is
determined by the effective cross section of the resonant charge
exchange processes, σres. Our model implies σres to be constant:
σres = 55.3 × 10−16cm2 (it practically does not depend on the
velocity of ion-neutral atom collisions [43,44]). The processes
of nonresonant elastic collision of the ion with a neutral atom
and ion-ion collisions are neglected due to small values of
their frequencies. After each charge exchange collision, a
new random velocity of the ion is generated according to the
Maxwell velocity distribution, while the position of the ion
remains the same. When the ion reaches the solution region
edge, it is injected in the opposite side of the region at the same
velocity as before leaving the solution region. When the ion
falls on the dust particle, a new ion is generated with random
coordinates and random velocities.

The 3D trajectory of the ion movement, i.e., the components
of the ion’s position and its velocity, and the components of
forces acting on the ion are calculated in Cartesian coordinates.
However, spherical coordinates (r , θ , ϕ) are introduced to
calculate the ion density spatial distribution ni(r,θ,ϕ). The
angle θ = 0 corresponds to the direction of the external electric
field

−→
E = (0,0,Ez), and z = r cos θ . Due to cylindrical

symmetry of the problem, there are no dependencies of plasma
parameters on the angular coordinate ϕ. The solution region is
divided into spatial cells indexed by (i,j ), with volume equal to
Vi,j = 2πr2

i �ri sin θj�θj (i = 1,2, . . . ,60; j = 1,2, . . . ,31).
The time Ti,j that ions spend in each particular cell (i,j )
is accumulated, and normalized to the cell volume. It is
assumed that the density of ions, ni(ri,θj ), is proportional
to this normalized time. The coefficient of proportionality is
determined by the nonperturbed ion density n∞ far from the
dust particle, i.e., at the boundary of the solution region, r = L.
The mean velocity of the ions in each spatial cell can be found
in the same way.

The spatial distribution of electron density is as-
sumed to obey the Boltzmann distribution, ne(r,θ ) ∼
n∞ exp(U (r,θ )/kTe), where U (r,θ ) is the spatial distribution
of the electric potential and Te is the electron temperature.
Ions move near the dust particle under the action of forces
induced by potentials of the dust particle charge −eZd , the
volume charge of ions and electrons, e(ni(r,θ ) − ne(r,θ )), and
the external electric field Ez.

For calculations, the following dimensionless parameters
are used. All spatial dimensions are normalized to the ion
Debye length λi . The densities of electrons and ions are
measured in units of nondisturbed plasma density far from
the dust particle, n∞. Energy quantities are normalized to the
ion thermal energy kTi . Velocities and times are normalized to

the ion thermal velocity VT = √
kTi/M and T = λi

√
M/kTi ,

where M is the ion mass. Thus, the dimensionless particle
charge Q̃ and the external electric field strength Ẽ are the
following:

Q̃ = Zde
2

λikTi

, Ẽ = eλiEz

kTi

. (1)

Along with Q̃, the following dimensionless representation of
particle charge is often used:

z̃ = Q̃
Tiλi

Ter0
= Zde

2

kTer0
. (2)

The effective electric field or a dimensionless form of a reduced
electric field is also introduced:

Eeff = (el̄iEz)/(kTi) ∼ Ez/ngas ∼ Ez/p, (3)

where p is the gas pressure.
To start the calculation, the initial distribution of an electric

potential is used as a sum of the potential induced by the
external electric field and the Debye-Hückel potential:

U 0(r,θ ) = −(Q̃/r) exp (−r). (4)

In a weak external electric field, the spatial distributions of
electron density ne(r,θ ) and ion density ni(r,θ ) and the self-
consistent electric potential U (r,θ ) have a weak anisotropy
due to the action of the external electric field Ez. These
distributions can be found with the help of expansions of
these distributions in Legendre polynomials (harmonics). The
dimensionless density of volume charge spatial distribution,
n(r,θ ) = [ni(r,θ ) − ne(r,θ )]/n∞, can be presented in the
following form:

n(r,θ ) =
∑
k=0

nk(r)Pk(cos θ ), (5)

nk(r) = (2k + 1)

2

∫ π

0
n(r,θ )Pk(cos θ ) sin θ dθ. (6)

For the case of a weak external electric field, i.e., for Ẽ < 0.1,
only the first three terms are enough to describe the spatial
distribution n(r,θ ). For high values of the electric field Ẽ > 1
it is necessary to take into account up to eight or even more
expansion terms. The terms n0,1,2(r) are the isotropic, dipole,
and quadruple harmonics of volume charge density. After
calculating nk , the electric potential spatial distribution can
be found in the form of the following expansion:

U (r,θ ) = −Q̃

r
+

∑
k=0

Uk(r)Pk(cos θ )

= −Q̃

r
+

∑
k

1

2k + 1
Pk(cos θ )

×
[

1

rk+1

∫ r

r0

xk+2 dxnk(x) + rk

∫ ∞

r

dx
nk(x)

xk−1

]
.

