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Electrohydrodynamic instability of ion-concentration shock wave in electrophoresis
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Capillary electrophoresis techniques often involve ion-concentration shock waves in an electrolyte solution,
propagating under the effect of an external electric field. These shock waves are characterized by self-sharpening
gradients in ion concentrations and electrical conductivity that are collinear with the electric field. The coupling
of electric field and fluid motion at the shock interface sometimes leads to an undesirable electrohydrodynamic
(EHD) instability. Using linear stability analysis, we describe the motion of small-amplitude disturbances of an
electrophoretic shock wave. Our analysis shows that the EHD instability results due to the competition between
destabilizing electroviscous flow and stabilizing electromigration of the shock wave. The ratio of timescales
corresponding to electroviscous flow and electromigration yields a threshold criterion for the onset of instability.
We present a validation of this threshold criterion with published experimental data and also describe the physical
mechanism underlying the EHD instability of the electrophoretic shock wave.
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I. INTRODUCTION

Capillary electrophoresis techniques such as capillary zone
electrophoresis (CZE) [1], isotachophoresis (ITP) [2,3], and
field amplified sample stacking (FASS) [4] are widely em-
ployed in analytical chemistry for separation and in some cases
preconcentration of ionic species from sample mixtures. All
electrophoresis techniques are based on differential migration
of ionic species in an electrolyte solution under the effect of
a strong electric field [1–3]. The differential migration of ions
in electrophoresis usually leads to stationary or propagating
gradients in ion concentrations and electrical conductivity,
which can be described as concentration waves [5–8].

In binary electrolytes, consisting of one cationic and
one anionic species, the gradients in electrical conductivity
remain stationary under the effect of an electric field [7,8].
Conductivity gradients in binary electrolytes occur in FASS
and such gradients broaden with time due to diffusion [4].
On the other hand, presence of three or more ionic species
with comparable concentrations can lead to strongly nonlinear
propagating concentration waves such as shock and expansion
waves [5–9]. The nonlinearity in the electromigration of ions
results from the coupling of ion concentrations with the
local electric field due to the Ohm’s law [5,6]. Unlike the
diffusive gradients in a binary electrolyte, shocks waves in
ion concentrations (and conductivity) remain sharp due to
the balance of electromigration and diffusion at the shock
interface [10]. Such self-sharpening concentration shocks are
employed in ITP [2,3,9,11,12]—a widely used electrophoresis
technique—to separate and preconcentrate ionic species. In
ITP, ionic species are focused between two corresponding
shock waves, which prevent the species from diffusing into
the adjoining zones. This enables focusing of ionic species in
narrow zones leading to amplification in their concentration.

To generate a single shock wave in ITP, electric field is
applied across an interface between a leading electrolyte (LE)
containing high electrophoretic mobility LE ions and a trailing
electrolyte (TE) containing low-mobility TE ions [3], as shown
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in Fig. 1. Both LE and TE contain a common counterionic
species to ensure electroneutrality. If the electric field is applied
such that the LE ions move in front of the TE ions, nonlinear
electromigration leads to sharpening of the interface between
LE and TE, resulting in a propagating shock wave [7,8]. Across
the shock wave, a steep conductivity gradient is established.
Typically, ITP and other electrophoresis experiments are per-
formed by applying an axial electric field of O(1–10 kV m−1)
in microcapillaries with diameter of O(10–100 μ m) [3]. While
such strong electric fields are necessary for faster analysis
and improving the detection sensitivity, high electric fields
also lead to undesirable phenomenon of electrohydrodynamic
instability (EHD) [13,14].

