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Linear and nonlinear perturbation analysis of the symmetry breaking
in time-periodic propulsive wakes
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The two-dimensional and time-periodic wake flows produced by a pitching foil are investigated numerically
for a fixed flapping amplitude. As the flapping frequency is increased, three regimes are identified in the
time-marching nonlinear simulations. The first regime is characterized by nondeviated wake flows with zero time-
averaged lift. In the second regime, the wake flow is slightly deviated from the streamwise direction and the
time-averaged lift is slightly positive or negative. The third regime is characterized by larger deviations of
the wake, associated with larger values of both the time-averaged lift and the thrust. The transition from the
first to the second regime is examined by performing a Floquet stability analysis of the nondeviated wake.
A specific method is introduced to compute the time-periodic, nondeviated wake when it is unstable. It is
found that one synchronous antisymmetric mode becomes unstable at the critical frequency where deviation
occurs. Investigation of its instantaneous and time-averaged characteristics show that it acts as a displacement
mode translating the nondeviated wake away from the streamwise direction. Finally, it is demonstrated that the
transition from the second to the third regime is linked to nonlinear effects that amplify both antisymmetric and
symmetric perturbations around the foil.
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I. INTRODUCTION

The locomotion of living animals such as fish and birds is a
source of inspiration for researchers and engineers designing
underwater or aerial vehicles. By mimicking the kinematics of
insect wings, they expect that flapping-based micro air vehicles
will benefit from the amazing capabilities of insects’ flight:
vertical take-off, hovering and slow-forward flight, and low-
acoustic signature [1–3].

The aerodynamics of an insect’s flapping wings is very
complex, not only because the kinematics of the wing is highly
unsteady and three-dimensional [4,5], but also because the
surrounding flow is described by the nonlinear Navier-Stokes
equations. Consequently, even when the kinematics of a
two-dimensional wing is a purely harmonic two-dimensional
pitching or heaving motion, the periodic wake-flow can
spontaneously become three-dimensional [6–8]. Various two-
dimensional periodic flow-patterns have also been observed
in the wake of the wing [9,10], depending on the flapping
frequency and amplitude. For small values of amplitude and
frequency, the classic Bénard-Von Karman vortex street is
observed in the wake and the aerodynamic force exerted on
the wing is resistive (drag force). For high values, a reversed
Bénard-Von Karman vortex street is observed in the wake and
the aerodynamic force exerted on the wing is propulsive (thrust
force). For intermediate values, many other wake patterns
have been observed experimentally [9,11] and numerically
[12] (see Ref. [10] for a detailed classification). The present
paper investigates one of the periodic wake flow-patterns,
characterized by the mean deviation of the reverse Bénard-Von
Karman vortex street from the streamwise direction.

To our knowledge, the first experimental observation of
an asymmetric pattern in the wake of pitching wings was

made by Bratt [13]. In this case, the wake-flow breaks the
spatiotemporal symmetry of the wing kinematics. Later on,
Jones et al. investigated experimentally [14] and numerically
[15] the deviated reverse Bénard-Von Karman vortex street
in the wake of a heaving foil. Results of the two-dimensional
numerical simulations compare well with experimental results.
Interestingly, both upward and downward deviation of the
wake have been reported for the same values of flapping
frequency and amplitude. The deviation direction was shown
to depend on the initial flapping conditions [16,17]. Zheng
et al. [18] observed that the deviation’s direction results from
a competition between the first three vortices that are emitted
by the foil. The deviation of the propulsive wake behind
a pitching wing was investigated experimentally by Godoy-
Diana et al. [19]. Using only two-dimensional measurements
of the velocity field behind the wing, they identified the region
of asymmetric wake in the amplitude and frequency parameter
space. Later [20], they proposed a criterion based on the
relation between the experimentally determined phase velocity
of the vortex street and an idealized self-advection velocity of
two consecutive counter-rotating vortices in the near-wake.
The disappearance of asymmetric wakes for low-flexibility
pitching foils was first investigated by Marais et al. [21] and
then by Zhu et al. [22], who also showed that highly flexible
pitching foils can instead enhance the deviation. Experimental
investigations of the wake deviation behind heaving wings
were performed by Cleaver et al. [23–25]. Using direct
measurements of the aerodynamics forces, they reported that
the deviation was associated with high lift production. They
also showed the deviation occurs through a supercritical
bifurcation by obtaining the same results for increasing or
decreasing flapping frequencies without discontinuity.
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It should be noted that symmetry-breaking bifurcations also
exist in the related problem of oscillating objects in a quiescent
fluid. Experimental [26] and numerical [27,28] observations
have shown that bodies of different shape oscillating vertically
in a symmetrical way can create a nonsymmetric flow,
leading to a nonzero mean horizontal force. If the object
is free to move in the horizontal direction, this force can
set the object into motion with a nonzero mean velocity in
either the left or right direction. For the simplest case of
a two-dimensional cylinder, Elston et al. [29,30] performed
a Floquet stability analysis of the periodic, symmetric flow.
They showed that the symmetry-breaking occurring in the
flow is effectively due to the onset of a linear mode,
which breaks the spatial, left-right mirror symmetry of the
base flow.

In the present paper, it is proposed to apply a similar stability
approach to explain the deviation of the wake of a flapping
foil. Unlike in the case of objects oscillating in a quiescent
fluid discussed in the previous paragraph, the symmetry that is
broken by the bifurcation is not only spatial but spatiotemporal.
Namely, in the nondeviated Bénard-Von Karman vortex street
before the bifurcation, the half-period corresponding to a
downward stroke is the mirror image of the half-period
corresponding to an upward stroke. Thus, a difficulty lies in
the computation of this time-periodic base flow in unstable
cases. A review of methods to compute unstable base flows
highlights several approaches. In the case of spatial symmetries
as in the work of Elston et al., one can impose the appropriate
boundary conditions on the symmetry axis. However, in the
case of spatiotemporal symmetry, the corresponding boundary
conditions are unknown. When the base flow is stationary, one
can use the selective frequency damping (SFD) method [31] to
filter unstable temporal frequencies. None of these approaches
is directly applicable to the present case. An innovative method
was therefore designed for this purpose. The method is related
to the SFD in the sense it is used to damp the component
of the time-periodic base flow that breaks the spatiotemporal
symmetry.

The objective of the present study is to investigate nu-
merically the deviation of the propulsive wake behind a
pitching wing, not only by using two-dimensional unsteady
nonlinear simulations, but also by performing linear stability
analysis of the time-periodic nondeviated wake flow. Section II
describes the flow configuration and results of unsteady
nonlinear simulations. They are performed for fixed flapping
amplitude and a large range of flapping frequencies, so
as to identify nondeviated, weakly deviated, and strongly
deviated wake-flow regimes. The linear stability analysis of
the propulsive wake flow is presented in Sec. III. Section III A
introduces the new “flow symmetry preserving” method used
to compute the time-periodic nondeviated flow above the
critical frequency. Section III B presents the Floquet stability
analysis of the nondeviated wake-flows and details linear
results obtained around the critical flapping frequency. Sec-
tion IV investigates the nonlinear evolution of time-periodic
perturbations. A decomposition of the nonlinear perturbation
into its spatiotemporal symmetric and antisymmetric compo-
nents is introduced in this section to understand better the
occurrence of strongly deviated wakes for the largest flapping
frequencies.
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FIG. 1. Sketch of the pitching foil pivoted at the center of the
leading edge half-cylinder.

II. UNSTEADY NONLINEAR SIMULATIONS

The flow around a foil immersed in a fluid of viscosity
ν with an incoming uniform velocity U0 is investigated. The
geometry of the foil, shown in Fig. 1, is similar to the one used
in experimental studies [19,20]. The leading edge of the foil is
a half-cylinder of diameter D, its central part has the form of
a triangle, which is closed at the trailing edge of the foil by a
smaller half-cylinder of diameter d. The ratio of the cylinder
diameters is fixed to D/d = 20 and the chord-to-diameter
aspect ratio is c/D = 4. Hereafter, all the variables are made
nondimensional using D and U0 as characteristic length and
velocity. As the flow is incompressible, the Reynolds number
Re = U0D/ν is the unique flow control parameter, which is
fixed to Re = 255 for the entire study. A periodic pitching
motion of the foil is imposed along the z axis located at the
center of the large half-cylinder. The imposed flapping rotation
follows the sinusoidal law,

θ (t) = θmsin(2πf t), (1)

where f is the nondimensional flapping frequency, T = 1/f

the flapping period, and θm is the maximal rotational angle. The
nondimensional (peak-to-peak) flapping amplitude A = 2(c −
D/2)sin(θm) = 1.07 is fixed accordingly. In the following, the
flapping frequency f will be varied in the range 0 � f � 0.5.

