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Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime
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For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary
instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article,
the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with
the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution
and a complementary solution. For the complementary solution the wave number of disturbance modes has two
complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a
spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial
wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength
and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover,
the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by
orifice eccentricity, the Weber number, and the Ohnesorge number.
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I. INTRODUCTION

Liquid interface dynamics is of both fundamental and
practical importance. For example, at the jet interface, the
instability evolution, momentum, and species mixing are
closely relevant to atomization and spray. Physically, once
the instability modes, which may originate either from natural
sources or forced perturbations imposed on the jet system,
are strong enough, the jet breaks up. According to Reitz [1],
there are four different jet instability and breakup regimes,
which are the Rayleigh regime, first wind-induced regime,
second wind-induced regime, and atomization regime. Such
a classification depends on the relative dominance of the
liquid inertia, surface tension, and aerodynamic forces acting
on the jet, which can be summarized in the nondimensional
Weber number WeL = U 2RρL/σ for the liquid phase and
WeG = U 2RρG/σ for the gas phase, where U is the uniform
jet velocity, R is the equivalent radius calculated from the jet
cross-section area, ρL and ρG are the liquid and gas density,
respectively, and σ is the surface tension coefficient. Under
some conditions, the gravity force and liquid viscous forces
are important as well.

The pioneering works on interface instability analysis
include the study of liquid sheet dynamics [2] and interface
instability [3–6]. For instance, Rayleigh studied the classic
circular jet problem in the Rayleigh regime [4], where the effect
of aerodynamics on the liquid jet can be neglected. Under the
inviscid liquid assumption, the velocity potential satisfies the
Laplacian equation. If the gravity effect is negligibly small, jet
disintegration is mainly due to surface tension, referred to as
capillary instability. The solution of the linearized equation
for the axisymmetric disturbance component suggests that
the liquid jet will break up when the disturbance wavelength
exceeds the jet circumference. The linear Rayleigh theory
developed for small perturbations is capable of a rather
accurate prediction of the breakup time and length of capillary
jets of low-viscosity liquids [7].
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Besides the circular case, jets from different orifices are
important as well, because of the advantages in mixing
enhancement, faster breakup, and more freedom for design and
control. In comparison with the aforementioned extensively
studied circular jet problem, nonsymmetric jets are less
understood, especially the axis-switching phenomenon, which
originates from the imbalance between the capillary force and
inertia force, leading to a change of the cross-section shape
along the jet flow direction. Most of the existing results on non-
symmetric jet flows have been obtained either experimentally
or numerically [8–10]. For example, the effects of the orifice
aspect ratio and liquid viscosity on the axis-switching process
of an elliptical jet were investigated experimentally [8]. It has
been found that the breakup of an elliptic liquid jet is largely
influenced by the shape of the orifice.

The relatively tractable elliptic configuration is of special
interest for analysis. For the inviscid case, three-dimensional
equations can be solved with the velocity potential method [4].
However, for the viscous case, an exact three-dimensional
solution has not yet been obtained. Alternatively, one-
dimensional Cosserat equations are derived to approximate the
elliptical jet dynamics based on the assumption of a negligible
cross-section variation [11,12]. For the circular case, when
setting the semimajor and semiminor axes equal, the solution
of such Cosserat equations agrees well with Rayleigh’s
results [4]. The mean velocity profile inside the elliptic jet was
introduced and the propagation of different disturbances was
analyzed in Refs. [13,14]. Bechtel and Bechtel et al. [15,16]
studied the motion of inviscid and Newtonian elliptic jets
directly from the Navier-Stokes equations. By integration
over the cross section, one-dimensional equations with the
same form as the Cosserat equations can be obtained. In
addition, the effects of viscosity and gravity have been partly
discussed. Amini et al. used the Cosserat model to study
the growth rate of forced disturbances, and the dependence
on different characteristic parameters [17,18]. Subsequently,
the jet breakup property, together with experimental results,
have been discussed, but the perturbation growth rate and
cutoff wave number seem to have been significantly overpre-
dicted [19]. For more complex cases, the three-dimensional
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FIG. 1. Illustration of an elliptic jet configuration. Because of
the unbalanced capillary force, the major axes change along the jet
flowing direction z, called the axis-switching phenomenon.

perturbation dynamics of the inviscid elliptic jet interacting
with the surrounding gas was investigated. Predictions from
the theoretical model are meaningful in quite broad parameter
regimes [19].

Based on the existing literature results, to our knowledge,
this important fluid mechanics problem is not yet well
understood. Some key issues related to the detailed features of
the nonsymmetric jets need to be analyzed systematically from
the control equations. Especially, the influence from the fluid
viscosity, which is of fundamental importance for both fluid
dynamics and applications, has been seldom systematically
investigated. The present article focuses on the instability
evolution in the initial range before jet breakup, the jet
axis-switching, and the effects of relevant parameters on dis-
turbances. Meanwhile, the results from theoretical derivations
and experimentations are compared for verification.