In this paper, we focus on the EHD instability of concentra-
tion shocks, which arise in nonlinear electrophoretic processes,
such as ITP. EHD instability of the electrophoretic shock
results from the coupling of electric field and fluid motion at
the shock interface due to the presence of a sharp conducting
gradient [13]. The gradient in electric field associated with the
gradient in conductivity leads to accumulation of free charge
at the shock interface. This free charge in turn couples with
the local electric field to apply a destabilizing electric body
force on the fluid. Shock instability is undesirable in ITP,
because it causes asymmetry of the shock interface and focused
sample zones, leading to uncertainty in sample quantification
[13,14]. The detrimental effects of EHD instability of ITP
shock were observed by Persat et al. [13] in their experiments
on sample splitting at a channel bifurcation using ITP. Persat
et al. observed that for electric fields of O(10 kV m−1) EHD
instability of ITP shock leads to an asymmetry in sample
focusing and correspondingly uncertain splitting behavior at
the channel bifurcation.

While EHD instability due to collinear conductivity gradi-
ent and electric field has been widely analyzed using linear
stability analysis [15–18], the existing studies are limited to a
stationary interface in a binary electrolyte separating high and
low conductivity zones. The stability analysis for a stationary
interface is not directly applicable to an electrophoretic shock
wave because, unlike a stationary conductivity gradient in
binary electrolyte, the shock wave also migrates under the
effect of electric field. Therefore, in addition to the electric
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FIG. 1. Schematic of a shock wave in ITP separating zones
of high-conductivity leading electrolyte (LE) and low-conductivity
trailing electrolyte (TE). The conductivity of LE and TE zones is
σL and σT , respectively (σL > σT ). We analyze the EHD instability
in a frame of reference moving along with the shock wave. In this
reference frame, the shock in its base state is stationary at z = 0 and
the base-state flow is in the −z direction. The stability of the shock is
analyzed by modeling the dynamics of an arbitrarily perturbed shock
interface z = ξ (x,y,t).

body force on the fluid, the stability of the shock wave in
electrophoresis is also affected by electromigration of the
shock. In this paper, based on the example of a shock wave in
ITP, we present a linear stability analysis of an electrophoretic
shock wave. Based on our stability analysis, we show that
the onset of EHD instability of shock wave is governed by
the competition between destabilizing electric body force and
stabilizing electromigration of the shock wave. In particular,
we present a threshold criterion for the onset of instability
and validate it with published experimental data. We also
elucidate the physical mechanism underlying the instability
of electrophoretic shock wave.

II. MATHEMATICAL MODELING

A. Shock wave in ITP

Figure 1 shows a schematic of a shock wave in ITP
separating high-conductivity LE and low-conductivity TE
zones in an unbounded domain. In the base state, the shock is
parallel to the x-y plane. The LE and TE ions are positively
charged and the electric is applied along the +z direction.
Therefore, the ITP shock also propagates along the direction
of applied electric field. In ITP, the conductivity of the TE
zone adapts to the conductivity of LE zone in a way that the
speeds of LE and TE ions in their respective zones are equal
to the shock speed [2,7]. As shown by Kohlrausch [2], the
composition and conductivity of TE zone is solely dependent
on the initial composition of the LE zone. The shock speed
uITP is given by

uITP = μLEL = μT ET , (1)

where μ and E denote electrophoretic mobility and local
electric field normal to the shock wave, respectively. The
subscripts L and T denote LE and TE zones, respectively.

Because the current density is uniform across the shock
wave, from Ohm’s law, we have σLEL = σT ET [7]. Therefore,
from Eq. (1) the ratio of conductivity (γ ) and local electric
field of LE and TE zones depend on the mobility of LE and TE

ions as

γ ≡ σL

σT

= ET

EL

= μL

μT

. (2)

For an ITP shock wave to exist, the mobility of LE ion must be
higher than the mobility of TE ions, μL > μT [2]. Therefore,
from Eq. (2), the local electric field in TE zone is higher than
that in the LE zone.