A. Numerical model and method

Following Mougin et al. [32], the Navier-Stokes equations
are written in a noninertial frame of reference (eX,eY ), depicted
in Fig. 1, which rotates at speed ω = dθ

dt
around the z axis

but does not translate in the laboratory frame of reference
(ex,ey). The vector field u = (u,v)T then represents the flow
velocity in written (eX,eY ) and the incompressible Navier-
Stokes equations are written

∂t u = R[u,p ; θ (t)], ∇ · u = 0, (2)

with a right-hand-side operator defined by

R[u,p ; θ (t)] = − ω(t) ez × u − [(u − w) · ∇]u

− ∇p + 1

Re
�u. (3)

Note that the spatial operators are defined with respect to the
spatial coordinates X = (X,Y ). Compared with the Navier-
Stokes equations written in an inertial frame of reference, two
additional terms appear in the right-hand side: the rotational
acceleration ω(t) ez × u and a modification of the convective
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inlet outlet

FIG. 2. Computational domain and typical mesh used for the
finite-element discretization. The mesh is made of triangles, only
one-tenth of them are shown in the figure.

velocity by the velocity vector w, which is defined by

w(X,θ ) = −[cos(θ )eX − sin(θ )eY ] + ω(t) ez × X . (4)

The first term accounts for the translational velocity of the
foil, written in the rotating frame of reference, while the second
term accounts for the angular velocity of the foil. At the surface
of the foil, indicated by Xw, the flow velocity is equal to the
velocity of the foil, i.e.,

u(Xw) = w(Xw,θ ). (5)

Note that the translational velocity is imposed at the surface
of the foil, not at the inlet of the computational domain, since
the rotating frame of reference does not translate with the foil.
Consequently, the boundary condition u = 0 is imposed at the
inlet of the computational domain. The no-stress boundary
condition [−pn + 1/Re(∇u + ∇uT )n = 0] is used at the
outlet. The inlet and outlet of the computational domain are
indicated in Fig. 2.

The spatial discretization of the Navier-Stokes Eqs. (2)
and (3) is based on a finite element formulation [33], using
quadratic elements (P2) for the velocity u and linear elements
(P1) for the pressure p. A semi-implicit second-order accurate
temporal discretization is used: the temporal derivative is
approximated by a backward-differential formulas, the linear
term in the right-hand-side of Eq. (3) are implicit, and the
nonlinear terms are explicit, using a second-order accurate
extrapolation. This semi-implicit discretization yields a non-
homogeneous unsteady Stokes problem, which is efficiently
solved at each iteration with a preconditioned conjugate gra-
dient algorithm [34,35]. This numerical method, implemented
in the noncommercial software FreeFem++ [33], is validated
in Appendix A.

The computational domain and mesh used to discretize
the Navier-Stokes equations are displayed in Fig. 2. The
influence of the size of the computational domain on the
numerical results is described in Appendix A. The selected

domain is a circle of diameter 60, centered at the leading-edge
half-cylinder of the foil. The mesh is composed of 42 × 103

triangles, yielding 170 × 103 degrees of freedom for each
component of the velocity and 42 × 103 degrees of freedom
for the pressure. A particular attention has been paid to
create a symmetric mesh with respect to the x axis, to avoid
introducing artificial asymmetries in the flow. The size and
spatial distribution of the triangles is adapted to the flow field,
leading to a refinement of the mesh around the foil and in its
wake. The smallest triangles are located at the trailing-edge of
the foil and their size is 7.29 × 10−3. Recalling that the wake
flow rotates periodically around the X axis (while the foil is
fixed), the far-wake region is refined accordingly, as shown
in Fig. 2. Finally, the semi-implicit time discretization de-
scribed above implies a Courant-Friedrich-Levy stability con-
dition [36]. The time-step is chosen accordingly, from �t =
8 × 10−3 for f = 0 down to �t = 4 × 10−4, corresponding
to �t = T/5000 for large frequencies above the deviation.

B. Results

Nonlinear simulations are performed for flapping frequen-
cies in the range 0 � f � 0.5. For f = 0, the foil is in a
fixed position with zero angle of incidence with respect to the
incoming uniform flow. The wake flow pattern, computed for
Re = 255 but not displayed here, is a classical Bénard-Von
Karman vortex street, characterized by a (nondimensional)
natural frequency f0 = 0.167.

Let us now investigate the flow pattern obtained when
the foil is forced to pitch. Snapshots of the vorticity field,
obtained for four flapping frequencies, are displayed in
Fig. 3 at times t = T/4 (left) and t = 3T/4 (right), that
correspond to the maximal and minimal angular positions of
the foil, respectively. Corresponding movies are available as
Supplemental Materials [37]. In these figures, the vorticity is
displayed in the laboratory frame of reference (ex,ey). The
four flapping frequencies used in Fig. 3 correspond to four
specific patterns observed in the wake. The flow frequency is
always equal to the flapping frequency of the foil.

For the lowest flapping frequency f = 0.1 [see Figs. 3(a)
and 3(b)], the wake flow pattern is similar to the classical
Bénard-Von Karman vortex street obtained without pitching.
Negative (black) and positive (white) vortices are alternately
shed during the upstroke and downstroke phases of the flapping
motion. In the far-wake, the core of negative and positive
vortices lies above and under the x axis, respectively. When
the flapping frequency is equal to the natural flow frequency,
i.e., f = f0, no vortex lock-in behavior is observed. When
further increasing the flapping frequency, the spatiotemporal
structure of the wake flow changes dramatically.

For the frequency f = 0.35 [see Figs. 3(c) and 3(d)],
negative and positive vortices of larger magnitude are shed
during the upstroke and downstroke phase of the flapping
motion. Unlike for the classic Bénard-Von Karman vortex
street, the cores of the negative and positive vortices now
lie below and above the x axis, respectively. This is the
characteristic pattern of the reverse Bénard-Von Karman
vortex street [15]. Interestingly, the vorticity fields satisfy the
spatiotemporal symmetry ωz(x,y,t) = −ωz(x,−y,t + T/2),
at any position (x,y) downstream of the wing. Around the
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FIG. 3. Instantaneous vorticity fields for the flapping frequency
f = 0.1 (a, b), f = 0.35 (c, d), f = 0.43 (e, f), and f = 0.45
(g, h) at t = T/4 (left) and t = 3T/4 (right). Black and white denote
negative and positive values, respectively.

wing, this relation is not valid as some positions (x,y) belong
to the flow or to the solid depending on the flapping motion.
However, when considering the spatial position written in the
rotating frame of reference, the spatiotemporal symmetry,

(u,v,p)(X,Y,t) = (u,−v,p)(X,−Y,t + T/2),

ωz(X,Y,t) = −ωz(X,−Y,t + T/2), (6)

holds for all points (X,Y ). This spatiotemporal symmetry
breaks when the flapping frequency is increased.

For the frequency f = 0.43 shown in Figs. 3(e) and 3(f)
the wake exhibits an upward deviation. Positive and negative
vortices are still alternately shed from the trailing edge but they
are now convected downstream along a direction not aligned
with the streamwise axis y = 0.

For the frequency f = 0.45, the deviation is even more
pronounced, as seen in Figs. 3(g) and 3(h). Positive and
negative vortices, instead of being arranged in an array of
monopolar structures as for lower frequencies, now form an
array of dipolar structures [20].

Most of the results presented in this study exhibit an upward
deviation. However, the downward deviation is also possible
and illustrated in Fig. 4(b) next to the upward deviation in
Fig. 4(a). In both cases, the spatiotemporal symmetry Eq. (6)
is broken. During our simulations, upward or downward
deviations were obtained by starting the pitching of the wing
to the top or the bottom, respectively. The selection of the
deviation’s direction seems to depend on the initial condition
but was not investigate in our study. More details can be found
on this matter in [16–18].

FIG. 4. Instantaneous vorticity fields for f = 0.43 at t = T/4
showing an upward (a) and downward (b) deviation of the wake.
Black and white denote negative and positive values, respectively.