II. STABILITY ANALYSIS

A. Flow configuration

The problem to be analyzed is illustrated in Fig. 1.
Considering a liquid jet emanating from an elliptical orifice, in
the Cartesian coordinate system, x and y denote the directions
along the principal axes, and z is the jet flow direction. Under
the action of an unbalanced capillary force, the jet axes φ1(z,t)
and φ2(z,t) change both spatially along z and temporally with
t , which then leads to a jet cross-section change in a periodic
manner, and thus the axial velocity v(z,t) as well. Such a
phenomenon is referred to as axis-switching, which is one of
the most noticeable features of nonsymmetric jets.

Figure 2 shows a comparison of experimental observations
for the circular and elliptic jet cases, respectively. At the
same jet pressure and the same jet cross-section area, from
the side view, the photograph of the structure shows clearly

FIG. 2. Experimental observation showing the structure dif-
ference of the liquid jet from a circular (above) and elliptical
(below) orifice. For comparison, the experimental conditions are well
controlled. For both cases, the jet pressure is 7 kPa and the equivalent
cross-section area remains the same as well.

the oscillation of the major axis. In an initial range with a
limited flowing distance the circular jet shape remains almost
constant, while the cross section of the elliptic jet oscillates
periodically. Such an axis-switching process continues until
jet breakup or other disturbance modes become strong enough
to alter the jet structure.

B. Problem definition

For the nonsymmetric jet problem with complex orifices,
it becomes mathematically difficult, even intractable, to apply
the three-dimensional Navier-Stokes equations to obtain an
analytical solution. Therefore, it is necessary to reasonably
simplify the problem. Lee [20] neglected all radial inertia and
viscous effects and derived a nonlinear one-dimensional set
of equations for inviscid, incompressible circular jets based
on three-dimensional Navier-Stokes and continuity equations.
A well-accepted Cosserat model equation is based on the
one-dimensional continuum model to formulate the material
curve with two deformable directors representing the cross
section of the jet [11,12,21–23]. The important inertial force,
capillary force, and viscous force have been reasonably
modeled, which can be justified by the equation solution. For
instance, it has been shown [24] that the breakup length and
its dependence on relevant parameters can be fully predicted.
Bogy [25,26] concluded that one-dimensional Cosserat equa-
tions are suitable for describing many instability features with
preference to Lee’s equations. Moreover, Bechtel et al. [15]
derived a lower-dimensional model systematically from the
Navier-Stokes equations, which results in the same Cosserat
equations if only the leading order terms are considered.
According to the preset characteristic parameters, the jet is
in the Rayleigh regime with negligible influences from gravity
and the ambient gas [1]. Therefore, the Cosserat equation is
adopted as the model equation in the present analysis.

The continuity equation can be written as

ζ1 + ζ2 + vz = 0, (1)

where vz is the derivative of the axial velocity v(z,t) with
respect to z, and ζ1 and ζ2 satisfy the following relations,

φ1t + vφ1z − φ1ζ1 = 0, φ2t + vφ2z − φ2ζ2 = 0. (2)

Equation (1) shows the kinematic condition of zero net mass
flux across the jet interface.

The Cosserat momentum equations in the x,y,z directions
are

1
4πρφ3

1φ2
(
ζ1t + vζ1z + ζ 2

1

)
= p + φ1φ2h(φ1,φ2) − 2μπφ1φ2ζ1 + 1

4μπ
(
φ3

1φ2ζ1z

)
z
,

1
4πρφ3

2φ1
(
ζ2t + vζ2z + ζ 2

2

)
= p + φ1φ2h(φ2,φ1) − 2μπφ1φ2ζ2 + 1

4μπ
(
φ3

2φ1ζ2z

)
z
,

πρφ1φ2(vt + vvz)

= −pz − φ2φ1zh(φ1,φ2) − φ1φ2zh(φ2,φ1)

+ 2μπ (φ1φ2vz)z. (3)

Here, ρ is the constant fluid density, μ is the constant fluid
viscosity, and p = (p̄ − p0)πφ1φ2, where p0 is the constant
external pressure and p̄ is the mean pressure averaged over
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a cross section of the jet. Especially, the surface tension
force term h(φ1,φ2) = ∫ 2π

0 σq(φ1,φ2) cos2 θdθ , where σ is the
surface tension coefficient, and q(φ1,φ2) is the mean curvature
of the elliptical cross section. In the nonsymmetric jet problem
this h term is the key parameter that leads to axis-switching.
Geometrically, the jet cross section can be described by an
angular coordinate θ ranging from 0 to 2π , which is related to

the elliptic parameter equation as

x = φ1 cos θ, y = φ2 sin θ. (4)