B. Governing equations

To model the response of ITP shock wave to small
perturbations, we consider a surface coupled model wherein
the coupling between fluid flow and electric body force occurs
only at the interface separating LE and TE zones. That
is, the free charge accumulates only at the ITP interface,
whereas the bulk fluid remains electroneutral. The surface
coupling approach has been widely employed for analyzing
EHD instability of an interface separating two immiscible
conducting fluids stressed with normal and tangential electric
fields [15,19,20]. In the context of ITP, the thickness δ of
self-sharpening interface separating LE and TE zones scales as
δ ∼ kT /(eEL) [10], where k denotes the Boltzmann constant,
T the temperature, and e the elementary charge. For typical
electric fields of O(103–104 V m−1) the shock thickness
δ ∼ O(1–10 μ m), which is much smaller than the amplitude
of interface disturbances observed during the instability
[13,14]. The assumption of sharp interface, however, limits
our analysis to disturbances with wave numbers k � δ−1.

Next, we note that the disturbance of the ITP interface does
not alter the conductivity of LE and TE zones. The conductivity
of TE zone is governed only by the initial LE composition
[2], which is a consequence of zero eigenvalue of the set
of hyperbolic conservation laws governing electrophoretic
transport of ions [8]. The Riemann invariant corresponding
to the zero eigenvalue, termed as the Kohlrausch function, is
given by

K(x,y,t) =
N∑

i=1

zici(x,y,t)

(
1

μi

− 1

μN+1

)
= K(x,y,0),

(3)

for an electrophoretic system consisting of N + 1 species. The
initial value of Kohlrausch function, K(x,y,0), is set by the
spatially uniform LE. Taking the LE and TE ions as species
i = 1,2 and the counterionic species as species N + 1 = 3
in Eq. (3), we conclude that the concentration of LE and TE
ions remains uniform whenever LE or TE zones displace each
other due to the disturbance of ITP interface. The sharp ITP
interface and uniform conductivity of LE and TE zones ensure
that the surface coupling approach is reasonable for analyzing
interface disturbances greater than the interface thickness.

The governing equations for fluid flow and electric field
in the bulk fluid are same as those described previously
by Melcher and coworkers for EHD instability of a sharp,
stationary interface separating two conducting fluids [15,20].
Briefly, the incompressible fluid flow is modeled using the
continuity equation,

∇ · u = 0, (4)
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and Navier-Stokes equations for momentum conservation,

ρ
∂u
∂t

+ ρu · ∇u = −∇p + η∇2u. (5)

Here u, ρ, and η denote the velocity, density, and viscosity
of the fluid, respectively. Note that Eq. (5) does not have an
electric body force as the bulk solution is electroneutral and
the coupling between fluid flow and electric field takes place
only at the sharp ITP interface.

The local electric field E is related to the conductivity
(σ ) and free charge density (ρf ) by the charge conservation
equation [21],

∂ρf

∂t
+ ∇ · (ρf u + σE) = 0. (6)

In this equation, the terms ρf u and σE correspond to
convection and Ohmic currents, respectively. Moreover, for
a linear dielectric medium with uniform permittivity (ε), the
electric field and free charge density are related by the Gauss’
law,

∇ · (εE) = ρf . (7)

From Eqs. (6) and (7), we note that the terms with ρf in
Eq. (6) can be neglected provided that the time scale of
interest is much larger than the charge relaxation time scale
ε/σ. For electrophoretic systems with aqueous electrolytes
having ε = 7.1 × 10−10 F m−1 and σ ∼ O(0.01–1 S m−1), the
charge relaxation time ε/σ is of order 0.1 μs or smaller. On
the other hand, the electrohydrodynamic and electromigration
time scales of interest are of order 1 ms or larger [21].
Therefore, for electrophoretic systems, the current continuity
equation, Eq. (6), simplifies to the Ohm’s law,

∇ · (σE) = 0. (8)

Last, at moderate current densities the electric field is irrota-
tional,

∇ × E = 0. (9)

This quasielectrostatic assumption holds well for elec-
trophoretic systems as the magnetic field produced due to
conduction and displacement currents is negligible [22].

