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Degeneracy and relativistic microreversibility relations for collisional-radiative equilibrium models
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We present the relativistic expressions of standard nonrelativistic microreversibility relations that can be used in
collisional-radiative equilibrium models to calculate the transition rates including the free electron degeneracy for
collisional excitation and deexcitation, collisional ionization and three-body recombination, dielectronic capture
and autoionization, photoexcitation and photodeexcitation, and radiative recombination and photoionization.
Semiempirical expressions or more refined calculations can be used for the cross sections of interest as long as
they are calculated by taking into account either nonrelativistic, relativistic, or ultrarelativistic effects for both the
bound and free electrons. The bound and the free electrons should be treated on the same footing. This is crucial
for the internal consistency of the approach valid at arbitrary degeneracy and relativistic degrees.
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I. INTRODUCTION

The description of nonlocal thermodynamic-equilibrium
(NLTE) plasmas has become an important and active field
of research, especially due to the kind of plasmas encountered
on Earth in x-ray lasers, ultrashort-pulse (USP) lasers, the
National Ignition Facility (NIF) or the Laser Mégajoule
(LMJ), Z-pinch machines, the International Thermonuclear
Experimental Reactor (ITER), or x-ray free electron (XFEL)
lasers. NLTE plasmas can also be of interest in astrophysics,
i.e., in the corona of a star, the intergalactic medium, or the
accretion disk near a supermassive black hole in a luminous
quasar. The characterization of these plasmas is not an easy
task, especially if they belong to the warm and hot dense
matter for which the lifetime can be short. We speak of highly
transient states of matter. Indeed, the widespread approach to
describe these plasmas consists in using a collisional-radiative
equilibrium (CRE) model [1–9].

The atomic data we need to run a CRE code are usually
nonrelativistic but not always [10,11]. Recently, Sampson
et al. [12] proposed a detailed review of their fully relativistic
approach to calculate atomic data for highly charged ions.
Unfortunately, they focused on atomic structure calculations
and cross sections of some specific processes needed in
CRE models. Moreover, they averaged over nonrelativistic or
relativistic nondegenerate free-electron distribution functions
to get the transition rates from the cross sections, making their
approach questionable from a relativistic point of view. In LTE
plasma, it has been shown [13] that it is crucial to describe
in the same way bound and free electrons, i.e., either in a
nonrelativistic or relativistic way but not treating the bound
electrons in one way and the free electrons in another way.
Finally, Sampson et al. [12] did not consider degenerate free
electrons.

In the present work, we extend to the relativistic regime the
calculation of the nonrelativistic rates up to the ultrarelativistic
regime by treating explicitly the degeneracy of the free
electrons. Using the detailed balance when LTE is applied, we
find the relativistic version of the microreversibility relations
such as the Klein-Rosseland formula for collisional excitation
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and deexcitation, the Fowler formula for collisional ionization
and three-body recombination, and the Einstein-Milne formula
for radiative electron capture and photoionization. We show
how the dielectronic capture cross section is related to the
autoionization rate. By relativity, we mean the special theory
of relativity. The paper is organized as follows. First, we show
how to obtain the relativistic extension of the microreversibility
relations. We check that we recover the nonrelativistic and
ultrarelativistic limits. We summarize the main results in two
tables. The last part is the conclusion.

II. METHOD

The starting point is the calculation of Ne which is given
by the formula

Ne = 2
∫

d3p
(2πh̄)3

1

1 + eβeε−η
, (1)

where h̄ is the reduced Planck constant and η = βeμ the
reduced chemical potential. μ is the chemical potential and
βe = 1/kBTe where kB is the Boltzmann constant and Te the
electron temperature. The relation between the kinetic energy
ε and the momentum p is more complicated in the relativistic
regime than in the nonrelativistic and ultrarelativistic regimes.
Taking the electron rest-mass energy mec

2 as the reference of
energies, i.e., for ε and μ, one has

ε =
√

p2c2 + m2
ec

4 − mec
2. (2)

c is the speed of light and me the electron mass. With this
convention, the chemical potential μ does not contain the
electron rest-mass energy and ε = 0 when p = 0. In the
nonrelativistic regime ε ≈ p2/2me and in the ultra-relativistic
regime ε ≈ pc. The question is to see what happens in the
intermediate regime and to study the transition between the
nonrelativistic and the ultrarelativistic regimes. To do so,
one puts mec