Thus, the mean curvature q(φ1,φ2) of the elliptical cross
section can be formulated as

q(φ1,φ2) = [
(φ1φ2z sin2 θ + φ2φ1z cos2 θ )2 + φ2

1 sin2 θ + φ2
2 cos2 θ

]−1.5[(
φ2

1 sin2 θ + φ2
2 cos2 θ

)
(φ2φ1zz cos2 θ + φ1φ2zz sin2 θ )

+ 2(φ1φ2z − φ2φ1z)(φ1φ1z − φ2φ2z) sin2 θ cos2 θ − φ1φ2
(
φ2

1z cos2 θ + φ2
2z sin2 θ + 1

)]
. (5)

To analyze Eqs. (1) and (3), we assume the disturbances are relatively small compared with the mean quantities. Taking the
following variable decompositions,

φ1 = a + φ̄1, φ2 = b + φ̄2, v = V + v̄. (6)

Here, a and b are the initial semimajor and semiminor radius, respectively, and V is mean velocity along the z axis. Define the
orifice aspect ratio as e = b/a. Under the condition that the jet is close to being circular or e � 1, the ·̄ terms are much smaller
than the primary ones. Therefore, the nonlinear terms in the momentum equation can be linearized as

ζ1t + vζ1z + ζ 2
1 = a(φ̄1t t + 2V φ̄1zt + V 2φ̄1zz)

φ2
1

,

ζ2t + vζ2z + ζ 2
2 = b(φ̄2t t + 2V φ̄2zt + V 2φ̄2zz)

φ2
2

,

2μπφ1φ2ζ1 = 2μπb(φ̄1t + V φ̄1z),

2μπφ1φ2ζ2 = 2μπa(φ̄2t + V φ̄2z), (7)

1

4
μπ (φ3

1φ2ζ1z)z = 1

4
μπa2b(φ̄1tzz + V φ̄1zzz),

1

4
μπ (φ3

2φ1ζ2z)z = 1

4
μπab2(φ̄2tzz + V φ̄2zzz),

vt + vvz = v̄t + V v̄z,

h(φ1,φ2) =
∫ 2π

0
σ

[(a2 sin2 θ + b2 cos2 θ )(φ̄1zzb cos2 θ + φ̄2zza sin2 θ ) − (ab + aφ̄2 + bφ̄1)]

[(a2 + 2aφ̄1) sin2 θ + (b2 + 2bφ̄2) cos2 θ ]1.5
cos2 θdθ,

h(φ2,φ1) =
∫ 2π

0
σ

[(a2 cos2 θ + b2 sin2 θ )(φ̄2zza cos2 θ + φ̄1zzb sin2 θ ) − (ab + aφ̄2 + bφ̄1)]

[(a2 + 2aφ̄1) cos2 θ + (b2 + 2bφ̄2) sin2 θ ]1.5
cos2 θdθ. (8)

Using the Taylor expansion with respect to small perturbation, Eqs. (8) can be expressed as

h(φ1,φ2) = k1 + k2φ̄1 + k3φ̄2 + k4φ̄1zz + k5φ̄2zz,

h(φ2,φ1) = k′
1 + k′

2φ̄1 + k′
3φ̄2 + k′

4φ̄1zz + k′
5φ̄2zz, (9)

where the expressions for ki and k′
i can be found in Eqs. (A1) and (A2). Therefore, the terms containing h are

φ1φ2h(φ1,φ2) = n1 + n2φ̄1 + n3φ̄2 + n4φ̄1zz + n5φ̄2zz,

φ1φ2h(φ2,φ1) = m1 + m2φ̄1 + m3φ̄2 + m4φ̄1zz + m5φ̄2zz. (10)

Finally, the linearized continuity equation and momentum equations along the x, y, and z directions are

φ̄1t

a
+ V

φ̄1z

a
+ φ̄2t

b
+ V

φ̄2z

b
+ v̄z = 0,

− 1

4
πρa2b(φ̄1t t + 2V φ̄1zt + V 2φ̄1zz) + p̄ + n1 + n2φ̄1 + n3φ̄2 + n4φ̄1zz + n5φ̄2zz − 2μπb(φ̄1t + V φ̄1z)

+ 1

4
μπa2b(φ̄1tzz + V φ̄1zzz) = 0,
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− 1

4
πρab2(φ̄2t t + 2V φ̄2zt + V 2φ̄2zz) + p̄ + m1 + m2φ̄1 + m3φ̄2 + m4φ̄1zz + m5φ̄2zz − 2μπa(φ̄2t + V φ̄2z)