Equations (4), (5), (8), and (9) can be solved along with
appropriate boundary conditions and jump conditions at the
sharp shock interface. Far away from the interface as z →
±∞ the velocity and electric field perturbations vanish. At the
shock interface with unit normal vector n̂ pointing toward the
LE zone and tangent t̂, continuity of velocity leads to

[u] · n̂ = 0 and [u] · t̂ = 0. (10)

Here [f ] denotes the value of a physical quantity f at the
shock interface in the LE zone minus the value in the TE zone.
The jump conditions for normal and shear stress balance are
given by

n̂ · [T − ρuu] · n̂ = 0 and t̂ · [T − ρuu] · n̂ = 0, (11)

where T = −pI + η(∇u + ∇uT ) + εEE − εE · EI/2 is the
stress tensor, I is a unit tensor, and ε is the dielectric
permittivity. In the current work, we assume that the elec-
trolytes are linear dielectrics with equal and spatially uniform

dielectric permittivity. Finally, the continuity of current and
the irrotationality of electric field at the shock interface yield

[σE] · n̂ = 0 and n̂ × [E] = 0. (12)

C. Linear stability analysis

We analyze the stability of ITP shock to small perturbations
over a base state shown schematically in Fig. 1. In the base
state the ITP shock is parallel to the x-y plane and is moving
with a constant speed uITP, given by Eq. (1), in the +z direction
in a quiescent aqueous medium. For analytical simplicity, we
consider the dynamics of the ITP shock in a reference frame
moving along with the shock. In this frame of reference, the
shock is stationary in the base state at z = 0 and the fluid is
moving with velocity ū = −uITPẑ. Because the conductivity of
the TE zone is lower than that of the LE zone, the local electric
field drops across the ITP interface. Therefore, from the Gauss
law, in the base state a negative charge exists at the shock inter-
face. For an undisturbed interface, the electric body force due
to coupling of this charge with the base-state electric field is
balanced by the base-state pressure p̄. Using Eq. (11), the nor-
mal stress-balance at the ITP interface in the base state yields,

[p̄] = 1
2 [εĒ2]. (13)

Here, the overbar indicates the base state quantities.
To analyze the linear stability of the system over this base

state, we introduce the following perturbation variables (with
primes):

u(x,z,t) = ū + u′(x,z,t), p = p̄ + p′,

E = Ē + E′(x,z,t). (14)

Because the current system has rotational symmetry about the
z axis, without loss of generality, we have confined our analysis
to perturbations that are independent of y. Here, we note that
the conductivity of the LE and TE zones is not affected when
the shock interface is perturbed, that is, σ = σ̄ . Substituting the
perturbation variables in the governing equations, Eqs. (4)–(9),
and linearizing the resulting equations yields

∇ · u′ = 0, (15)

ρ
∂u′

∂t
− ρuITP

du′

dz
= −∇p′ + η∇2u′, (16)

∇ · (σE′) = 0, (17)

∇ × E′ = 0. (18)

Similarly, the boundary and interface jump conditions can be
linearized over the base state.

To solve the linearized equations for perturbation variables,
we perform normal modes analysis by assuming perturbation
variables of the form f ′(x,z,t) = f̂ (z)exp(st − ikx). By elim-
inating pressure from Eq. (16) using Eq. (15) we obtain a linear
ordinary differential equation (ODE) for the z component of
perturbation velocity ŵ,(

D2 − k2 − ρs

η
+ ρuITPD

η

)
(D2 − k2)ŵ(z) = 0, D ≡ d

dz
.

(19)
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Next, noting that the conductivity σ is uniform in LE and TE
zones, from Eqs. (17) and (18) we obtain an ODE for the x

component of perturbation electric field Êx,

(D2 − k2)Êx(z) = 0. (20)

Equations (19) and (20), along with the boundary and
interface conditions, define an eigenvalue problem with growth
rates s as the eigenvalues and ŵ and Êx as the eigenfunctions.
The general solutions of Eqs. (19) and (20) are of the form

ŵ(z) =
{
ALe−kz + BLeqLz, z > 0

AT ekz + BT eqT z, z < 0
, (21)

Êx(z) =
{
CLe−kz, z > 0

CT ekz, z < 0
, (22)

where

v = ρuITP

2η
, qL = −v − q, qT = −v + q, and

q =
(

ρs

η
+ k2 + v2

)1/2

.