2 on the left-hand side of Eq. (2), takes the square
of the two members of this equation, and differentiates. One
finds that

pdpc2 = (ε + mec
2)dε. (3)
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Developing the square of the left-hand side of Eq. (2), one
finds that

pc = √
ε
√

ε + 2mec2. (4)

We are now ready to calculate Ne. We find that

Ne =
√

2m
3/2
e

π2h̄3

∫ +∞

0
dε λ(ε)

1

1 + eβeε−η
, (5)

where

λ(ε) = √
ε

√
1 + ε

2mec2

(
1 + ε

mec2

)
. (6)

Equation (5) is the relativistic expression of the electronic
density Ne from which the rates of interest can be calculated.
It is interesting to find the nonrelativistic and ultrarelativistic
expressions of λ(ε). When ε � mec

2, we are in the nonrela-
tivistic regime and

λ(ε) ≈ √
ε, (7)

whereas when ε � mec
2, we are in the ultrarelativistic regime

and

λ(ε) ≈ ε2

√
2(mec2)3/2

. (8)

As an illustration, we plot in Fig. 1 λ(ε) as a function of ε. We
clearly see at low energy the nonrelativistic behavior (7) and at
high energy the ultrarelativistic behavior (8). There is a small
range around mec

2 ≈ 0.511 MeV that interpolates between
these two limits. Indeed, the two asymptotic curves intersect
at ε = 3

√
2mec

2.
In the nonrelativistic regime, we have the well-known

expression

Ne =
√

2(mekBTe)3/2

π2h̄3 I1/2(η), (9)

where I1/2(η) is the Fermi-Dirac integral of order 1/2. By
definition, the Fermi-Dirac integral [14,15] of order k is

Ik(η) =
∫ +∞

0
dx

xk

1 + ex−η
. (10)

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

ε (MeV)

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

λ(
ε)

 (M
eV

1/
2 )

Relativistic
Nonrelativistic
Ultrarelativistic

FIG. 1. λ(ε) as a function of ε.

In the relativistic regime, we have

Ne =
√

2m3
ec

3θ3/2

π2h̄3 [F1/2(η,θ ) + θF3/2(η,θ )], (11)

where

Fk(η,θ ) =
∫ +∞

0
dx

xk

√
1 + θx

2

1 + ex−η
(12)

and

θ = kBTe

mec2
. (13)

Obviously, Fk(η,0) = Ik(η) and

Fk(η,θ ) ≈ θ1/2

√
2

Ik+1/2(η) (14)

when θ → +∞. In the ultrarelativistic regime, we find that

Ne = (kBTe)3

π2h̄3c3
I2(η), (15)

where I2(η) is the Fermi-Dirac integral of order 2. It can be
useful to have also the nondegenerate expressions of Eqs. (9),
(11), and (15). In the nonrelativistic regime, we have the well-
known expression

Ne ≈ 2eη

(
mekBTe

2πh̄2

)3/2

, (16)

in the relativistic regime

Ne ≈ eη m3
ec

3

π2h̄3 θe1/θK2(1/θ ), (17)

where K2 is the modified Bessel function of the second kind
[16,17], and in the ultrarelativistic regime

Ne ≈ 2eη (kBTe)3

π2h̄3c3
. (18)

Associated to Eqs. (16), (17), and (18), we have the well-
known Maxwell-Boltzmann distribution function

Fnr
ndg(ε) = 2β

3/2
e√
π

√
εe−βeε (19)

in the nonrelativistic regime, the Jüttner distribution function
[18]

F rel
ndg(ε) =

√
2

mec2

e−1/θ

θK2(1/θ )

√
ε

mec2

×
√

1 + ε

2mec2

(
1 + ε

mec2

)
e−βeε, (20)

in the relativistic regime, and

F ur
ndg(ε) = β3

e

2
ε2e−βeε (21)

in the ultrarelativistic regime. All these distribution functions
are normalized to unity, i.e.,∫ +∞

0
F nr

ndg(ε)dε =
∫ +∞

0
F rel

ndg(ε)dε =
∫ +∞

0
F ur

ndg(ε)dε = 1.

(22)
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Equations (16)–(21) are given because they are needed to
derive the nonrelativistic expressions when the electrons are
nondegenerate from the general case when the electrons are
degenerate.