+ 1

4
μπab2(φ̄2tzz + V φ̄2zzz) = 0,

−πρab(v̄t + V v̄z) − p̄z − bk1φ̄1z − ak′
1φ̄2z + 2μπabv̄zz = 0. (11)

Details of the derivation and the expressions for ni,mi (i = 1–5) are in Eqs. (A3).
In stability analysis the perturbation modes are assumed as

φ̄1 = f1(k,ω) exp[i(ωt − kz)], φ̄2 = f2(k,ω) exp[i(ωt − kz)], (12)

where k and ω are the wave number and angular frequency, respectively. For this spatial instability rather than temporal instability
problem [27], the disturbances grow along the spatial z direction instead of t , which then implies that the k need to have a nonzero
imaginary part, while ω does not.

To find the solution, first we need to remove the pressure term p. By integrating the last subequation in Eqs. (11) with respect
to z to remove the pressure, we then obtain the nonhomogeneous linear equations as

−π

4
ρa2b(φ̄1t t + 2V φ̄1zt + V 2φ̄1zz) + [n2 + πρbT − bk1]φ̄1 + [n3 + πρaT − ak′

1]φ̄2 + n4φ̄1zz + n5φ̄2zz

− 4πμb(φ̄1t + V φ̄1z) − 2πμa(φ̄2t + V φ̄2z) + π

4
μa2b(φ̄1tzz + V φ̄1zzz) + n1 = 0,

−π

4
ρab2(φ̄2t t + 2V φ̄2zt + V 2φ̄2zz) + [m2 + πρbT − bk1]φ̄1 + [m3 + πρaT − ak′

1]φ̄2 + m4φ̄1zz + m5φ̄2zz

− 4πμa(φ̄2t + V φ̄2z) − 2πμb(φ̄1t + V φ̄1z) + π

4
μab2(φ̄2tzz + V φ̄2zzz) + m1 = 0. (13)

Here, T = (V − ω
k

)2. We address that in the present analysis
integrating Eqs. (11) is necessary to view the difference in
the momentum relation along two principal directions, which,
however, cannot be adequately described by the differentiation
operation as in Ref. [17].

C. Boundary condition and solutions

The solution of the nonhomogeneous equation (13) consists
of both the complementary solution part and the particular
solution part. Simply enough, the particular solutions φ̄1p and
φ̄2p are

φ̄1p = −a, φ̄2p = −b. (14)

Meanwhile, the complementary solution φ̄1c and φ̄2c for the
homogeneous part of Eqs. (13) satisfies

A1φ̄1c + A2φ̄2c = 0, A3φ̄1c + A4φ̄2c = 0, (15)

Details of Ai (i = 1,2,3,4) are in Eqs. (A4).
The dispersion relation between the wave number and fre-

quency is determined from the nonzero solution of Eqs. (15),
which implies a zero determinant of the coefficient matrix
(A1A4 − A2A3 = 0) as

10∑
i=0

aik
i = 0, (16)

where ai are defined in Eqs. (A6). Equation (16) has ten roots.
According to the analysis by Bogy [26], physically, the wave
propagation and the roots of the dispersion equation need to
satisfy the radiation condition, which means the disturbance
wave and its energy must propagate outside to infinity. In other
words, both the phase velocity (vp = ω/kr ) and group velocity
(vg = dω/dkr ) need to be positive, where kr is the real part

of the wave number k. If we set ω = 0 in Eq. (16), both k1

and k2 are equal to zero. When ω �= 0, we obtain two complex
conjugates k1 and k2. Specifically, the positive imaginary part
means along the z direction the spatial growth rate, while the
negative one means the spatial damping rate.

In the present jet problem a special state is V = 0, at which
Eq. (16) can be regarded as the temporal dispersion equation.
Retaining only the nonzero parts, Eq. (16) becomes

4∑
j=0

bjω
j = 0, (17)

where the coefficients bj are listed in Eq. (A7) in the Appendix.
Here, Eq. (17) has four roots, two of which need to be
removed due to the same radiation argument, and the other
two are purely imaginary. For this temporal instability problem
(V = 0) the nondimensional temporal growth rate can be

defined as α = ωi
√

ρR3/σ , where R is the equivalent radius
defined as R = (ab)1/2. As shown in Fig. 3, this result
coincides exactly with Rayleigh’s temporal solution, which
is derived differently from the velocity potential equation.