These solutions obey the boundary conditions at z → ±∞
provided q > v. Knowing ŵ, the perturbation pressure p̂ can
be obtained from Eq. (16),

p̂ = 1

k2
[η(D2 − k2) − ρs + ρuITPD]Dŵ. (23)

To solve for the growth rate s, we apply the interface jump
conditions given by Eqs. (10)–(12) and relate the six unknown
constants AL, AT , BL, BT , CL, and CT . Assuming an arbitrary
interface perturbation given by z = ξ (x,t) = ξ̂exp(st − ikx)
and evaluating the jump conditions, Eqs. (10)–(12), at z = 0
we get

[û] = 0, [ŵ] = 0, (24)

[p̂] = ε[ĒÊz] + 2η

[
∂ŵ

∂z

]
, (25)

−∂ξ̂

∂x
ε[Ē2] = ε[ĒÊx] + η

[(
∂û

∂z
+ ∂ŵ

∂x

)]
, (26)

[σÊz] = 0, (27)

[Êx] + ∂ξ̂

∂x
[Ē] = 0. (28)

Here, û denotes the x component of perturbation velocity and
Êz denotes the z component of perturbation electric field.

Because the shock wave moves due to fluid flow and
electromigration, the kinematic condition at the interface can
be written as

∂ξ̂

∂t
= μLÊz + ŵ|z=0+ = μT Êz + ŵ|z=0− . (29)

Note that the ITP condition μL/μT = σL/σT ensures that
Eq. (29) is consistent with the interface jump condition
Eq. (27).

D. Dispersion relation

Substituting the general solution given by Eqs. (21) and (22)
in the interface jump conditions, Eqs. (24)–(29), we obtain six
homogeneous linear algebraic equations for the coefficients
AL, AT , BL, BT , CL, and CT . This set of equations has a
nontrivial solution provided that the determinant given by
Eq. (A1) in the Appendix is zero. This yields the desired
dispersion relation given by Eq. (30). In the dispersion relation,
Eq. (30), we have used three timescales associated with
viscous momentum diffusion (τv), electroviscous flow (τev)
resulting from the balance between the viscous and electric
stresses [20], and electromigration of shock (τem). Therefore,
Eq. (30) suggests that the stability characteristics of the shock
depends on electroviscous flow, motion of shock wave due to
electromigration, and dissipation due to viscous stresses.[

(q ′ − 1)2 −
(

τv

2τem

)2
][

(q ′ + 1) + τv

τem

(
γ

1 − γ 2

)]

−q ′
(

τv

τev

)2
[(

τev

τem

)2

− s ′2
][

τev

τem

(
1 − γ

1 + γ

)
− s ′

]
= 0,

(30)
where

s ′ = sτev, q ′ = q

k
=

√
1 +

(
τv

2τem

)2

+ τv

τev
s ′,

τv = ρ

ηk2
, τem = 1

kuIT P

, τev = 2η

ε(EL − ET )2
. (31)

1. Scaling analysis

The dispersion relation given by Eq. (30) relates the dimen-
sionless growth rate s ′ with three dimensionless parameters:
τv/τev, τem/τev, and γ ≡ σL/σT . Alternatively, this relation
can be written by regrouping the dimensionless parameters as

s ′ = f

(
τev

τv

,
τvτev

τ 2
em

,γ

)
, (32)

where

τev

τv

= 2η2k2

ρε[E]2
and

τvτev

τ 2
em

= 2ρμ2
L

ε(γ − 1)2
. (33)

This regrouping of the dimensionless parameters is interesting
because it shows that among the three dimensionless groups
on which s ′ depends, only the first dimensionless group τev/τv

depends on the wave number k of perturbation and electric
field. The other two dimensionless groups τvτev/τ

2
em and

γ depend solely on the properties of electrolyte solutions.
Therefore, we can define dimensionless wave number as
k′ = √

τev/τv . For a given composition of electrolytes, the
dependence of growth rate s ′ on wave number k and electric
field EL can be solely captured by varying the dimensionless
wave number k′. Therefore, throughout this paper, we discuss
the variation of s ′ versus k′.