The deviation and antisymmetry of the wake flow can be
analyzed further by performing a temporal Fourier decompo-
sition of the periodic vorticity. This decomposition writes

ωz(x,t) = 〈ωz〉(x) +
∑
k�1

(ωz
k(x)eik2πt/T + c.c.), (7)

where 〈ωz〉 is the (real) mean vorticity and ωz
k is the kth

(complex) Fourier component. In particular, the real and
imaginary parts of the first Fourier component ωz

1 extract
the component of the flow which oscillates at the flapping
frequency f = 1/T . As long as the flow solution remains
T -periodic, the Fourier components are easily computed as

ωz
k(x) = 1

T

∫ t0+T

t0

ωz(x,t)e−ik2πt/T dt. (8)

Figure 5 displays the mean (left) and first Fourier component
(right) of the vorticity field for the flapping frequencies

FIG. 5. Vorticity field of the mean flow (left) and the real part of
the first Fourier component (right) for the flapping frequency f = 0.1
(a, b), f = 0.35 (c, d), f = 0.43 (e, f), and f = 0.45 (g, h). Black
and white denote negative and positive values, respectively. The foil
at zero incidence is shown in red.

063111-4



LINEAR AND NONLINEAR PERTURBATION ANALYSIS OF . . . PHYSICAL REVIEW E 95, 063111 (2017)

f = 0.1 (a, b), f = 0.35 (c, d), f = 0.43 (e, f), and f = 0.45
(g, h). For f = 0.1 in Fig. 5(a), the mean vorticity field is
antisymmetric with respect to the x axis; i.e., 〈ωz〉(x,−y) =
−〈ωz〉(x,−y). Positive and negative values are observed in
the lower and upper parts of the wake, respectively. This is
typical of dragging wake flow profiles, with a negative upper
shear layer and a positive lower shear layer. For f = 0.35 in
Fig. 5(c), the mean vorticity field remains antisymmetric with
respect to the x axis. However, negative and positive values
are now observed in the lower and upper parts of the wake,
respectively. This is typical of mean jet flow profiles, with a
positive upper shear layer and a negative lower shear layer.
Around the foil, the signs of the shear layers are opposite: a
negative upper shear layer and a positive lower shear layer.
The inversion of the sign of the two shear layers occurs around
the trailing edge and is characteristic of propulsive flapping
bodies [16,38]. For both these frequencies, the vorticity of
the first Fourier component in Figs. 5(b) and 5(d) is symmetric
with respect to the x axis; i.e., ωz

1(x,−y) = ωz
1(x,−y), unlike

the mean vorticity. The vorticity of the first Fourier component
exhibits its strongest values downstream of the foil.

In the f = 0.43 case [Figs. 5(e) and 5(f)], the mean vorticity
field is stronger in magnitude and clearly deviated upward.
This deviation is also visible on the first Fourier component
and on higher-order Fourier components, not shown here. The
spatial anti-symmetry of the mean vorticity field as well as the
symmetry of the vorticity of the first Fourier components are
broken because of this lateral deviation of the wake. It is even
more so the case for f = 0.45 [Figs. 5(g) and 5(h)].

The deviation of the wake-flow described above impacts the
aerodynamic forces exerted on the foil. The instantaneous drag
and lift coefficients are defined as Cx(t) = 2Fx(t) and Cy(t) =
2Fy(t), with Fx and Fy the components of the nondimensional
aerodynamic force. When the flow satisfies the spatiotemporal
symmetry Eq. (6), the drag and lift coefficients satisfy

Cx(t + T/2) = Cx(t) , Cy(t + T/2) = −Cy(t), (9)

i.e., the instantaneous drag coefficients are equal in the
upstroke and downstroke phases of the foil, while the instan-
taneous lift coefficients are of opposite sign. This property is
proved in Appendix C.

Figure 6 displays the time-evolution of the system in a
Cx(t)/Cy(t) phase diagram. The trajectory is a closed orbit,
which is consistent with the fact that the flow is always
periodic. Note that the lift coefficient is one order of magnitude
larger than the drag coefficient as previously reported [39].
For f = 0.35 (solid line) the trajectory has a butterfly shape,
symmetric with respect to the Cy = 0 axis, implying that the
symmetry Eq. (9) is verified. Regarding the f = 0.43 case
(dashed line), first we notice that during the cycle, both the lift
and drag reach larger values. Most importantly, the butterfly
shape of the trajectory in the (Cx,Cy) plane is no longer
symmetric with respect to the Cy = 0 axis, implying that the
symmetry Eq. (9) is broken. This symmetry breaking is even
more pronounced for the f = 0.45 case (dash-dotted line).

Along with the instantaneous values of the lift and drag
coefficients, Fig. 6 also displays their values averaged over one
cycle. For all three cases displayed, the mean drag coefficient
is negative, implying that the flapping foil is in the propulsive
regime. The mean lift is strictly zero for f = 0.35 and the

FIG. 6. Instantaneous drag versus lift coefficients over one
flapping period for f = 0.35 (solid line), f = 0.43 (dashed line)
and f = 0.45 (dash-dotted line). The mean positions of the drag and
lift coefficients are indicated by the black circle (f = 0.35), diamond
(f = 0.43), and square (f = 0.45).

symmetry relations Eq. (9) are satisfied. On the other hand,
for f = 0.43 and f = 0.45, the spatiotemporal symmetry
is broken, resulting in nonzero mean lift. Interestingly, the
mean lift is found to be positive (respectively, negative)
when the wake is deviated upward (respectively, downward),
in agreement with results of previous studies [40–42]. As
explained by Cleaver et al. [40], the sign of the mean lift
is the same as the deviation direction because of a low (mean)
pressure region existing on the same side of the foil as the
deviation direction. This low-pressure region is induced by
vortices detaching from the leading edge and traveling till the
trailing edge, as visible on the top of the foil in Fig. 3(g)
and 3(h). The pressure lift and drag being two orders of
magnitude larger than their respective viscous components,
this low-pression region indeed explains why the lift force is
oriented on the same side as the wake is deviated.

The evolution of the mean lift and drag coefficients is
examined in Fig. 7 as a function of the flapping frequency.
Three successive transitions are identified in the range 0.3 �
f � 0.5. First there is a transition from a drag regime to a thrust
regime, which occurs at f ∼ 0.31 according to Fig. 7(b). This

FIG. 7. Mean lift and drag coefficients as a function of the
flapping frequency.
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first transition was examined in Refs. [14,19] and is not the
object of the present paper.

The second transition is the spatiotemporal symmetry-
breaking leading to nonzero 〈Cy〉 occurring for f ∼ 0.39.
This transition separates the regimes I and II in Fig. 7,
which correspond to nondeviated wakes and deviated wakes,
respectively. As already stated, both upward and downward
deviations are equally possible and correspond to positive
and negative 〈Cy〉, respectively. Both cases are displayed in
Fig. 7(a), which strongly suggests that the onset of the wake
deviation is due to a supercritical bifurcation of the periodic
flow. This will be examined in Sec. III by performing a linear
Floquet analysis of the symmetric periodic flow.

A third transition is eventually observed in Fig. 7 for
f � 0.435 where the mean lift reaches much higher values
and the mean drag experiences a change of slope. This last
transition separates the regimes II and III in Fig. 7, the latter
corresponding to strongly deviated wakes. This transition will
be examined in Sec. IV, where it is argued that it results from
nonlinear effects.

III. FLOW BIFURCATION AND DEVIATION

To investigate the deviation of the periodic wake-flow as
a bifurcation problem, it is first required to compute the
symmetry-preserving base flow solution above the bifurcation
threshold. A method is introduced in Sec. III A that aims at
preserving the spatiotemporal symmetry of the flow field to
compute this unstable base flow. The linear stability of this
symmetric base flow is then studied in Sec. III B by performing
a Floquet stability analysis.