For general V �= 0 cases, we define the dimensionless
parameters as z̃ = z/R, t̃ = V t/R, δ̃1 = φ̄1/a, δ̃2 = φ̄2/b,
ṽ = v̄/V , δ̃1p = φ̄1p/a, δ̃2p = φ̄2p/b, β = ωR/V , and wave
number K = kR. In the following, for simplicity, the tildes
are omitted. Thus, the final solution is the sum of the
particular solution and a linear combination of all possible
complementary solutions from Eqs. (15). We then obtain

δ1 =
βc∑

β=0

{C1 exp[i(βt − K1z)] + C2 exp[i(βt − K2z)]}

+ {C3 exp(−iK3z) + δ1p},
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FIG. 3. Comparison of the temporal solution obtained from
the Cosserat equation in the present analysis and the Rayleigh’s
relation [4].

δ2 =
βc∑

β=0

{D1 exp[i(βt − K1z)] + D2 exp[i(βt − K2z)]}

+ {D3 exp(−iK3z) + δ2p}, (18)

where Ci and Di (i = 1,2,3) are the constant coefficients
to be determined by the boundary conditions, βc is the
cutoff frequency which means the jet is stable when β >

βc, and K3 is the only one positive real wave number
corresponding to β = 0 (the complex k3 is not a physical
solution). More important physics related to this part will be
discussed later.

Using the coefficients ai listed in the Appendix, we find
that in Eqs. (15), φ̄2/φ̄1 = 1 always holds for K1 and K2, and
φ̄2/φ̄1 = −e for K3, independent of the value of V , μ, σ and
ρ. Therefore, it yields the following ratio relations,

D1/C1 = D2/C2 = 1/e, D3/C3 = −1. (19)

In the present semi-infinite jet problem, the shape of
the elliptic orifice is fixed at the jet outlet, where the jet
flow is harmonically forced along the mean flow direction,
e.g., to be achieved using a pulse generator with an excited
voltage and frequency. Thus, we have the following boundary
conditions,

δ1(0,t) = 0, δ2(0,t) = 0, v(0,t) = vf cos βf t. (20)

It needs to be mentioned that to match the frequency condition
between the nozzle outlet and the forced v(0,t) disturbance
boundary condition, the frequency of the harmonic mode
in Eqs. (18) must be βf as well, hence other different
modes need to excluded. Meanwhile, the β = 0 part in
Eqs. (18) is necessary to satisfy such boundary conditions.
Therefore, the jet profile has only the βf and β = 0 parts.
Combining Eqs. (19) and (20), the final expressions of the
perturbations is

δ1 = vf K1K2(
1 + 1

e

)
βf (K2 − K1)

{exp[i(βf t − K1z)]

− exp[i(βf t − K2z)]} + 1 − e

1 + e
{exp[−i(K3z)] − 1},

δ2 = vf K1K2

e
(
1 + 1

e

)
βf (K2 − K1)

{exp[i(βf t − K1z)]

− exp[i(βf t − K2z)]} + e − 1

1 + e
{exp[−i(K3z)] − 1}.

(21)

This result has the following important meanings. Overall,
there are two different contributions in this relation, the
part related to the external perturbation with vf and βf ,
and the part related to K3. The former part shows how the
external perturbation evolves with t and z. The conjugates
K1 and K2 represent the growth rate and damping rate of
the perturbation, respectively. Physically, the jet will break
up when the amplitude of perturbations equals the jet minor
radius. If the liquid is inviscid, K3 is a real number, and for
the viscous case, K3 is complex. Thus, the K3 part means an
oscillating wave, neither damped nor excited, independent of
external perturbation. Physically, this solution suggests a kind
of natural instability from the axis-switching phenomenon.
From the coefficient e−1

1+e
it is easy to see that this part

vanishes for the circular jet case with e = 1. The larger the
deviation of e from unity, the stronger the axis-switching
will be. Because of the particular solution of Eqs. (13),
mathematically, the K3 term must exist in order to satisfy
the orifice boundary conditions. Therefore, the axis-switching
is an inherent feature of nonsymmetrical jets. Because of
dissipation of fluid viscosity, axis-switching typically appears
in the early stage of the elliptic jet flow and will be damped far
downstream, if the jet remains integrated. In the experiment of
an elliptical water-glycerol mixture jet with a relatively larger
viscosity, the jet finally tends to be circular [8]. In summary,
the external perturbation part and the axis-switching part are
independent and controlled by different physical mechanisms.
The local unbalanced capillary force, which is characterized
by the e parameter, determines the relative importance of
axis-switching to the overall disturbance evolution.

III. RESULTS AND ANALYSIS

A. Effects from the operation parameters

To verify the theoretical predictions, the initial elliptic jets
emanating from the elliptic nozzles have been investigated
experimentally. Figure 4 shows the experiment schematic.
A manual valve is used to regulate the flow of nitrogen
gas in a compressed bottle, which is used to pressurize the
de-ionized water in the accumulator. The water supplied to
the drop generator is controlled by the pulse width modulated
(PWM) electrical signal of a function generator (ATTEN, ATF
20B) in a sinusoidal wave form. A high-intensity xenon arc
lamp (Newport 67005) provides the necessary illumination
for recording the liquid jet behavior. The backlit imaging
technique is utilized and a semi-transparent screen is placed
between the liquid jet and the high-intensity illuminator
to facilitate a uniform background for imaging the initial
formation of the liquid jet. By using image analysis, the jet
characteristic parameters, including the wavelength and wave
amplitude, can be measured.