To calculate the collisional rates, we need the relativistic
expression of the velocity as a function of the energy ε. Since
by definition,

ε = mec
2√

1 − v2

c2

− mec
2, (23)

we find that

v = cϑ(ε), (24)

where

ϑ(ε) =
√√√√ ε

mec2

(
ε

mec2 + 2
)

(
ε

mec2 + 1
)2 . (25)

This is the relativistic expression of the velocity as a function
of energy ε. One can check that in the nonrelativistic domain,
we have v ≈ √

2ε/me, i.e.,

ϑ(ε) ≈
√

2ε

mec2
; (26)

whereas in the ultrarelativistic domain, we have v ≈ c, i.e.,

ϑ(ε) ≈ 1 (27)

as expected. As an illustration, we plot in Fig. 2. We clearly see
the nonrelativistic behavior at low energy and the asymptotic
limit at high energy corresponding to the ultrarelativistic
regime. As for λ(ε), the transition between the two regimes
is around mec

2. Indeed, the two asymptotic curves intersect at
ε = mec

2/2.

A. Collisional excitation and deexcitation

Let us consider a collisional excitation from level j to level
k for which the cross section is σ ce

jk . The cross section of
the collisional deexcitation from level k to level j is σ cd

kj .
The transition energy is 
Ejk = Ek − Ej with Ek > Ej . Ej
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FIG. 2. ϑ(ε) = v(ε)/c as a function of ε.

and Ek are the energies of levels j and k, respectively. From
Equations (5) and (25), we can now write the relativistic
expression of the collisional excitation rate which reads

τ ce
jk =

√
2m

3/2
e

π2h̄3

∫ +∞


Ejk

dε λ(ε)
1

1 + eβeε−η
cϑ(ε)σ ce

jk (ε)

× 1

1 + e−βe(ε−
Ejk )+η
, (28)

whereas the collisional deexcitation rate reads

τ cd
kj =

√
2m

3/2
e

π2h̄3

∫ +∞

0
dε′λ(ε′)

1

1 + eβeε′−η
cϑ(ε′)σ cd

kj (ε′)

× 1

1 + e−βe(ε′+
Ejk)+η
. (29)

Equations (28) and (29) are written under a relativistic form
including the electron degeneracy since we integrate using
Fermi-Dirac distribution functions with the Pauli blocking
factor in each case. In the expression of the collisional
excitation rate, the Pauli blocking factor

1

1 + e−βe(ε−
Ejk )+η
= 1 − 1

1 + eβe(ε−
Ejk )−η
(30)

is nothing but the available volume fraction in phase space.
In the expression of the collisional deexcitation rate, the Pauli
blocking factor is

1

1 + e−βe(ε′+
Ejk)+η
= 1 − 1

1 + eβe(ε′+
Ejk )−η
. (31)

Equations (28) and (29) need comments. These equations
generalize in the relativistic regime and degeneracy domain
the well-known nonrelativistic expressions when the electrons
are nondegenerate. For instance, the collisional excitation rate
can be written using Eqs. (16) and (19):

τ ce
jk ≈ Ne

∫ +∞


Ejk

dε v(ε)σ ce
jk (ε)Fnr

ndg(ε), (32)

which sounds familiar. For the collisional deexcitation rate,
we have in the same conditions

τ cd
jk ≈ Ne

∫ +∞

0
dε v(ε)σ cd

kj (ε)Fnr
ndg(ε). (33)

Similar results can be obtained for the other rates in such kind
of conditions.

To find the relativistic expression of the Klein-Rosseland
relation, we write in Eq. (29)

1

1 + eβeε′−η

1

1 + e−βe(ε′+
Ejk)+η

= eβe
Ejk
1

1 + eβe(ε′+
Ejk)−η

1

1 + e−βeε′+η
(34)

and make the change of variable ε = ε′ + 
Ejk in Eq. (28).
We find that

τ ce
jk =

√
2m

3/2
e

π2h̄3

∫ +∞

0
dε′λ(ε′ + 
Ejk)

× 1

1 + eβe(ε′+
Ejk)−η
cϑ(ε′ + 
Ejk)σ ce

jk (ε′ + 
Ejk)

× 1

1 + e−βeε′+η
(35)
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and

τ cd
kj = eβe
Ejk

√
2m

3/2
e

π2h̄3

∫ +∞

0
dε′λ(ε′)