A. Symmetry-preserving method

To present the method, let us first introduce the operator S,
which acts on a velocity field u and extracts the component
satisfying the spatiotemporal symmetry Eq. (6). This operator
is defined by

us = Su = 1

2

(
u(x,y,t) + u(x, − y,t − T/2)
v(x,y,t) − v(x, − y,t − T/2)

)
, (10)

where us denotes the symmetric component. Similarly, the
antisymmetric component ua [with respect to the spatiotem-
poral symmetry Eq. (6)] can be extracted using the operator A
defined by

ua = Au = 1

2

(
u(x,y,t) − u(x,−y,t − T/2)
v(x,y,t) + v(x,−y,t − T/2)

)
. (11)

Then the flow can then be decomposed as

u = us + ua. (12)

Note that the symmetric and antisymmetric components satisfy
Sus = us ; Sua = 0;Aua = ua;Aus = 0. Inserting the above
decomposition into the Navier-Stokes Eqs. (2), (3), and (5)
yields the system of coupled equations governing the dynamics
of the symmetric and antisymmetric components,

∂us

∂t
= R(us ,ps ; θ (t)) − (ua · ∇)ua,

(13)
∂ua

∂t
= L(us ; θ (t))ua,

supplemented with the wall boundary conditions

us(Xw,t) = w(Xw,θ (t)), ua(Xw,t) = 0. (14)

The nonlinear equation governing the symmetric component
is the original equation forced by an additional nonlinear
advection term. The antisymmetric component is governed
by a linear equation, where the linear operator L is defined as

L(us ; θ )ua = −
(

dθ

dt
ez

)
× ua − ((us − w(X,θ )) · ∇)ua

−(ua · ∇)us − ∇pa + 1

Re
�ua, (15)

and is the linearization operator of the right-hand side operator
R around the symmetric velocity component us . Interestingly,
if the antisymmetric component vanishes (i.e., ua = 0), the
symmetric component satisfies the original Eq. (2). The
symmetry-preserving method consists in driving the antisym-
metric component to zero, by adding a damping term to the
second Eq. (13). The new system of equations writes

∂us

∂t
= R(us ,ps ; θ (t)) − (ua · ∇)ua,

∂ua

∂t
= L(us ; θ (t))ua − χua, (16)

where χ is a damping parameter. The theoretical choice of this
parameter depends on the eigenvalues of largest growth rate
of the linear operator L. χ should be chosen so as to stabilize
all of these eigenvalues. The eigenvalues of (L − χI) are then
all of negative growth rate and the antisymmetric component
is driven to zero. In the following, the solution satisfying the
spatiotemporal symmetry (also called the base flow) is denoted
U s (Ua = 0) and satisfies

∂U s

∂t
= R(U s ,Ps ; θ (t)),

U s(Xw,t) = w(Xw,θ (t)). (17)

In practice, the eigenvalues of largest growth rate are not
known and a trial-and-error method is used to determine values
of the parameter χ . Its effect is discussed in Appendix B.

For the frequency f = 0.43, the solution of the original
Eqs. (2) and (5) is a deviated wake as seen in Fig. 3. Starting
from this solution, the new system of Eqs. (16) is solved
with the damping parameter χ = 0.3. As a consequence, the
antisymmetric component vanishes, as shown in Fig. 8, where
its norm is given as a function of time. Snapshots and first
Fourier components of the solution are displayed in Fig. 9.
A movie of the nondeviated wake for f = 0.43 is available
as Supplemental Material [37]. The spatiotemporal symmetry
of the solution is clearly visible in the two snapshots of the
vorticity separated by T/2. The suppression of the deviation
is clearly observed on the mean vorticity field and on the first
Fourier component.

Using this symmetry-preserving method for several fre-
quencies, the mean drag and lift coefficients of the solutions
are computed and shown in Fig. 10 with black circles. Results
obtained without the symmetry-preserving method, already
shown in Fig. 7, are recalled in the figure with white circles.
The left plot displaying 〈Cy〉 demonstrates that the symmetry-
preserving method is efficient to compute a symmetric base

063111-6



LINEAR AND NONLINEAR PERTURBATION ANALYSIS OF . . . PHYSICAL REVIEW E 95, 063111 (2017)

FIG. 8. Evolution of the symmetric (solid) and antisymmetric
(dashed) component as a function of time with χ = 0.3 at f = 0.43.
Simulation is started from converged deviated wake.

flow even in the range f � 0.39, where it is unstable and
cannot be accessed using temporal integration of the starting
equations, which only give access to the asymmetric states.
The right plot displaying 〈Cx〉 shows that for 0.39 � f � 0.43
the symmetry-breaking has almost no impact on the drag (the
open circles being superposed to the black ones), while it has
a strong impact above the transition for f � 0.44, which will
be examined in Sec. IV.

For f � 0.39, three branches of periodic solutions exist:
one branch of symmetric (or nondeviated) periodic solutions
characterized by zero mean lift and two branches of asym-
metric (or deviated) periodic solutions characterized by mean
lift of opposite sign. To complete this bifurcation diagram, the
stability of the symmetric solutions is addressed in the next
paragraph using a Floquet stability analysis.

B. Floquet stability analysis of the nondeviated wake flow

The stability of the time-periodic base flow U s is deter-
mined by investigating the long-term dynamics of infinitesimal
perturbations u′. The flow field is first decomposed as u =
U s + εu′ with ε � 1 and this decomposition is introduced
into the Navier-Stokes Eqs. (2). Recalling that the base flow
is governed by Eq. (17) and neglecting the quadratic terms in
ε, we obtain the equation governing the dynamics of linear

FIG. 9. Vorticity snapshots (top) of the non deviated wake at
f = 0.43 obtained using χ = 0.3. Vorticity field averaged in time and
first temporal Fourier component (bottom). Black and white denote
negative and positive values respectively. The foil at zero incidence
is shown in red.

FIG. 10. Mean lift and drag coefficients as functions of the flap-
ping frequency f . ◦, asymmetric solutions; •, symmetric solutions.

perturbations

∂u′

∂t
= L(U s)u′, (18)

with the wall boundary condition u′(Xw,t) = 0. Note that
symmetric perturbations u′

s = Su′ and antisymmetric pertur-
bations u′

a = Au′ are both solutions of the above equation.
The linear operator L(U s) is T -periodic because the base flow
U s is T -periodic. Thus, according to Floquet theory [43], any
solution of Eq. (18) can be decomposed into the sum

u′(x,t) =
∑

k

ûk(x,t)eλkt , (19)

where ûk are T -periodic functions, called the Floquet modes
of L, and the complex numbers λk are the Floquet exponents.
The Floquet multipliers μk = eλkT correspond to the temporal
growth or decay of the Floquet modes over one period T .
The stability of the base flow is determined by examining
the spectrum of Floquet multipliers. A Floquet mode is
stable (respectively, unstable) when the corresponding Floquet
multiplier lies inside (respectively, outside) the unit circle
|μk| < 1 (respectively, |μk| > 1) in the complex plane. When
one Floquet mode becomes unstable, the time-periodic base
flow becomes unstable.

The numerical method used to compute the Floquet modes
and multipliers is similar to that used in Refs. [44,45]. The
evolution of the linear perturbation u′ over one period T is
formally rewritten

u′(t0 + T ) = Pu′(t0), (20)

where P is the propagator over one period, also known as
the linearized Poincaré map. The action of this propagator
on the perturbation u′(t0) at the arbitrary time t0 is obtained
by integrating the linearized Eq. (18) in time from t0 to
t0 + T . The eigenvalues of the propagator P are precisely
the Floquet multipliers μk of L, and the eigenvectors of P
correspond to the Floquet modes û(x,t0) of L for the arbitrary
time t0. The time-periodic evolution of the Floquet mode
is then determined by temporal integration of Eq. (18) over
one period starting with û(x,t0) as the initial condition. The
Floquet mode is the solution of this temporal integration,
corrected by the multiplicative factor e−λkt to account for the
instantaneous growth or decay. Arnoldi method was used to
compute the eigenvalues of largest amplitude [46]. A serial
implementation using the modified Gram-Schmidt algorithm

063111-7



DAMIEN JALLAS, OLIVIER MARQUET, AND DAVID FABRE PHYSICAL REVIEW E 95, 063111 (2017)

FIG. 11. Spectrum of the Floquet multipliers at f = 0.4. The
dominant mode’s Floquet multiplier, in black, is μ1 � 1.046 (a).
Evolution of Floquet multiplier magnitude |μ| with the flapping
frequency f (b). The line |μ| = 1 corresponds to marginal stability
of Floquet modes. The dominant mode is always real.

for the orthogonalization process is used to generate an
approximation of n eigenvectors. All computed modes were
normalized by their total kinetic energy.

First, results of the stability analysis are shown for the
flapping frequency f = 0.4. The largest Floquet multipliers
are displayed in Fig. 11(a). Most of the eigenvalues are stable,
but one eigenvalue marked by the black circle is unstable
as it lies outside the unit circle. As this eigenvalue is real
(μ1 = 1.046 + 0.0i), the Floquet mode is synchronous with
the base flow and therefore does not modify its periodicity.
The evolution of this eigenvalue with the flapping frequency
is shown in Fig. 11(b). The Floquet mode becomes unstable
for the critical frequency fc ∼ 0.385. This critical frequency
is consistent with the observation of wake deviation and the
apparition of mean lift in Fig. 7, which define the transition
between regimes I and II. For every flapping frequency tested,
the leading Floquet mode was found to be real and therefore
synchronous with the base flow. No other unstable modes were
detected for frequencies below f = 0.46.