As shown in Fig. 5(a), the major axes oscillate periodically,
which then determines the wavelength of axis-switching. The
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FIG. 4. Schematic of the overall experimental setup.

wavelength λ is calculated via the relation λ = 2π/k3. It needs
to be mentioned that near the jet outlet, because of the inertial
influences from the nozzle structure, to some extent the axis-
switching structure could be ambiguous, which can be avoided
by measuring the wavelength somewhere downstream.

In the experiment the jet velocity V can be determined
straightforwardly by the mass flow rate, which is, however,
not convenient in real operation. Alternatively, the jet pressure
P is adopted to estimate V based on the Bernoulli relation
P = ρV 2/2. The results in Fig. 5(b), showing a good match
between these two different methods, justify the accuracy of
such an estimation.

(a)
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Bernoulli relation
Circle
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(b)

FIG. 5. (a) Experimental observation of axis-switching for the
elliptic jet at different pressures. (b) Relation of pressure and jet
outlet velocity.
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FIG. 6. Comparison between theoretical and experimental results
of the dependence of the axis-switching wavelength on the jet
pressure. The error bars shown here are from 30 repetitions of
the measurements under the same conditions, together with existing
results [8,18].

From Eq. (16) the coefficients ai are the function of
frequency, jet velocity, and other parameters. For natural axis-
switching, the external excitation frequency is set to be zero.
Thus, the dependence of wavelength on the Weber number,
which is a function of the jet velocity or pressure, can be
numerically calculated. Figure 6 shows satisfactory agreement
between the present theory and measurement results, where the
error bars are from 30 repetitions under the same conditions.
Overall, the wavelength increases almost linearly with the
square root of the Weber number. In addition, we also include
in Fig. 6 the fitting curve with experimental measurements [8]
and the existing formula [18] for an inviscid jet with small
aspect ratios. Overall, the current theory agrees well with
the results in our measurement regime, while the formula in
Ref. [18] shows a clear underprediction.

The present analysis also indicates that the axis-
switching wavelength is independent of external disturbances.
Figures 7(a) and 7(b) show the axis-switching structure by
changing the disturbance amplitude, which is controlled by the

FIG. 7. The effects of (a) forced voltage and (b) frequency
on the axis-switching structure. In a large variation range of the
controlling parameters, the wavelength of axis-switching remains
almost constant.
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FIG. 8. (a) The change of real [Re(K3)] and imaginary [Im(K3)] parts of K3 with the fluid viscosity at We = 100. (b) In physical space the
variation of the dimensionless amplitude A(Z) with Z at P = 10 kPa and 12 mPa s dynamic viscosity.

voltage imposed onto the jet, and the frequency of the noise,
respectively. Clearly, in a large variation range the wavelength
remains constant.

B. Effects from the fluid viscosity

Existing results related to the viscosity effects are very
limited. For the inviscid case, K3 in Eqs. (18) is real, while for
the viscous case, K3 is complex with a real part Re(K3) and
a negative imaginary part Im(K3). As shown in Fig. 8(a), at
a typical We = 100 with an increase of viscosity, the Re(K3)
decreases and −Im(K3) increases, which implies the damping
effect of viscosity becomes stronger. In the physical space the
damping rate can be easily calculated from Im(K3). As shown
in Fig. 8(b), under a typical condition, the variation of the
dimensionless amplitude A(Z) with Z decays exponentially
because of the energy dissipation by fluid viscosity.

Experimentally, the variation of the jet structure in Fig. 9
illustrates that with an increase of fluid viscosity, the axis-
switching amplitude decays more rapidly. Specifically, when
the mass concentration of glycerol is 10%, axis-switching
almost sustains in the measurement range; for the 50%
concentration case, axis-switching exists clearly in the first
few oscillation periods and then decays to vanishing; if the
glycerol concentration is as high as 70%, axis-switching is
almost entirely damped.

FIG. 9. The damping effect of elliptic jets with glycerol mass
concentrations of (a) 10%, (b) 50%, and (c) 70%.

C. Dispersion relations

According to the theoretical prediction [Eq. (16)], we can
also have a parametric study of the dispersion relation. Setting
the Ohnesorge number Oh = μ/

√
ρRσ = 0 (the inviscid

case) and the Weber number We = ρRV 2/σ = 50, the relation
of nondimensional frequency β = ωR/V and wave number
K = kR can be calculated numerically. The spatial instability
is controlled by Im(K), the imaginary part of K . For the
conjugate pair K1 and K2, only the one with the positive
imaginary, e.g., Im(K1), needs to be studied because it is
responsible for the instability evolution.