(7)

The ion trajectories under the action of the self-consistent
electric potential are calculated with the help of dimensionless
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FIG. 1. Electric potential U (ρ = 0,z) − Ẽz in the presence of an
external electric field.

Newtonian equations:

d2rα

dt2
= −∂(U (r,θ ) − Ẽr cos θ )

∂rα

, (8)

where α = x,y,z. These equations are solved by the fourth-
order Runge-Kutta method.

The model permits one to divide ion density into two
groups: the densities of trapped and free ions. The total energy
of each particular ion can be found by the formula

Etot = εk + U (r,θ ) − Ez, (9)

where εk is the ion kinetic energy.
In the absence of an external electric field, the trapped

ions have negative total energy, Etot < 0, and free ions have
positive total energy, Etot > 0. If the potential of the external
electric field −Ẽz is added to the potential of the dust particle
and surrounding plasma, U (r,θ ), a local maximum of the
potential, Umax(rmax,θmax), located at a distance rmax from the
dust particle, appears downstream of the dust particle (see
Fig. 1). The ions for which the total energy Etot is lower than
Umax and the position r is less than rmax are trapped ions and
the rest are free.

The isotropic term n0(r) determines the total volume charge
of plasma around the dust particle Qpl:

Qpl = 1

2

∫ ∞

0

∫ π

0
n(r,θ )r2 sin θ dθ dr =

∫ ∞

0
n0(r)r2 dr.

(10)

The total volume charge Qpl obtained by Eq. (10) becomes
equal to the charge Q̃ of the dust particle, which is calculated
self-consistently equating the electron and ion fluxes on the
dust particle surface. This equality proves that the model is
self-consistent.

Under the action of the external electric field, the positively
charged ion cloud shifts relative to the negatively charged dust
particle, and the appearance of a dipole moment of this system

is expected:

P̃ = eP

kTiλ
2
i

= 1

2

∫ ∞

0

∫ π

0
n(r,θ )r3 cos θ sin θ dθ dr

= 1

3

∫ ∞

0
n1(r)r3 dr, (11)

where P̃ is a dimensionless dipole moment.
To obtain the self-consistent electric potential distribution

of the dust particle–ion cloud system, the following calculation
algorithm is adopted. First of all, the ion trajectories under the
action of forces are calculated with the help of Newtonian
equations (8) for the electric potential taken in form (4). When
sufficient statistical data for ion spatial distribution ni(r,θ )
are obtained, the expansion terms nk are calculated with the
help of Eq. (6). Then, a new spatial distribution U (r,θ ) is
calculated [Eq. (7)]. The calculation procedure is repeated and
new statistical data for ion density spatial distribution in this
new potential distribution are found. At each iterative step, the
charge of the dust particle, Q̃, is found equating the electron
and the ion fluxes on the particle surface, which is equal to the
volume charge of plasma, Qpl [Eq. (10)]. The iterative process
continues until the spatial distributions of the electric potential
U (r,θ ) and the ion density ni(r,θ ) as well as the dust particle
charge Q̃ stop changing. The time between the iterations is
determined by the accumulated statistics. It should be stressed
that the final distributions do not depend on the choice of the
initial potential distribution.

In this paper precise calculations in the vicinity of a
relatively small dust particle were performed in the region
of several decades of ion Debye lengths λi . Ions and electrons
move around the dust particle in opposite directions with
corresponding drift velocities in the external electric field. The
speed of neutral atoms is isotropic, in contrast to numerous
studies [25,35,42] where the charged dust particle moves in
plasma relative to static ions, electrons, and neutral atoms.
In the case when the dust particle moves in plasma, when
the processes of a resonant charge exchange collision of an
ion and a neutral atom is simulated, a new ion has a velocity
corresponding to a shifted Maxwell distribution; i.e., it has the
velocity of the neutral atom before its collision with the ion.
In this model, the drift velocity of neutrals relative to the dust
particle is equal to zero, and the recharged ion has the isotropic
velocity distribution.