Figure 12 displays two snapshots of the dominant Floquet
mode’s vorticity separated by T/2. A movie of this mode
dynamics is available as Supplemental Material [37]. Vorticity
dipoles are emitted at the trailing edge and grow spatially and
temporally while convected downstream. Negative vortices
(in black) are aligned with the central line, whereas positive
vortices (in white) are alternately above and below the
negatives ones. It can also be seen that wz(X,Y,T /4) =
wz(X,−Y,3T/4). This property has been verified for all t

over one flapping period and demonstrates that the leading
Floquet mode breaks the spatiotemporal symmetry Eq. (6)

FIG. 12. Vorticity snapshots of the dominant Floquet mode at
flapping frequency f = 0.45 and time t = T/4 (a) and t = 3T/4 (b).
Black and white denote negative and positive values, respectively.

FIG. 13. Vorticity snapshots of (a) the base flow, (b) the Floquet
mode, and (c) a zoom of their superimposition at f = 0.43 and t = 0.
Black and white colors [in (a), (b), and (c)], and dotted and continuous
lines [in (c)] denote negative and positive values, respectively.

and is therefore of the form u′
a . To explain the link between

the computed Floquet mode and the deviation of the wake, we
provide, in Fig. 13, a snapshot of (a) the base flow, (b) the
leading Floquet mode, and (c) their superimposition inside the
dotted square (the base flow is represented with isolines and
the mode with isocontours). First, a certain synchronization
between the two flows can be observed. In the whole wake and
at all times, a vortex of the base flow is synchronized with a
dipole of the linear mode.

A dipolar perturbation of a monopolar vortex is a classic
structure called a displacement mode [47–49]. It is well known
that this structure is associated with a displacement of the
vorticity centroid. More specifically, consider the negative
vorticity monopole located at the left of the dotted square.
The corresponding dipole in the Floquet mode has negative
vorticity (black) in the upper part and positive vorticity (white)
in the lower part. The superposition strengthens the top part
of the monopole and weakens its lower part, resulting in a
net displacement of the monopole in the upward direction.
The same argument can be applied to the positive vorticity
monopole located at the right of the dotted square, which
is also displaced upward. Thus, the structure of the Floquet
mode is able to explain the deviation of the whole wake in the
upward direction. Note that as the amplitude of the linear mode
is arbitrary, changing its sign leads to the equally probable
deviation of the wake in the downward direction.

The structure of the Floquet mode can also be analyzed
using temporal Fourier decomposition, just as was done for
the flow obtained through nonlinear simulations in Sec. II.
Figure 14 displays the mean vorticity (a) and the first

FIG. 14. Vorticity field averaged in time over one period and first
temporal Fourier component at f = 0.43. Black and white denote
negative and positive values, respectively. The foil at zero incidence
is shown in red.
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Fourier component (b), which are, respectively, symmetric and
antisymmetric with respect to the x axis. This is the opposite
of the base flow presented in Fig. 9, confirming that the mode
does break the symmetry Eq. (6). Three alternate vorticity
layers are present in the mean wake, with negative vorticity
on the x axis. By superimposing it with the mean wake of
the base flow [in Fig. 9(c)], and using the same arguments
as for the instantaneous superimposition, the mean wake of
the mode will strengthen both the positive upper and negative
lower shear layers on their tops and weaken their bottoms. This
will result in a deviated jet-like mean wake, like the bottom-left
frame of Fig. 5.

IV. NONLINEAR EFFECTS

The linear stability analysis detailed in the previous section
explains the onset of the small deviation observed in regime
II (0.385 � f � 0.43). However, it does not provide any
explanation for the large deviation, the sudden increase of
thrust and lift obtained in regime III (f � 0.44). To better
understand the large deviation and corresponding increase
of thrust and lift obtained in regime III, the effects of
nonlinearity are now analyzed. The nonlinear perturbation is
defined as the difference between the asymmetric flow and the
symmetric base flow, i.e., u′′ = u − U s . Linear and nonlinear
perturbations are first compared for frequencies f = 0.43 and
f = 0.45, which correspond to regimes II and III, respectively.

For f = 0.43, snapshots of the linear and nonlinear
perturbations are shown in Figs. 15(a) and 15(c). The linear
perturbation is an array of dipolar structures aligned with
the x axis and centered in the monopolar structures of the
base flow, as described previously. These dipolar structures
grow in time, and in space when moving downstream. The
spatial growth is quantified by examining Fig. 15(e), which
shows the streamwise evolution of the kinetic perturbation
energy integrated in y and averaged over one flapping

FIG. 15. (a–d) Snapshots of the vorticity field for (a, b) linear and
(c, d) nonlinear perturbations at time t = T/4 and frequency (a, c)
f = 0.43 and (b, d) f = 0.45. (e, f) y-integrated kinetic energy of
the linear (dashed) and nonlinear (solid) perturbations as a function
of the streamwise coordinate for (e) f = 0.43 and (f) f = 0.45.

period. The spatial growth of the linear perturbation (dashed
line) is quasiexponential. Note that its value depend on the
normalization of the Floquet mode (unitary total kinetic energy
in our study). In order to be the same order of magnitude as the
nonlinear perturbation, the y-integrated kinetic energy of the
linear perturbation has been mutliplied by 104. Regarding the
pattern of the nonlinear perturbation shown in Fig. 15(c), we
observe that it is very similar to that of the linear perturbation
in the near-wake. The spatial growth of the linear and nonlinear
perturbations are also very similar for x � 10 [Fig. 15(e)]. In
this region, the effect of nonlinearities is therefore negligible.
However, in the far wake (for x � 15), the kinetic energy of the
nonlinear perturbation tends toward a constant value, unlike
the linear perturbation, which still grows in space. Clearly
the effect of nonlinearities is to saturate the spatial growth
of the perturbation. This nonlinear saturation comes with a
very specific pattern in the far-wake region [see Fig. 15(c)].
Two arrays of vortical structures are now visible. One array of
monopolar structures remains aligned with the x axis, while the
other is slightly deviated upward. In this far-wake region, the
monopolar structures in the nondeviated array are of opposite
sign to the monopolar structures of the base flow [compare
Fig. 15(c) with Fig. 9]. Therefore, when adding the nonlinear
perturbation to the base flow, the array of monopolar structures
disappears in the far wake and only the deviated array of dipolar
structures remains in the instantaneous solution. As such, a
second effect of nonlinearities is to increase the deviation of
the wake.

Let us now examine the nonlinear effects for the larger
frequency f = 0.45 in regime III, where large deviation and
thrust are obtained. Snapshots of the linear and nonlinear
perturbations are shown in Figs. 15(b) and 15(d), and the
streamwise evolution of the kinetic energy is displayed in
Fig. 15(f). The region where the linear and nonlinear spatial
growths match, is limited to the very near-wake region. For
x � 7, the saturation occurs and the two arrays of vortical
structures are visible in the wake. The array of dipolar
structures is more deviated than for f = 0.43 and the dipolar
structure is more pronounced.

When increasing the flapping frequency, nonlinear sat-
uration occurs closer to the wing. This may impact the
aerodynamic forces exerted on the wing and explain the
increase of thrust observed in regime III. First, we note that
a linear antisymmetric perturbation generates a mean lift
force but does not create a mean drag and thrust force (see
details in Appendix Sec. C). Therefore, the additional thrust
observed for f � 0.44 is necessarily associated to symmetric
flow components. To better understand how nonlinear terms
produce a symmetric flow component, the equations governing
the dynamics of the symmetric and antisymmetric components
are examined. To that aim, the nonlinear perturbation is
decomposed into its symmetric u′′

s and antisymmetric u′′
a

components. They are defined, respectively, by Su′′
s = u′′

s and
Su′′

a = 0. Introducing this decomposition into Eq. (13) yields
the following system of coupled nonlinear equations,

∂u′′
s

∂t
= L(U s ; θ (t))u′′

s − [u′′
s · ∇]u′′

s − [u′′
a · ∇]u′′

a

∂u′′
a

∂t
= L(U s ; θ (t))u′′

a − [u′′
a · ∇]u′′

s − [u′′
s · ∇]u′′

a, (21)
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FIG. 16. Evolution of the nonlinear perturbations’ mean kinetic
energy (integrated in the transverse direction) in the streamwise
direction for f = 0.43 (a) and f = 0.45 (b): u′ (black solid), u′

s

(red dashed), u′
a (blue dash-dotted).