Considering the influence from the aspect ratio e, Fig. 10(a)
indicates that eccentricity reduces the growth rate of dis-
turbances, while optimal β corresponding to the largest
growth rate remains almost the same. It is similarly pointed
out [13] that the spatial growth rate of symmetric disturbances
decreases by making the nozzle more eccentric for inviscid and
incompressible elliptic jets. Morris [14] further depicted the
dispersion diagram which indicated almost the same optimal
frequency corresponding to a maximum growth rate and cutoff
frequency for symmetric disturbances. Although the maximum
growth rate becomes smaller if e decrease, the ellipse structure
may still be advantageous for jet breakup, because the smaller
minor axis reduces the distance at which the perturbation
amplitude equals the minor axis, i.e., the breakup condition.
Results from Refs. [17,18] seem to significantly overestimate
the growth rate and cutoff frequency [19]. The present results
are consistent with a recent analysis [19]. Specifically, if
the influence from the surrounding gas is neglected, the
cutoff wave number is almost independent of the aspect
ratio e.

Figure 10(b) shows the effect of liquid viscosity on the
dispersion relation. As is expected, viscosity dampens the
growth rate. The optimal frequency decreases as well. This
result can be explained by the fact that dissipation is sensitive
to frequency. At a larger viscosity, the frequency needs to be
smaller to reduce dissipation for instability evolution.

The Weber number We measures the relative importance
of the fluid inertia to the capillary forces. Figure 10(c)
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FIG. 10. The dependence of the dispersion relation on (a) the
orifice aspect ratio e, (b) the Ohnesorge number, and (c) the Weber
number.

demonstrates that with an increase of We, the instability
growth rate decreases. Experimentally, it is also concluded
that increasing the jet velocity leads to a larger breakup
length [8].

IV. CONCLUSIONS

In summary, linearized Cosserat equations that describe
the viscous elliptic liquid jet have been analyzed to understand
the instability evolution. Mathematically, the solution includes
two parts, the complementary solution and the particular

solution. The dispersion relation can be derived from the
complementary solution. For disturbance modes with nonzero
frequency, the wave number has two complex conjugate roots:
One corresponds to the growth rate and the other corresponds
to the damping rate. The contribution from these two waves
is responsible for the jet breakup. Meanwhile, from the
boundary condition of the orifice with unequal major axes,
a nonzero particular solution must exist, which needs to
be balanced by a spatial wave independent of the external
perturbations. Physically, such a spatial wave corresponds
to the axis-switching phenomena, inherent to nonsymmetric
jet cases. In contrast, for a circular jet, the precoefficient of
the spatial wave and particular solution part equals zero and
therefore the axis-switching phenomenon vanishes.

Prediction of the axis-switching wavelength from the
analytical solutions have been successfully verified with exper-
imental measurements, including effects from the jet velocity,
the fluid viscosity, and the forced disturbance parameters.
Moreover, the dispersion relations have also been discussed.
Present analyses predict quantitatively how the growth rate
of spatial instability is influenced by orifice eccentricity, the
Weber number, and the liquid viscosity (in the form of the
Ohnesorge number Oh).
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APPENDIX: SOME ANALYTICAL REMARKS

In Eqs. (9) the coefficients can be determined from the
Taylor expansion as

k1 = −σbE1/a
2,

k2 = σe(−E1 + 3E2)/a2,

k3 = σ (−E1 + 3e2E2)/a2,

k4 = σeE4,

k5 = σE5,

k′
1 = −σbE′

1/a
2,

k′
2 = σe(−E′

1 + 3E′
3)/a2,

k′
3 = σ (−E′

1 + 3e2E′
2)/a2,

k′
4 = σeE′

5,

k′
5 = σE′

4, (A1)
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and

E1 =
∫ 2π

0

cos2θ

(sin2 θ + e2 cos2 θ )1.5
dθ,

E2 =
∫ 2π

0

sin2 θ cos2 θ

(sin2 θ + e2 cos2 θ )2.5
dθ,

E3 =
∫ 2π

0

cos4 θ

(sin2 θ + e2 cos2 θ )2.5
dθ,

E4 =
∫ 2π

0

cos4 θ

(sin2 θ + e2 cos2 θ )0.5
dθ,

E5 =
∫ 2π

0

sin2 θ cos2 θ

(sin2 θ + e2 cos2 θ )0.5
dθ,

E′
1 =

∫ 2π

0

cos2 θ

(e2 sin2 θ + cos2 θ )1.5
dθ,

E′
2 =

∫ 2π

0

sin2 θ cos2 θ

(e2 sin2 θ + cos2 θ )2.5
dθ,

E′
3 =

∫ 2π

0

cos4 θ

(e2 sin2 θ + cos2 θ )2.5
dθ,

E′
4 =

∫ 2π

0

cos4 θ

(e2 sin2 θ + cos2 θ )0.5
dθ,

E′
5 =

∫ 2π

0

sin2 θ cos2 θ

(e2 sin2 θ + cos2 θ )0.5
dθ. (A2)