III. RESULTS AND DISCUSSION

We now consider the individual effects of electroviscous
flow, electromigration, and viscous dissipation on the stability

063109-4



ELECTROHYDRODYNAMIC INSTABILITY OF ION- . . . PHYSICAL REVIEW E 95, 063109 (2017)

of ITP shock wave. First, we consider the limiting case
of a stationary interface in a binary electrolyte separating
two regions with high and low conductivity. Thereafter, we
consider the stability of ITP shock wave and describe the
role of electromigration. Based on the results of these two
cases, we finally elucidate the mechanism of instability of the
shock wave. For our calculations, we consider an ITP system
with sodium as the LE ion, Bistris as the TE ion, and Hepes
as the counter-ion. The LE is composed of 100 mM sodium
hydroxide and 200 mM Hepes. Based on one-dimensional
numerical simulations using the Stanford public release elec-
trophoretic separation solver (SPRESSO) [23,24] along with
ionic strength corrections [25], the TE zone behind the shock
wave is composed of 72.48 mM Bistris and 172.5 mM Hepes.
For this ITP system, numerical simulations predict that μL =
42.6 × 10−9 m2 V−1 s−1, μT = 7.77 × 10−9 m2V−1 s−1,
σL = 0.5617 S m−1, and σT = 0.1024 S m−1. Note that
these values of mobilities and conductivities satisfy the ITP
condition given by Eq. (2), μL/μT = γ = 5.48. For all the
calculations related to linear stability analysis, we use values of
physical parameters that are typical of aqueous solutions: ρ =
1000 kg m−3, η = 1 × 10−3 N s m−2, and ε = 7.1 × 10−10 F
m−1.

A. Stationary interface limit

We begin by considering the limiting case of a stationary
interface separating zones of high and low conductivity in
a binary electrolyte. Such an interface remains stationary
under an applied electric field and does not propagate as an
electrophoretic shock wave. The linear stability analysis of this
case has been performed previously by Melcher and Smith
[15] and Kath and Hoburg [20] assuming that the interface
is sharp. In the absence of diffusion, their analyses predicted
the stationary interface to be linearly unstable. The dispersion
relation for binary electrolyte given by Melcher and Smith
[15] and Kath and Hoburg [20] can be recovered from Eq. (30)
by taking the electromigration timescale to be very large
compared with other timescales, τem 
 τv and τem 
 τev. In
this limit, electromigration does not affect the stability of the
interface and Eq. (30) simplifies to the dispersion relation given
by Kath and Hoburg [20],

q ′(q ′ + 1)(q ′2 − 1) = τv

τev
, q ′ =

√
1 + τv

τev
s ′. (34)

As shown by Kath and Hoburg [20], Eq. (34) predicts a
positive real-valued growth rate for all wave numbers k and
applied electric fields EL. To illustrate this, we consider an
example case of an interface separating two zones of a binary
electrolyte with conductivity ratio γ = 5.48, which is equal
to that for the ITP system under consideration. In Fig. 2(a),
we present the variation of dimensionless growth rate s ′ of
the interface corresponding to the most unstable mode versus
dimensionless wave number k′ of perturbation. The growth
rate is real-valued and positive for all wave numbers, indicating
that the stationary interface in a binary electrolyte is linearly
unstable when diffusion is neglected.