where the first and second equations govern the nonlinear
dynamics of the symmetric and antisymmetric components,
respectively. In addition to the linear operator L around the
periodic base solution U s , quadratic nonlinear terms appear
in the right-hand sides and couple the two dynamics. In the
linear regime, for which all quadratic terms are negligible, the
symmetric component decays in time while the antisymmetric
component grows in time. For large enough amplitude of
the antisymmetric component, its quadratic interaction with
itself in the first equation drives the development of a nonzero
symmetric component. The existence of such a symmetric
component influences in return the antisymmetric dynamics,
via the quadratic interactions between u′′

s and u′′
a in the second

equation of Eq. (21).
Let us examine now the spatial evolution of the symmetric

and antisymmetric components of the nonlinear perturbation
computed for the flapping frequencies f = 0.43 (regime II)
and f = 0.45 (regime III). The mean kinetic energy integrated
in the y direction is displayed in Fig. 16 for the nonlinear
perturbation (black solid line) and its symmetric (red dashed
line) and antisymmetric (blue dash-dotted line) components.
Results obtained for f = 0.43 and f = 0.45 are shown
in Figs. 16(a) and 16(b), respectively, and present similar
tendencies when progressing downstream. The antisymmetric
perturbation is amplified first while the symmetric one is
negligible, as can be expected in the linear regime. Then
the amplitude of the antisymmetric perturbation saturates
while the symmetric one increases. As explained above, the
transfer of energy from the antisymmetric component to the
symmetric component is ensured by the quadratic interaction
of u′′

a with itself. For a critical streamwise position xc,
the amplitude of the symmetric perturbation becomes larger
than that of the antisymmetric one. Further downstream, the
antisymmetric component decreases in amplitude, while the
symmetric component continues to increase, then saturates
before decreasing. The evolution of the critical position xc

with the flapping frequency is displayed in Fig. 17 in the range
0.4 < f < 0.45. For f � 0.434 (regime II), xc decreases
linearly with the flapping frequency. For f � 0.438 (regime
III), the critical position is constant and almost equal to the
position of the trailing edge, shown with the dashed line.
The transition from regime II to regime III corresponds to the
predominance of the symmetric component of the perturbation
in the vicinity of the wing.

FIG. 17. Evolution of xc as a function of f . The trailing edge
position is indicated with a dashed line.

To explore further the link between aerodynamic forces and
symmetries of the nonlinear perturbation, Fig. 18 shows the
mean lift and drag induced by the symmetric (red circles) and
antisymmetric (blue diamonds) components of the nonlinear
perturbation. Let us first remark that the mean lift of the
symmetric component is equal to zero [red curve in Fig. 18(a)],
while the mean drag of the antisymmetric component is also
zero [blue curve in Fig. 18(b)]. These results are inferred from
the spatiotemporal symmetry properties in Appendix C, and
here, are confirmed numerically. The mean lift induced by
the nonlinear perturbation is due only to its antisymmetric
component [blue curve in Fig. 18(a)], while the mean drag
is due solely to its symmetric component [red curve in
Fig. 18(b)]. The transition from regime II to regime III
when increasing the flapping frequency is clearly induced
by nonlinear effects and can now be explained as follows.
When the flapping frequency is increased, the effect of the
nonlinear terms is to create a symmetric component with
larger and larger amplitudes close to the wing. This symmetric
component produces a mean thrust force, which explains the
change of slope in the total mean drag seen in Fig. 7(b). Its
quadratic interaction with the antisymmetric component also
alters the latter and results in a strong mean lift correction.
This explains the change of slope in the total mean lift seen in
Fig. 7(a) between regimes II and III.

To our knowledge, this is the first time those two distinct
deviated regimes are clearly highlighted. Godoy-Diana’s work
[20] also presented a change of slope in the evolution of
the angle of deviation with increasing flapping frequency.
However, this change of slope was associated with significant

FIG. 18. Mean lift and drag coefficients for the symmetric u′′
s

(red circles) and antisymmetric u′′
a (blue diamonds) components as a

function of the flapping frequency f .
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error bars, which makes it questionable whether this is the
same phenomenon.

Finally, the transition between the two regimes is also
related to a change in the wake structure. As can be seen in
Figs. 3(g) and 3(h) for f = 0.45, successive counter-rotating
vortices approach each other in pairs to form dipolar structures.
For lower unstable frequencies such as f = 0.43, this is much
less notable and occurs only far from the foil as seen in
Figs. 3(e) and 3(f). This dipolar structure was previously
noted by Godoy-Diana et al. [20]. They derived a quantitative
criterion based on the phase velocity produced by two
successive counterrotating vortices to identify the deviation
threshold. They showed that the dipolar organization of the
wake promotes the deviation, without ruling on any causal rela-
tionship. Later, Zheng et al. [18] derived a similar model based
on the competition between successive phase velocities and
attributed the wake deviation to the vortex pairing in the wake.
Our study shows the dipolar aggregation develops in the wake,
far from the foil in regime II. For increasing flapping frequency,
the aggregation is visibly closer to the foil due to nonlinear
amplification. The clear aggregation of vortices directly after
the trailing edge marks the transition with regime III. These
observations imply that the dipolar aggregation, though shown
in these studies to be favorable to deviation, does not cause it. It
is a secondary effect of the deviation, enhancing it through the
nonlinear coupling of symmetric and antisymmetric perturba-
tions. Ultimately, this nonlinear coupling results in a strong
increase of the deviation angle, the mean lift and thrust.

V. CONCLUSION

In this paper, we investigated the deviation of the wake
behind a flapping foil. A flow symmetry-preserving method
was specifically developed to compute the unstable nonde-
viated wake. This method is based on the decomposition of
the governing equations into a set of two equations governing
the dynamics of the nondeviated wake and the perturbations
evolving around it. Then, the second equation is stabilised
to suppress the perturbations that break the spatiotemporal
symmetry inherent to the flapping motion. A Floquet stability
analysis of the time-periodic nondeviated wake showed the
existence of a synchronous antisymmetric mode becoming
unstable at the critical flapping frequency where deviation
occurs. This Floquet mode is an array of counter-rotating
dipoles that act as a succession of displacement modes. Both
the instantaneous and the averaged-in-time effects of the mode
are to displace the nondeviated wake away from the streamwise
direction, resulting in a deviated wake. Finally, nonlinearities
are associated with a dipolar aggregation of vortices in the
wake. As nonlinear effects develop closer to the foil with
increasing flapping frequency, they ultimately occur at the
trailing edge, which results in the transition to a third regime
with a much stronger deviation of the wake. This third regime
is also associated with a strong increase of mean thrust and
lift which are associated respectively with symmetric and
antisymmetric perturbations around the foil.
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APPENDIX A: VALIDATION OF THE NONLINEAR CODE
AND CONVERGENCE TESTS

Different tests are used in order to validate the present
study. First of all, we validate the numerical method by
reproducing the case of a laminar flow generated by an
oscillating circular cylinder in an initially quiescent fluid. This
case was described and studied experimentally by Dütsch et al.
[50]. The periodic oscillation of the cylinder follows the law
x(t) = −Asin(2πf t), where A and f stand for the oscillating
amplitude and frequency, respectively. Two nondimensional
numbers are used to describe this case: the Keulegan-Carpenter
number KC = U/f D and the Reynolds number Re = UD/ν,
where U is the maximum velocity of the cylinder, D is the
cylinder diameter, and ν is the fluid kinematic viscosity. We
reproduce some results obtained experimentally by Dütsch
et al. [50] and numerically by Guilmineau et al. [51] and
Hosseinjani et al. [52], at Re = 100 and KC = 5.

In Fig. 19 we show vorticity isolines, which are compared
to the numerical results of Guilmineau et al. at two different
moments t = 0 and t = 19T/72 of the oscillation. The results
compare very well.

Additionally, Fig. 20 shows the horizontal velocity u along
the transverse direction y at x = −0.6D at two different
moments of the oscillating period T . The profiles obtained
with the present method (black line) agree well with the
experimental results of Dütsch et al. (black squares) and
are almost perfectly superposed with the numerical results
of Hosseinjani et al. (blue line). These results show both
qualitative and quantitative validity of our numerical method.

In a second time, we show a large enough computational
domain has been chosen to ensure good values of the
aerodynamic forces. On this study case, we test four different
domains, which size is specified by their radius R. The
same refinement has been used for the four meshes. Three
frequencies, f = 0.35, f = 0.42, and f = 0.44, were tested,
corresponding to the three regimes defined in the paper,
respectively.

FIG. 19. Vorticity isolines for two different instants t . Guilmineau
et al. (2002) at t = 0 (a) and t = 19T/72 (c). Present method at t = 0
(b) and t = 19T/72 (d).
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FIG. 20. The x-velocity component in the transverse direction
y at x = −0.6D for two different instants t of the flapping period
T . (a) t = T/2; (b) t = 7T/12. Dütsch et al. (1998): black squares.
Hosseinjani et al. (2015): blue dashed line. Present method: black
solid line.