× 1

1 + eβe(ε′+
Ejk)−η
cϑ(ε′)σ cd

kj (ε′)
1

1 + e−βeε′+η
. (36)

We now impose the detailed balance between τ ce
jk and τ cd

kj , i.e.,

τ cd
kj = gj

gk

eβe
Ejk τ ce
jk , (37)

where gj and gk are the degeneracy of levels j and k,
respectively. Since the obtained relation is valid for any βe

and η, we get the functional relation

gjλ(ε + 
Ejk)ϑ(ε + 
Ejk)σ ce
jk (ε + 
Ejk)

= gkλ(ε)ϑ(ε)σ cd
kj (ε), (38)

where the dummy variable ε′ has been replaced by ε. The
functional identity (38) is valid for any positive energy
ε. This is the relativistic Klein-Rosseland formula for the
microreversibility of this pair of microscopic processes.

In the nonrelativistic regime, we obtain

gj (ε + 
Ejk)σ ce
jk (ε + 
Ejk) = gkεσ

cd
kj (ε), (39)

whereas in the ultrarelativistic regime we have

gj (ε + 
Ejk)2σ ce
jk (ε + 
Ejk) = gkε

2σ cd
kj (ε). (40)

It can be checked that the relativistic Klein-Rosseland formula
(38) can be obtained from the nondegenerate expressions of
collisional excitation and deexcitation rates. Reciprocally, if
we have this microreversibility relation between the cross
sections σ ce

jk and σ cd
kj , the detailed balance (37) is automatically

fulfilled either for degenerate or nondegenerate electrons.

B. Collisional ionization and three-body recombination

Let us consider the collisional ionization between level
j to level k with differential cross section σ ci(ε; ε1,ε2) and
its reverse process, i.e., the three-body recombination with
cross section σ 3br (ε1,ε2; ε). From Equations (5) and (25), the
relativistic collisional ionization rate reads

I c =
√

2m
3/2
e

π2h̄3

∫ +∞


Ejk

dε λ(ε)
1

1 + eβeε−η

∫ ε−
Ejk

0
dε1

∫ ε−
Ejk

0
dε2

× cϑ(ε)σ ci(ε; ε1,ε2)δ(ε1 + ε2 + 
Ejk − ε)
1

(1 + e−βeε1+η)(1 + e−βeε2+η)
(41)

and the relativistic three-body recombination rate reads

R3b =
(√

2m
3/2
e

π2h̄3

)2 ∫ +∞


Ejk

dε

∫ ε−
Ejk

0
dε1λ(ε1)

∫ ε−
Ejk

0
dε2λ(ε2)c2ϑ(ε1)ϑ(ε2)σ 3br (ε1,ε2; ε)

× δ(ε1 + ε2 + 
Ejk − ε)
1

(1 + eβeε1−η)(1 + eβeε2−η)

1

1 + e−βeε+η
. (42)

These expressions generalize the nonrelativistic expressions recently found [19,20]. To find the relativistic Fowler relation, we
write

1

(1 + eβeε1−η)(1 + eβeε2−η)

1

1 + e−βeε+η
= eβe(ε−ε1−ε2)+η 1

1 + eβeε−η

1

(1 + e−βeε1+η)(1 + e−βeε2+η)
(43)

in Eq. (42). Using the constraint δ(ε1 + ε2 + 
Ejk − ε), we find that

R3b = eβe
Ejk+η

(√
2m

3/2
e

π2h̄3

)2 ∫ +∞


Ejk

dε
1

1 + eβeε−η

∫ ε−
Ejk

0
dε1λ(ε1)

∫ ε−
Ejk

0
dε2λ(ε2)

×c2ϑ(ε1)ϑ(ε2)σ 3br (ε1,ε2; ε)δ(ε1 + ε2 + 
Ejk − ε)
1

(1 + e−βeε1+η)(1 + e−βeε2+η)
. (44)

We now impose the detailed balance between I c and R3b, i.e.,

R3b = gj

gk

I ceβe
Ejk+η. (45)

The obtained constraint between I c and R3b is valid for any
Te and η. We find that

gjλ(ε)ϑ(ε)σ ci(ε; ε1,ε2)