To get an insight into the physical mechanism responsible
for instability, in Fig. 2(b) we present the variation of
ratio of timescales associated with viscous dissipation and

FIG. 2. Variation of growth rate s ′ of interface disturbances
(a) and various timescales (b) with dimensionless wave number k′ for
a stationary conductivity gradient and an ITP shock wave. (a) Growth
rate s ′ for the most unstable mode with varying wave number k′. The
growth rate of disturbances in a stationary conductivity gradient and
a shock wave compare well at low wave numbers. This is because,
for low wave numbers (k′ � 1) destabilizing electroviscous flow is
dominant and electromigration is not prominent, as can be seen from
the corresponding timescales in (b). For large wave numbers (k′ 
 1),
the stabilizing electromigration of ITP shock dominates, resulting in
negative growth rates.

electroviscous flow (τv/τev) with the wave number. Because
τev/τv ∝ k2, at low wave numbers the viscous effects are
negligible. In this inertia-dominated regime, taking the limit
of τev/τv � 1 in Eq. (34) yields s ′ � √

τev/τv . Whereas, for
large wave number disturbances where τev/τv 
 1, viscous
effects dominate and in this limit the dispersion relation,
Eq. (30), yields s ′ � 1/2. As shown in Fig. 2(a), the growth
rates for the limiting cases of small and large wave number
limits agree well the exact values of growth rate. The results
shown in Fig. 2 suggest that the electroviscous flow tends
to destabilize the perturbations in the interface. On the other
hand, the viscous stresses dissipate these disturbances, thereby
limiting the growth rate for large disturbance wave numbers.
However, in the absence of any restoring force, the sharp
interface in binary electrolyte separating zones of high and
low conductivity is linearly unstable.
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B. Stability of ITP interface

Next, we analyze the stability of an ITP shock wave
separating LE (sodium-Hepes) and TE (Bistris-Hepes) zones.
To this end, we solve the dispersion relation given by Eq. (30)
for varying dimensionless wave numbers k′ of interface
perturbation. In this case, the ratio of conductivity of both
zones (σL/σT = 5.48) is same as that for the binary electrolyte
case discussed in Sec. III A. However, in contrast to the
binary electrolyte case, here the interface separating high-
conductivity LE and low-conductivity TE zones propagates
as a shock wave.

In Fig. 2(a), we present the dimensionless growth rate of
interface perturbations corresponding to the most unstable
mode versus the dimensionless wave number of perturbation.
In addition, in Fig. 2(b) we present the variation of τv/τev

and τem/τev for varying dimensionless wave numbers k′.
Unlike the case of stationary interface in a binary electrolyte,
here the electromigration timescale τem is comparable to
the electroviscous timescale τev, particularly for large wave
numbers. Therefore, for large wave numbers disturbances of
the shock wave, the growth rate differs significantly from
that of the stationary interface. In particular, the growth
rate of perturbations in the shock wave decreases at large
wave numbers and eventually becomes negative. On the other
hand, for low wave number perturbations, the growth rate
is similar to that for a stationary conductivity gradient in
a binary electrolyte, as shown in Fig. 2(a). The unstable
mode with maximum growth rate among all wave-number
perturbations is stationary and is expected to be dominant
during the initial phase of instability. A comparative analysis
of the results shown in Fig. 2 for stationary interface and shock
wave suggests that the shock wave is stabilized at large wave
numbers due to electromigration. This is because at large wave
numbers the timescale for electromigration τem is smaller than
the electroviscous timescale τev.

1. Low wave-number limit

To gain further insight into the competition between elec-
troviscous flow and electromigration on the EHD instability
of electrophoretic shock wave, we consider the limiting cases
of very low and high perturbation wave numbers. At low
wave numbers k′ � 1, Eq. (31) and Fig. 2(b) suggest that
τv/τem 
 1 and τem/τev 
 1. In this limit, assuming that the
growth rate s ′ is real-valued, q ′ ≈ τv/(2τem) + τems ′/τev from
Eq. (31). Using these approximations, the dispersion relation
given by Eq. (30) yields

s ′ �
√

τev

τv

(
1 − 2γ

γ 2 − 1

)
for k′ � 1. (35)

Figure 2(a) shows that this approximation for the growth rate
holds reasonably well up to k′ = 0.1. Because τv/τev 
 1
when k′ � 1, this limit corresponds to the inertial regime.
Figure 2 also shows that, in the inertial regime, the behavior
of growth rate on wave number is similar to that for a
stationary conductivity gradient in a binary electrolyte. This
is because, for small wave-number perturbations the timescale
corresponding to electromigration of the shock wave is signif-
icantly larger than the electroviscous timescale (τem/τev 
 1).