In Table I is shown the mean drag coefficient 〈Cx〉 for each
domain and frequency. It is barely not affected by the domain
size for f = 0.35 and f = 0.42. For f = 0.44, it changes a
little more with 3% relative difference between the smallest
and largest domains.

In Table II is shown the mean lift coefficient 〈Cy〉 for each
domain and frequency. For f = 0.35 (regime I), the mean lift
is zero for every domain, which is consistent with the fact the
wake is not deviated. For f = 0.44 (regime III), the mean lift
is practically independent of the size of the domain for R > 30
(0.5% relative difference). For f = 0.42 (regime II), the mean
lift is more sensitive to the size of the domain with 3% relative
difference for the largest domains (R > 30). However, this
magnitude of error does not affect the distinction between the
different regimes. The lift coefficients are not distinguishable
when they are superimposed in a (〈Cy〉,f ) map as in Fig. 7.
For these reasons, we decided to use the mesh of size R = 30
since it is large enough to ensure good values of aerodynamic
forces and allow us to keep a satisfactory computational cost.

APPENDIX B: CHOICE OF DAMPING COEFFICIENT
χ IN THE SYMMETRY PRESERVING METHOD

As explained in Sec. III A, one needs an appropriate choice
of damping coefficient in order to stabilise the second equation
of system Eq. (16).

Figure 21 displays the time evolution of the antisymmetric
component’s norm for four values of the damping coefficient.
All four simulations have been initialized with the same

TABLE I. Evolution of the mean drag coefficient 〈Cx〉 for three
flapping frequencies f and four domain radius R.

f = 0.35 f = 0.42 f = 0.44

R = 20 −0.114 −0.374 −0.647
R = 25 −0.112 −0.371 −0.655
R = 30 −0.111 −0.370 −0.665
R = 35 −0.110 −0.369 −0.667
R = 40 −0.110 −0.369 −0.667

TABLE II. Evolution of the mean lift coefficient 〈Cy〉 for three
flapping frequencies f and four domain radius R.

f = 0.35 f = 0.42 f = 0.44

R = 20 0 0.029 3.246
R = 25 0 0.140 3.332
R = 30 0 0.225 3.431
R = 35 0 0.263 3.447
R = 40 0 0.273 3.450

deviated wake at f = 0.45. For χ = 0.02, the norm converges
toward T-periodic oscillations (of very small magnitude with
respect to its mean magnitude), indicating the antisymmetric
component is not damped and the wake remains deviated.
For the three other values of χ , and after a small transitory
stage, the norm decreases at almost constant speed towards
the zero-machine value. As can be observed, convergence
speed increases with the value of χ . Tests showed that there
is a minimum threshold of the damping coefficient above
which the antisymmetric component is suppressed. With
this flapping frequency, the threshold is between χ = 0.02
and χ = 0.1. Without the damping term, the linear operator
L governs the antisymmetric component dynamics, which
asymptotically will have a nonzero solution, if and only if the
real part of its leading eigenvalue is positive. The damping
coefficient counteracts this so that if χ is bigger than the
leading eigenvalue’s real part, the complete linear operator
L − χI will only have stable eigenvalues. Therefore, the only
asymptotic solution of the equation will be nil.

APPENDIX C: SYMMETRY PROPERTIES
FOR THE FORCES

In this section, more details are given concerning the
determination of the following symmetry properties respected
by the aerodynamic forces. For a symmetric flow field us ,
which respects the spatiotemporal symmetry property Eq. (6),

FIG. 21. Norm of the antisymmetric velocity component as
a function of time for increasing damping coefficients χ =
[0.02,0.1,0.2,0.3] at flapping frequency f = 0.45.
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the aerodynamic forces verify the following properties:

Fx(t − T/2) = Fx(t)

Fy(t − T/2) = −Fy(t) (C1)〈
Fy(t)

〉 = 0.

The first two equations imply that the instantaneous drag forces
are equal in the upstroke and downstroke phase of the foil,
while the instantaneous lift forces are of opposite sign. The
third equation states that the time-averaged lift coefficient is
zero.

The same can be done for an antisymmetric flow field ua ,
which respects the following symmetry properties instead:

(ua,va,pa)(X,Y,t) = (−ua,va,−pa)(X,−Y,t + T/2),

ωza(X,Y,t) = ωza(X,−Y,t + T/2). (C2)

In that case, the aerodynamic forces verify the following
properties:

Fx(t − T/2) = −Fx(t)

Fy(t − T/2) = Fy(t) (C3)

〈Fx(t)〉 = 0.

This time, the instantaneous lift forces are equal in the upstroke
and downstroke phase of the foil, while the instantaneous drag
forces are of opposite sign. The time-averaged drag is nil in
this case.

In order to show how properties Eqs. (C1) and (C3) are
obtained, we will focus on the first property of Eq. (C1):
Fx(t − T/2) = Fx(t). The others can be derived using the
same method. The aerodynamic forces F exerted by the fluid
on the foil are expressed as

F =
∫
�

−pn + 1

Re
[∇u + (∇u)T ]n d�, (C4)

where � is the foil boundary with the fluid, and n = (nx,ny)
denotes the unit outward normal. We take its horizontal

component,

Fx =
∫
�

−pnx + 1

Re

[
2∂xu nx + (∂yu + ∂xv)ny

]
d�. (C5)

Let us focus on the streamwise pressure forces F
p
x (t); the

following reasoning can be applied the same way to the viscous
component Fv

x (t):

Fp
x (t) =

∫
�

−p(x,y,t) nx(x,y,t) d�. (C6)

The outward unit normal respects the following symmetry
property, as a consequence of the symmetry of the foil with
respect to the X axis and its periodic motion,

(nx,ny)(x,y,t) = (nx,−ny)(x,−y,t + T/2). (C7)

Let us now assume that the flow field is symmetric. We can
introduce Eqs. (6) and (C7) into Eq. (C6),

Fp
x (t) =

∫
�

−p(x,−y,t − T/2) nx(x,−y,t − T/2) d�.

(C8)
By introducing a change of variables z = −y into Eq. (C8)
and using the fact that the foil is symmetric with respect to the
X axis, we find the following spatiotemporal property:

Fp
x (t) = Fp

x (t − T/2). (C9)

As explained previously, this procedure can be reproduced
for the viscous component of the streamwise force and for
the transverse force to obtain the spatiotemporal properties
in Eq. (C1) for any symmetric flow field us . Finally, the
property of zero time-averaged lift for any us is obtained by
integrating the second property of Eq. (C1) over one flapping
period. The properties for any antisymmetric flow field ua in
Eq. (C3) are obtained in the same way by using the property
of antisymmetry Eq. (C2).
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[31] E. Åkervik, L. Brandt, D. S Henningson, Jérôme Hœpffner,
O. Marxen, and P. Schlatter, Steady solutions of the Navier-

Stokes equations by selective frequency damping, Phys. Fluids
18, 068102 (2006).

[32] G. Mougin and J. Magnaudet, The generalized kirchhoff
equations and their application to the interaction between a
rigid body and an arbitrary time-dependent viscous flow, Int.
J. Multiphase Flow 28, 1837 (2002).

[33] F. Hecht, New development in freefem++, J. Numer. Math. 20,
251 (2012).

[34] J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers
for the generalized stokes problem, Int. J. Numer. Methods
Fluids 8, 869 (1988).

[35] R. Glowinski, Finite element methods for incompressible
viscous flow, Handbook Numer. Anal. 9, 3 (2003).

[36] W. Kress and P. Lötstedt, Time step restrictions using semiex-
plicit methods for the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Eng. 195, 4433 (2006).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.95.063111 for movies of DNS simulations,
base flow, and dominant Floquet mode dynamics.

[38] M. L. Yu, H. Hu, and Z. J. Wang, Experimental and numerical
investigations on the asymmetric wake vortex structures around
an oscillating airfoil, in 50th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposi-
tion, Nashville, Tennessee, AIAA Paper 2012-0299 (Ameri-
can Institute of Aeronautics and Astronautics, Reston, VA,
2012).

[39] A. Martín-Alcántara, R. Fernandez-Feria, and E. Sanmiguel-
Rojas, Vortex flow structures and interactions for the optimum
thrust efficiency of a heaving airfoil at different mean angles of
attack, Phys. Fluids 27, 073602 (2015).

[40] D. J. Cleaver, Z. Wang, I. Gursul, and M. R. Visbal, Lift
enhancement by means of small-amplitude airfoil oscillations
at low Reynolds numbers, AIAA J. 49, 2018 (2011).