= gk

√
2m

3/2
e c

π2h̄3 λ(ε1)λ(ε2)ϑ(ε1)ϑ(ε2)σ 3br (ε1,ε2; ε). (46)

This is the relativistic Fowler relation. In the nonrelativistic
regime, we recover the usual formula

gjεσ
ci(ε; ε1,ε2) = gk

2meε1ε2

π2h̄3 σ 3br (ε1,ε2; ε), (47)

whereas in the ultrarelativistic regime, we have

gjε
2σ ci(ε; ε1,ε2) = gk

ε2
1ε

2
2

π2h̄3c2
σ 3br (ε1,ε2; ε). (48)
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As for collisional excitation and deexcitation, the relativistic
Fowler relation (46) can be derived using the nondegenerate
versions of I c and R3b. Reciprocally, if we have this microre-
versibility relation between the cross sections σ ci(ε; ε1,ε2)
and σ 3br (ε1,ε2; ε), the detailed balance (45) is automatically
fulfilled either for degenerate or nondegenerate electrons.

C. Dielectronic capture and autoionization

The dielectronic capture cross section and the Auger rate
are related by the formula [21]

σdc
kj (ε) = f (ε)AAuger

jk δ(ε − 
Ẽjk). (49)

In this expression, 
Ẽjk = Ej − Ek is the transition between
level j and level k. The ionization degree of level k is one
unit higher than the ionization degree of level j but since level
j is autoionizing, Ek < Ej . The captured electron energy is
equal to 
Ẽjk . A

Auger
jk is the autoionization rate from level j

to level k. For this process, the electron is ejected with energy

Ẽjk . f (ε) is a generic function. The presence of the Dirac
distribution makes the calculation of the dielectronic-capture
rate τ dc

kj straightforward. Using Eqs. (5), (25), and (49), we
find that

τ dc
kj =

√
2m

3/2
e

π2h̄3

∫ +∞

0
dε λ(ε)cϑ(ε)σdc

kj (ε)
1

1 + eβeε−η
, (50)

i.e.,

τ dc
kj =

√
2m

3/2
e c

π2h̄3 λ(
Ẽjk)ϑ(
Ẽjk)f (
Ẽjk)AAuger
jk

× 1

1 + eβe
Ẽjk−η
. (51)

To determine f (ε), we impose the detailed balance

τ dc
kj = gj

gk

e−βe
Ẽjk+ητ
Auger
jk , (52)

where

τ
Auger
jk = A

Auger
jk

1 + e−βe
Ẽjk+η
. (53)

Consequently,

f (ε) = gj

gk

π2h̄3

√
2m

3/2
e cλ(ε)ϑ(ε)

. (54)

This is the relativistic version of the nonrelativistic and
ultrarelativistic formulas, i.e.,

f (ε) = gj

gk

π2h̄3

2meε
(55)

and

f (ε) = gj

gk

π2h̄3c2

ε2
, (56)

respectively. These expressions are valid for any positive ε.

D. Radiative recombination and photoionization

From the photoionization and radiative recombination cross
sections σ ri

jk(hν) and σ rr
kj (ε), the photoionization rate from level

j to level k reads

I r
jk = 4π

h

∫ +∞


Ejk

d(hν)σ ri
jk(hν)

I (hν)

hν

1

1 + e−βe(hν−
Ejk )+η

(57)
and the relativistic radiative recombination rate reads from
Eqs. (5) and (25)

Rr
kj =

√
2m

3/2
e

π2h̄3

∫ +∞

0
dε λ(ε)cϑ(ε)σ rr

kj (ε)

× 1

1 + eβeε−η
I tot(ε + 
Ejk). (58)

I (hν) is the specific intensity of the radiation field and I tot is
equal to

I tot(hν) = 2hν3

c2
+ I (hν). (59)

To determine the relativistic Einstein-Milne relation, we
suppose that the free electrons and the radiation fields are
in LTE (Te = Tr where Tr is the radiation temperature) and
that I r

jk and Rr
kj obey the detailed balance

Rr
kj = gj

gk

e
Ejk+ηI r
jk. (60)