The coefficients in Eqs. (11) can be defined as

n1 = −σae2E1,

n2 = σe2(−2E1 + 3E2),

n3 = σe(−2E1 + 3e2E3),

n4 = σa2e2E4,

n5 = σa2eE5,

m1 = −σae2E′
1,

m2 = σe2(−2E′
1 + 3E′

3),

m3 = σe(−2E′
1 + 3eE′

2),

m4 = σa2e2E′
5,

m5 = σa2eE′
4. (A3)

To ensure a nontrivial solution, the coefficients need to satisfy

A1 = k−2(a15k
5 + a14k

4 + a13k
3 + a12k

2 + a11k + a10),

A2 = k−2(a24k
4 + a23k

3 + a22k
2 + a21k + a20),

A3 = k−2(a34k
4 + a33k

3 + a32k
2 + a31k + a30),

A4 = k−2(a45k
5 + a44k

4 + a43k
3 + a42k

2 + a41k + a40),

(A4)

where

a15 = π

4
μa2bV i,

a14 = −π

4
μa2bωi + π

4
ρa2bV 2 − n4,

a13 = −π

2
ρa2bV ω + 4πμbV i,

a12 = π

4
ρa2bω2 − bk1 + n2 − 4πμbωi + πρbV 2,

a11 = −2πρbV ω,

a10 = πρbω2,

a24 = −n5,

a23 = 2πμaV i,

a22 = −ak′
1 + n3 − 2πμaωi + πρaV 2,

a21 = −2πρaV ω,

a20 = πρaω2,

a34 = −m4,

a33 = 2πμbV i,

a32 = −bk1 + m2 − 2πμbωi + πρbV 2,

a31 = −2πρbV ω,

a30 = πρbω2,

a45 = π

4
μab2V i,

a44 = −π

4
μab2ωi + π

4
ρab2V 2 − m5,

a43 = −π

2
ρab2V ω + 4πμaV i,

a42 = π

4
ρab2ω2 − ak′

1 + m3 − 4πμaωi + πρaV 2,

a41 = −2πρaV ω,

a40 = πρaω2. (A5)

The coefficients of spatial dispersion equations can then be
determined as

a0 = a10a40 − a20a30,

a1 = a11a40 + a10a41 − a21a30 − a20a31,

a2 = a12a40 + a11a41 + a10a42 − a22a30 − a21a31 − a20a32,

a3 = a13a40 + a12a41 + a11a42 + a10a43 − a23a30

− a22a31 − a21a32 − a20a33,

a4 = a14a40 + a13a41 + a12a42 + a11a43 + a10a44

− a24a30 − a23a31 − a22a32 − a21a33 − a20a34,

a5 = a15a40 + a14a41 + a13a42 + a12a43 + a11a44

+ a10a45 − a24a31 − a23a32 − a22a33 − a21a34,

a6 = a15a41 + a14a42 + a13a43 + a12a44 + a11a45

− a24a32 − a23a33 − a22a34,

a7 = a15a42 + a14a43 + a13a44 + a12a45 − a24a33 − a23a34,

a8 = a15a43 + a14a44 + a13a45 − a24a34,

a9 = a15a44 + a14a45,

a10 = a15a45. (A6)
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By setting V = 0 in Eq. (16) the coefficients of temporal
dispersions in Eq. (17) are

b0 = b10b40 − b30b20,

b1 = b11b40 + b10b41 − b31b20 − b30b21,

b2 = b12b40 + b11b41 + b10b42 − b32b20 − b31b21 − b30b22,

b3 = b12b41 + b11b42 − b32b21 − b31b22,

b4 = b12b42 − b32b22, (A7)

where

b12 = π

4
ρa2b + πρb

k2
,

b11 = −4πμbi − π

4
μa2bk2i,

b10 = n2 − bk1 − n4k
2,

b22 = π

k2
ρa,

b21 = −2πμai,

b20 = n3 − ak1
′ − n5k

2,

b32 = π

k2
ρb,

b31 = −2πμbi,

b30 = m2 − bk1 − m4k
2,

b42 = π

4
ρab2 + πρa

k2
,

b41 = −4πμai − π

4
μab2k2i,

b40 = m3 − ak1
′ − m5k

2. (A8)
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