[41] D. E. Calderon, D. J. Cleaver, I. Gursul, and Z. Wang, On the
absence of asymmetric wakes for periodically plunging finite
wings, Phys. Fluids 26, 071907 (2014).

[42] J.-E. Emblemsvag, R. Suzuki, and G. Candler, Numerical
simulation of flapping micro air vehicles, 32nd AIAA Fluid
Dynamics Conference and Exhibit (AIAA, 2002), p. 3197.

[43] G. Floquet, Sur les équations différentielles linéaires à coef-
ficients périodiques, in Annales scientifiques de l’École nor-
male supérieure, Vol. 12 (Gauthier-Villars, quai des Grands-
Augustins Paris, 1883), pp. 47–88.

[44] C. K. Mamun and L. S. Tuckerman, Asymmetry and hopf
bifurcation in spherical couette flow, Phys. Fluids 7, 80 (1995).

[45] D. Barkley and R. D. Henderson, Three-dimensional floquet
stability analysis of the wake of a circular cylinder, J. Fluid
Mech. 322, 215 (1996).

[46] Y. Saad, Numerical Methods for Large Eigenvalue Prob-
lems, Vol. 158 (Manchester University Press, Manchester,
UK, 1992).

[47] S. Leibovich, S. N. Brown, and Y. Patel, Bending waves on
inviscid columnar vortices, J. Fluid Mech. 173, 595 (1986).

[48] D. Fabre, D. Sipp, and L. Jacquin, Kelvin waves and the singular
modes of the lamb–oseen vortex, J. Fluid Mech. 551, 235 (2006).

[49] V. Brion, D. Sipp, and L. Jacquin, Linear dynamics of the lamb-
chaplygin dipole in the two-dimensional limit, Phys. Fluids 26,
064103 (2014).

[50] H. Dütsch, F. Durst, S. Becker, and H. Lienhart, Low-
Reynolds-number flow around an oscillating circular cylinder

063111-14

https://doi.org/10.2514/2.505
https://doi.org/10.2514/2.505
https://doi.org/10.2514/2.505
https://doi.org/10.2514/2.505
https://doi.org/10.2514/2.641
https://doi.org/10.2514/2.641
https://doi.org/10.2514/2.641
https://doi.org/10.2514/2.641
https://doi.org/10.1007/s00348-007-0430-z
https://doi.org/10.1007/s00348-007-0430-z
https://doi.org/10.1007/s00348-007-0430-z
https://doi.org/10.1007/s00348-007-0430-z
https://doi.org/10.1063/1.4760258
https://doi.org/10.1063/1.4760258
https://doi.org/10.1063/1.4760258
https://doi.org/10.1063/1.4760258
https://doi.org/10.1103/PhysRevE.77.016308
https://doi.org/10.1103/PhysRevE.77.016308
https://doi.org/10.1103/PhysRevE.77.016308
https://doi.org/10.1103/PhysRevE.77.016308
https://doi.org/10.1017/S0022112008005727
https://doi.org/10.1017/S0022112008005727
https://doi.org/10.1017/S0022112008005727
https://doi.org/10.1017/S0022112008005727
https://doi.org/10.1017/jfm.2012.390
https://doi.org/10.1017/jfm.2012.390
https://doi.org/10.1017/jfm.2012.390
https://doi.org/10.1017/jfm.2012.390
https://doi.org/10.1017/jfm.2014.310
https://doi.org/10.1017/jfm.2014.310
https://doi.org/10.1017/jfm.2014.310
https://doi.org/10.1017/jfm.2014.310
https://doi.org/10.1017/jfm.2012.314
https://doi.org/10.1017/jfm.2012.314
https://doi.org/10.1017/jfm.2012.314
https://doi.org/10.1017/jfm.2012.314
https://doi.org/10.2514/1.J052213
https://doi.org/10.2514/1.J052213
https://doi.org/10.2514/1.J052213
https://doi.org/10.2514/1.J052213
https://doi.org/10.1063/1.2148989
https://doi.org/10.1063/1.2148989
https://doi.org/10.1063/1.2148989
https://doi.org/10.1063/1.2148989
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1063/1.3251045
https://doi.org/10.1063/1.3251045
https://doi.org/10.1063/1.3251045
https://doi.org/10.1063/1.3251045
https://doi.org/10.1016/j.euromechflu.2003.05.002
https://doi.org/10.1016/j.euromechflu.2003.05.002
https://doi.org/10.1016/j.euromechflu.2003.05.002
https://doi.org/10.1016/j.euromechflu.2003.05.002
https://doi.org/10.1017/S0022112005008372
https://doi.org/10.1017/S0022112005008372
https://doi.org/10.1017/S0022112005008372
https://doi.org/10.1017/S0022112005008372
https://doi.org/10.1063/1.2211705
https://doi.org/10.1063/1.2211705
https://doi.org/10.1063/1.2211705
https://doi.org/10.1063/1.2211705
https://doi.org/10.1016/S0301-9322(02)00078-2
https://doi.org/10.1016/S0301-9322(02)00078-2
https://doi.org/10.1016/S0301-9322(02)00078-2
https://doi.org/10.1016/S0301-9322(02)00078-2
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1002/fld.1650080802
https://doi.org/10.1002/fld.1650080802
https://doi.org/10.1002/fld.1650080802
https://doi.org/10.1002/fld.1650080802
https://doi.org/10.1016/S1570-8659(03)09003-3
https://doi.org/10.1016/S1570-8659(03)09003-3
https://doi.org/10.1016/S1570-8659(03)09003-3
https://doi.org/10.1016/S1570-8659(03)09003-3
https://doi.org/10.1016/j.cma.2005.09.009
https://doi.org/10.1016/j.cma.2005.09.009
https://doi.org/10.1016/j.cma.2005.09.009
https://doi.org/10.1016/j.cma.2005.09.009
http://link.aps.org/supplemental/10.1103/PhysRevE.95.063111
https://doi.org/10.1063/1.4926622
https://doi.org/10.1063/1.4926622
https://doi.org/10.1063/1.4926622
https://doi.org/10.1063/1.4926622
https://doi.org/10.2514/1.J051014
https://doi.org/10.2514/1.J051014
https://doi.org/10.2514/1.J051014
https://doi.org/10.2514/1.J051014
https://doi.org/10.1063/1.4891256
https://doi.org/10.1063/1.4891256
https://doi.org/10.1063/1.4891256
https://doi.org/10.1063/1.4891256
https://doi.org/10.1063/1.868730
https://doi.org/10.1063/1.868730
https://doi.org/10.1063/1.868730
https://doi.org/10.1063/1.868730
https://doi.org/10.1017/S0022112096002777
https://doi.org/10.1017/S0022112096002777
https://doi.org/10.1017/S0022112096002777
https://doi.org/10.1017/S0022112096002777
https://doi.org/10.1017/S0022112086001283
https://doi.org/10.1017/S0022112086001283
https://doi.org/10.1017/S0022112086001283
https://doi.org/10.1017/S0022112086001283
https://doi.org/10.1017/S0022112005008463
https://doi.org/10.1017/S0022112005008463
https://doi.org/10.1017/S0022112005008463
https://doi.org/10.1017/S0022112005008463
https://doi.org/10.1063/1.4881375
https://doi.org/10.1063/1.4881375
https://doi.org/10.1063/1.4881375
https://doi.org/10.1063/1.4881375


LINEAR AND NONLINEAR PERTURBATION ANALYSIS OF . . . PHYSICAL REVIEW E 95, 063111 (2017)

at low Keulegan-Carpenter numbers, J. Fluid Mech. 360, 249
(1998).

[51] E. Guilmineau and P. Queutey, A numerical simulation of vortex
shedding from an oscillating circular cylinder, J. Fluids Struct.
16, 773 (2002).

[52] A. A. Hosseinjani and A. Ashrafizadeh, Numerical simu-
lation of the wake structure and thrust/lift generation of
a pitching airfoil at low Reynolds number via an im-
mersed boundary method, J. Aerosp. Technol. Manage. 7, 3
(2015).

063111-15

https://doi.org/10.1017/S002211209800860X
https://doi.org/10.1017/S002211209800860X
https://doi.org/10.1017/S002211209800860X
https://doi.org/10.1017/S002211209800860X
https://doi.org/10.1006/jfls.2002.0449
https://doi.org/10.1006/jfls.2002.0449
https://doi.org/10.1006/jfls.2002.0449
https://doi.org/10.1006/jfls.2002.0449
https://doi.org/10.5028/jatm.v7i3.476
https://doi.org/10.5028/jatm.v7i3.476
https://doi.org/10.5028/jatm.v7i3.476
https://doi.org/10.5028/jatm.v7i3.476