It should be noted that the model does not take into
consideration the interaction between all ions and electrons
in the system, but it studies the approximation of an average
field. The self-consistent spatial distribution of the electric
potential [Eq. (7)] is calculated by taking into account the
spatial distribution of the volume charge [Eq. (5)] not at every
ion time step. It is recalculated after statistical data on ion
density are accumulated in the course of 1 × 106–1 × 108

ion free paths. It makes it possible to considerably speed up
the calculation of the potential. Moreover, the simulation can
be carried out at different computer stations simultaneously,
synchronizing calculations from time to time by introducing a
new iteration for the distribution of the electric potential.
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FIG. 2. Dimensionless dust particle charge in the absence of an
external electric field for different ion mean free paths l̄i and dust
particle radii r0. Experimental results are presented in Ref. [25] for
the particle with radius 0.6 μm.

III. RESULTS

In the paper, typical conditions for argon gas discharge
plasma with an isolated dust particle are considered. It is
assumed that the electron temperature is equal to kTe = 3 eV,
and ions are at room temperature kTi ≈ 0.03 eV, parameter
τ = Te/Ti = 100, Tg = Ti . The ion Debye screening length
is equal to λi = 1 × 10−2 cm which corresponds to plasma
density of about n∞ ≈ 1 × 108 cm−3. The dust particle radius
is equal to r0 = 1 × 10−4 cm = 1 × 10−2λi .

The dimensionless dust particle charge z̃ was calculated
self-consistently depending on the ion mean free path l̄i in
argon in the absence of an external electric field (see Fig. 2).
In the limit l̄i → ∞, the dimensionless charge of the dust
particle z̃ tends to be a constant with value 2.4 that coincides
with the value obtained with the help of the orbital motion
limited (OML) model [45]. The presence of the minimum in
the dependence z̃(l̄i/λi) can be described in terms of ion flux
to the dust particle from the plasma. In the OML model (a
free molecular regime), collisionless ions rarely fall on the
micron-sized dust particle. With the increase of gas density
(decrease of ion mean free path), ions collide more frequently
with neutral atoms around the dust particle. After a resonant
charge exchange collision, a positively charged ion loses its
kinetic energy and it is easily attracted by the negatively
charged dust particle. Thus, the total ion flux towards the dust
particle increases with the increase of ion collision frequency.
However, with a further decrease of the ion mean free path,
the falling ions take part in many collisions before they fall
on the dust particle. The ions lose their kinetic energy several
times, which leads to the increase of the average falling time
and to the decrease of the total ion flux to the particle. Thus,
the minimum in charge dependence z̃(l̄i/λi) appears.

It should be mentioned that in many papers [25–28,46] dust
particle charge was calculated by another collisional model
for the case of the absence of the external electric field. It was

FIG. 3. Bulk charge density n(ρ = 0,z) for electrons and different
kinds of ions for Eeff = 0 and l̄i/λi = 5. Solid lines show the results
obtained in previous work [47].

assumed that the ion-neutral atom collision frequency is
independent of their relative velocity. In our opinion, the
model with a constant collision cross section is more suitable
for describing the resonant charge exchange collisions
of ions in parent noble gases. However, both models are
approximations and show qualitatively the same charge
dependencies on gas pressure.

The two-dimensional spatial distributions of the dimension-
less volume charge density n(ρ,z) = [ni(ρ,z) − ne(ρ,z)]/n∞
are obtained for different values of the external electric field
and ion mean free path. In Fig. 3, the radial distributions of the
density of free and trapped ions and electrons are presented for
the external electric field Eeff = 0 and mean free path l̄i = 5λi .
The form and the value of the peak are in good agreement
with the data obtained earlier by applying non-self-consistent
models in Refs. [47–49].

In the presence of the external electric field Eeff > 0, the
spherical symmetry of plasma parameters around the dust
particle is broken; however, cylindrical symmetry is fulfilled.
All distributions of the plasma parameters stretch along the
external electric field and can be presented in cylindrical
coordinates ρ and z. At the beginning of the calculations,
we accumulate some statistical data on the volume charge
spatial distribution for spherically symmetric electric potential
[Eq. (4)] in the presence of the electric field. The obtained
distribution of the volume charge density n(r,θ ) around the
dust particle can be analyzed with the help of expansion
into Legendre polynomials [Eqs. (5) and (6)]. The terms of
expansion, nk(r), or harmonics, were calculated for different
values of the external electric field strength Eeff and for
different ion mean free paths l̄i . All terms nk(r) depend only
on the distance from the dust particle, r , and the dependence
of plasma density on the angle θ is determined by Eq. (5).
In Figs. 4(a) and 4(b), the first two terms n0(r) and n1(r)
multiplied by the factors r2 and r3, correspondingly, are
presented. These two harmonics play a specific role for plasma
distribution around a dust particle in an external electric field.
The integral of the zeroth harmonic,

∫ ∞
r0

n0(r)r2dr , determines
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(a)

(b)

FIG. 4. Functions (a) n0(r)r2 and (b) n1(r)r3 for l̄i/λi = 5
and different values of Eeff. The solid line indicates the Debye
approximation function.

the volume charge Qpl of plasma around the dust particle
according to Eq. (10). The integral of the first harmonic,∫ ∞
r1

n1(r)r3dr , determines the dipole moment of the dust
particle–ion cloud system according to Eq. (11).