So, using

I (hν) = BTr
(hν) = 2hν3

c2

1

eβrhν − 1
, (61)

where βr = 1/kBTr ,

I tot(hν) = eβrhνBTr
(hν), (62)

the trick

1

1 + eβeε−η
= e−βeε+η

1 + e−βeε+η
(63)

in Eq. (58), and making the change of variable hν = ε + 
Ejk

in Eq. (57), we find that (Te = Tr )

gj

gk

e
Ejk+ηI r
jk = gj

gk

e
Ejk+η 4π

h

∫ +∞

0
dε σ ri

jk(ε + 
Ejk)

× BTe
(ε + 
Ejk)

ε + 
Ejk

1

1 + e−βeε+η
(64)

and

Rr
kj = eβe
Ejk+η

√
2m

3/2
e

π2h̄3

×
∫ +∞

0
dε λ(ε)cϑ(ε)σ rr

kj (ε)BTe
(ε + 
Ejk)

× 1

1 + e−βeε+η
. (65)

From the detailed balance, these two quantities are equal for
any Te and η. Consequently,

gj

σ ri
jk(ε + 
Ejk)

ε + 
Ejk

= gk

m
3/2
e c√

2π2h̄2
λ(ε)ϑ(ε)σ rr

kj (ε). (66)

063201-5



GÉRALD FAUSSURIER AND CHRISTOPHE BLANCARD PHYSICAL REVIEW E 95, 063201 (2017)

This is the relativistic Einstein-Milne formula valid for any
positive ε. In the nonrelativistic regime, we have

gj

σ ri
jk(ε + 
Ejk)

ε + 
Ejk

= gk

meε

π2h̄2 σ rr
kj (ε), (67)

whereas in the ultrarelativistic regime we have

gj

σ ri
jk(ε + 
Ejk)

ε + 
Ejk

= gk

ε2

2π2h̄2c2
σ rr

kj (ε). (68)

Again, these expressions are valid for any positive ε.
As for collisional excitation and deexcitation and collisional

ionization and recombination, the relativistic Einstein-Milne
relation (66) can be derived using the nondegenerate versions
of I r

jk and Rr
kj . Reciprocally, if we have this microreversibility

relation between the cross sections σ ri
jk(hν) and σ rr

kj (ε), the
detailed balance (60) is automatically fulfilled either for
degenerate or nondegenerate electrons.

E. Photoexcitation and photodeexcitation

To be complete, we consider photoexcitation and photode-
excitation processes although they are not quite independent
of the free electrons. The detailed balance matters only if
Tr = Te. For photoexcitation, using the cross section σ re

jk (hν)
for a transition from level j to level k, one has for the rate

τ re
jk = 4π

h

∫ +∞

0
d(hν)

σ re
jk (hν)

hν
I (hν), (69)

where

σ re
jk (hν) = πe2h

mec
fjk�jk(hν). (70)

In this expression, fjk the oscillator strength and �jk the line
profile in absorption normalized such that∫ +∞

−∞
d(hν)�jk(hν) = 1. (71)

For the photodeexcitation rate, one has

τ rd
kj = 4π

h

∫ +∞

0
d(hν)

σ rd
kj (hν)

hν
I tot(hν), (72)

where

σ rd
kj (hν) = πe2h

mec
fkj�kj (hν). (73)

σ rd
kj (hν) the cross section for photodeexcitation of level k to

level j and �kj is the line profile in emission normalized such
that ∫ +∞

−∞
d(hν) �kj (hν) = 1. (74)

The two line profiles �jk and �kj are not independent. If the
free electrons are in LTE at temperature Te, they satisfy the
relation [22–24]

�kj (hν) = �jk(hν)e−βe(hν−
Ejk ), (75)

where 
Ejk is the excitation energy. We have also [25]

gkfkj = gjfjk. (76)

From Equations (75) and (76), one has the important relation
microreversibility relation

σ rd
kj (hν) = gj

gk

σ re
jk (hν)e−βe(hν−
Ejk). (77)

The factor e−βe(hν−
Ejk) is due to the difference between the
line profiles in absorption or in emission. In practice, we
keep this relation (77) to calculate the photoexcitation and
photodeexcitation rates when Tr 	= Te. It is not clear how
relativistic effects can modify this fundamental identity and
what to do when the free electrons are not in LTE at temperature
Te.