It is seen that for small values of the electric field, the
function n0(r)r2 has one hump in the vicinity of the dust
particle, r1 max � (0.3 − 0.5)λi . This maximum means that
the distribution of trapped ions around the dust particle has
a shell structure like in a “quasiatom” with a negative core
[47]. The dependencies calculated in Ref. [47], Ntr(r)r2, have
approximately the same radial distributions as n0(r)r2, where
Ntr(r) is the radial distribution of the trapped ion density.
It is concluded that the majority of the trapped ions are
concentrated in the layer or shell around rm ∼ (0.3–0.5)λi .
It can be shown that the ions taking part in resonant charge
exchange collisions at distances smaller than approximately
2.5λi acquire negative total energy and can be attributed to
trapped ions. However, at very high values of the electric field,
the second hump in the radial distribution of n0(r)r2 appears

(a)

(b)

FIG. 5. Functions nk(r)r2 for l̄i/λi = 5: (a) Eeff = 0.75 and (b)
Eeff = 3.0.

at larger distances, r2 max � (2.0–4.0)λi . Such a “camel-like”
structure of distribution n0(r)r2 can be approximated by the
superposition of two Debye functions with different screening
length: λ1 � λi and λ2 > λi [see Fig. 4(a)].

In Fig. 4(b), radial distributions n1(r)r3 are presented. For
zero electric field strength all anisotropic terms nk>0(r) of
the expansion into the Legendre polynomials are equal to
zero. At small values of the electric field, the anisotropic
harmonic n1(r) appears and increases linearly with the increase
of electric field strength. It is seen that with a further increase
of the electric field (Ẽ > 0.5), an oscillatory structure in
n1(r) appears in the region r > λi , which is a precursor
for a wake formation behind the dust particle. However,
in this remote region, the values of n1(r) become very
small [n1(r) < 10−4n∞]. For the region r > 10λi the function
n1(r)r3 is fully masked by noise, and there is no opportunity
to calculate any integral with reliable precision. The radial
position of maxima in n1(r) dependencies shifts to higher
distances from the dust particle with the increase of the electric
field. For small values of the electric field, the maximum
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(a)

(b)

FIG. 6. Function n0(r)r2 for l̄i/λi = 5: (a) Eeff = 0.0 and (b)
Eeff = 6.0 for different sorts of ions.

values of n1(r)r3 have a linear dependence on the electric field
strength.

In Figs. 5(a) and 5(b), radial distributions nk(r)r2 are
presented for the external electric fields Eeff = 0.75 and
Eeff = 3.0, correspondingly. It is shown that the external field
leads to the appearance of harmonics with number k > 0. The
greater the electric field, the greater the number of harmonics,
which take part in the formation of a self-consistent electric
potential. In Fig. 5(a) (Eeff = 0.75) it is seen that harmonics
with number k > 3 may be omitted. In Fig. 5(b) (Eeff = 3.0)
it is shown that all harmonics with k � 1 are higher and
harmonics up to fifth must be considered.

A dust particle surrounded by a cloud of trapped ions forms
a “quasiatom.” Without the external electric field, trapped
ions play the main role in the screening. This can be seen
in Fig. 6(a). They also provide most of the volume charge.
In the presence of the external field, trapped ion density
decreases, which can be interpreted as quasiatom ionization
[see Fig. 5(b)]. However, with the increase of the electric field,

FIG. 7. Dependence of dimensionless charges zpl and z̃ from
dimensionless electric field Ẽ for l̄i/λi = 5 and different particle
radii.

the dust particle charge and the volume charge of surrounding
plasma increase and free ions begin to play the main role in
the screening of the dust particle.

It should be noted that the dust particle charge z̃(Ẽ) and the
volume charge zpl(Ẽ) are equal to each other for any values
of the electric field strength and ion mean free path (Fig. 7).
This means that the formed volume charge totally screens the
dust particle charge placed in the plasma. Both functions have
linear dependence on the external electric field strength. In the
absence of the electric field, Ẽ = 0, the dust particle charge
has the value z̃(Ẽ = 0) ≈ 1.03 (see Fig. 2).