When the radiation field is a Planck distribution at Tr = Te,
Eqs. (62) and (77) lead immediately to the fact that rates (69)
and (72) obey the detailed balance, i.e.,

τ rd
kj = gj

gk

eβe
Ejk τ re
jk . (78)

Equation (77) can also be used to find another way [26] to
express the photodeexcitation rate τ rd

jk given in Eq. (72), i.e.,

τ rd
kj = gj

gk

eβe
Ejk
4π

h

∫ +∞

0
d(hν)

σ re
jk (hν)

hν
I tot(hν)e−βehν.

(79)

TABLE I. Relativistic expressions of various relations and quantities.

Symbol Relativistic

Klein-Rosseland gjλ(ε + 
Ejk)ϑ(ε + 
Ejk)σ ce
jk (ε + 
Ejk) = gkλ(ε)ϑ(ε)σkj (ε)

Fowler gjλ(ε)ϑ(ε)σ ci(ε; ε1,ε2) = gk

√
2m

3/2
e c

π2h̄3 λ(ε1)λ(ε2)ϑ(ε1)ϑ(ε2)σ 3br (ε1,ε2; ε)

f (ε)
gj

gk

π2h̄3
√

2m
3/2
e cλ(ε)ϑ(ε)

Einstein-Milne gj

σri
jk

(ε+
Ejk )

ε+
Ejk
= gk

m
3/2
e c√

2π2h̄2 λ(ε)ϑ(ε)σ rr
kj (ε)

λ(ε)
√

ε
√

1 + ε

2mec2

(
1 + ε

mec2

)

ϑ(ε)

√√√√ ε

mec2

(
ε

mec2 +2
)

(
ε

mec2 +1
)2

ε(p) ε = √
p2c2 + m2

ec
4 − mec

2
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TABLE II. Nonrelativistic and ultrarelativistic expressions of various relations and quantities.

Symbol Nonrelativistic Ultrarelativistic

Klein-Rosseland gj (ε + 
Ejk)σ ce
jk (ε + 
Ejk) = gkεσ

cd
kj (ε) gj (ε + 
Ejk)2σ ce

jk (ε + 
Ejk) = gkε
2σ cd

kj (ε)

Fowler gj εσ
ci(ε; ε1,ε2) = gk

2meε1ε2
π2h̄3 σ 3br (ε1,ε2; ε) gj ε

2σ ci(ε; ε1,ε2) = gk
ε2

1ε2
2

π2h̄3c2 σ 3br (ε1,ε2; ε)

f (ε)
gj

gk

π2h̄3

2meε

gj

gk

π2h̄3c2

ε2

Einstein-Milne gj

σri
jk

(ε+
Ejk )

ε+
Ejk
= gk

meε

π2h̄2 σ rr
kj (ε) gj

σri
jk

(ε+
Ejk )

ε+
Ejk
= gk

ε2

2π2h̄2c2 σ rr
kj (ε)

λ(ε)
√

ε ε2√
2(mec2)3/2

ϑ(ε)
√

2ε

mec2 1

ε(p) p2

2me
pc

If we use Equation (62) in this equation when the radiation
field is a Planck distribution at Tr = Te, one can see that the
detailed balance (78) is immediately satisfied.

F. Remarks

The microreversibility relations have been written using the
fundamental constants c, me, and h̄ instead of c, me, and h as
can be encountered in the literature for the nonrelativistic case.
This is more logical since the usual fundamental constants in
atomic physics are c, e, h̄, and me where e is the elementary
charge. In atomic units, e = h̄ = me = 1 and c = 1/α where
α = e2/h̄c is the fine-structure constant. Concerning the
microreversibility relations, we have seen that they can be
derived from degenerate or nondegenerate electrons. This
means that the relativistic effects and the degeneracy character
are two independent notions, the most accurate approach being
the relativistic treatment of degenerate electrons. In summary,

we give in Table I the relativistic expressions of various
relations and quantities and in Table II their nonrelativistic
and ultrarelativistic expressions.

III. CONCLUSION

We have generalized to the relativistic regime the Klein-
Rosseland, Fowler, and Einstein-Milne formulas as well as the
relation between the dielectronic-capture cross section and the
autoionization rate. The practical expressions have been shown
to be consistent with the nonrelativistic and ultrarelativistic
regimes. With the present approach, we can develop fully
relativistic CRE models to describe NLTE plasmas at arbitrary
degeneracy. As expected, there is a close connection between
the microreversibility relations and the detailed balance
between the rates of the pairs of individual microscopic
processes. The treatment of degeneracy is found to be crucial.
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