Finally, we obtain a self-consistent electric potential distri-
bution U (ρ,z), which is presented in Figs. 8(a) and 8(b) for
different values of the electric field strength Eeff and particle
radius (r0 = 1 and 2μm). In the absence of the external electric
field, Eeff = 0, the electric potential and the bulk charge
are spherically symmetric, and the left and right branches
of U (ρ = 0,z) [see Figs. 8(a) and 8(b)] and the density of
volume charge n(ρ = 0,z) are symmetric. In the presence
of the external electric field, Eeff > 0, ion trajectories skew
along the action of the electric field, i.e., to the right side of
axis z. The spatial asymmetry of the bulk charge n(ρ,z) leads
to the asymmetry of the electric potential spatial distribution
U (ρ,z), which is calculated with the help of Eq. (7). The
results show that for high values of the external electric field,
the positive peaks of the electric potential appear downstream
of the dust particle, z > 0 and ρ = 0. For the ion mean free path
l̄i = 5λi and external electric field Eeff = 6.0, the maximum in
the electric potential spatial distribution is located around the
point z � 4, ρ = 0. This positive peak of the potential is the
beginning of the wake and it is formed exclusively by free ions.

The maximum value of this peak Umax(z,θ = 0) initially
increases linearly with the increase of the electric field, and
then turns into the regime of saturation (Fig. 9). At the same
time, the upstream part of the potential curve becomes wider.
For a larger radius of the dust particle (and larger charge), the
maximum of the potential peak increases with almost the same
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(a)

(b)

FIG. 8. Electric potentials U (ρ = 0,z) for (a) r0 = 1μ and (b)
r0 = 2μ, l̄i/λi = 5, and different values of Eeff.

rate but with larger saturation limit. For small values of the
external electric field (Ẽ < 0.6), this peak is not proportional
to the charge of the dust particle. Only for large values of the
external electric field (Ẽ > 1) can one say that the magnitudes
of the potential peaks are approximately proportional to the
radius of the dust particle. The results show that the calculated
self-consistent spatial potential distribution (i.e., magnitude,
shape, and behavior of the wake) depends on the dust particle
radius (or charge).

These positive peaks in the electric potential spatial dis-
tributions U (ρ,z) play the role of electric potential wells for
negatively charged particles. For example, if we place another
negatively charged dust particle in the downstream region, it
will be trapped in this positive potential well. The presence of
this potential peak is responsible for the dust particle attraction
and alignment into the chains.

The results presented in this paper are in qualitative
agreement with the potentials obtained with the help of PIC
and LR methods [35]. However, in this paper, the potential
peaks have much smaller amplitudes than the ones obtained

FIG. 9. Dependence of positive peak maximum Umax(z,θ = 0) of
Ẽ for different r0.

in Ref. [35] because we considered dust particles with much
smaller radii and charges.

IV. CONCLUSION

An alternative method of calculating plasma parameters
around an isolated dust particle placed in an external electric
field is developed. Ion trajectories are simulated by the New-
tonian equations of ion motion taking into account the
external electric field, the electric fields of the dust particle
charge, and the volume charge of surrounding plasma. Ion-
neutral collisions are simulated by the Monte Carlo method.
A self-consistent electric potential is calculated iteratively
with the help of Legendre polynomial expansions of the
volume charge distribution. One peculiarity of the model is
that the quasineutral condition is self-consistently fulfilled; i.e.,
the volume charge of the surrounding plasma totally screens
the dust particle charge.

In the absence of the external electric field, the calculated
dust particle charge and the ion density distribution around
the dust particle show a good agreement with the previously
developed models. The calculations of the plasma parameters
around the dust particle are performed for different values of
the external electric field and the particle radius. The model
permits us to divide the ions into two groups, i.e., the trapped
ions and the free ions. Without the external electric field,
trapped ions play the main role in the screening and provide
most of the volume charge. In the presence of the external elec-
tric field, trapped ions density decreases and the “quasiatom”
is affected by the field ionization. For large electric fields, dust
particles are screened mainly by free ions.

It was shown how the wake in the electric potential
distribution begins to form downstream of the dust particle.
This wake is mainly formed by the free ions. The value
of the first maximum of the wake grows with the increase
of the external field and has a saturation limit. The larger
the dust particle radius, the higher its charge and the higher
the saturation limit. The negatively charged particles will
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be attracted by this potential well. Since this phenomenon
is responsible for the dust particle alignment it must be
thoroughly investigated for diverse plasma parameters.
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