Therefore, electromigration of shock wave does not affect the
growth of small wave-number perturbations.

We note that to derive Eq. (35), we have assumed that
the growth rate is real-valued. According to Eq. (35), this
assumption is valid when the LE-to-TE conductivity ratio
γ > 1 + √

2. For a narrow range of LE-to-TE conductivity
ratio, 1 < γ < 1 + √

2, computation of growth rates using the
dispersion relation Eq. (30) shows that the most unstable mode
at very low wave numbers is oscillatory with complex-valued
growth rate. However, for 1 < γ < 1 + √

2, the mode with
highest growth rate among all wave-number disturbances is
still stationary with real-valued growth rate. Except for this
narrow range of conductivity ratio, the growth rate for most
unstable mode is always real-valued for all wave numbers and
electric fields.

2. Large wave-number limit

In the limit of large disturbance wave number (k′ 
 1),
Eq. (31) and Fig. 2(b) suggest that τv/τem � 1
and τem/τev � 1 and τv/τev � 1. In this limit, we can approxi-
mate q ′ from Eq. (31) as q ′ ≈ 1 + τvs

′/(2τev). Substituting this
value of q ′ in the dispersion relation, Eq. (30), and retaining
only the leading order terms in τvs

′/(2τev) yields

s ′ � 1

2
− τev

τem

(
γ − 1

γ + 1

)
for k′ 
 1. (36)

Figure 2(a) shows that this large wave-number approximation
for the growth rate holds extremely well for k′ > 10. Impor-
tantly, Eq. (36) predicts the threshold condition for the onset
of instability,

τev

τem
<

1

2

(
γ + 1

γ − 1

)
. (37)

That is, the instability sets in when the electroviscous velocity
amplifies the disturbances faster than the rate as which
electromigration restores them. Figure 2 clearly shows that the
growth rate deviates from that of the stationary conductivity
gradient when τem and τev become comparable above k′ > 10.
Moreover, Fig. 2 shows that the stable regime results due
to faster electromigration compared with electroviscous flow
(small τem/τev).

C. Physical mechanism of instability

The results presented in Sec. III B conclusively establish the
destabilizing effect of electroviscous flow and the stabilizing
effect of electromigration on the shock wave. To describe the
physical mechanism of the instability of the shock wave, in
Figs. 3(a) and 3(b) we present the eigenmodes E′ and u′,
respectively, corresponding to the most unstable state (k′ =
3.04,s ′ = 0.45) shown in Fig. 2. Note that the perturbations
in electric field and velocity are more prominent in the low-
conductivity TE zone where the local electric field is higher
than that in the high-conductivity LE zone.

In the base state, the shock is horizontal as depicted by
the horizontal dotted line at z = 0. When the shock wave
separating LE and TE zones is perturbed as shown in Fig. 3
(amplitude exaggerated for clarity) the local electric field
decreases in the regions where low-conductivity TE displaces
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FIG. 3. Eigenmodes E′ and u′ corresponding to the most unstable
state (k′ = 3.04, s ′ = 0.45) of the ITP shock wave. (a) Perturbation
electric field E′ resulting from the disturbance of shock wave. The
local electric field decreases at locations where TE displaces LE
and increases where LE displaces TE. The change in electromi-
gration speed of the shock associated with this change in local
electric field tries to restore the original shape of the shock wave.
(b) Streamlines of the perturbation velocity u′ showing the destabi-
lizing effect of electroviscous flow. The x and z coordinates have
been nondimensionalized using the wave number k.

the high-conductivity LE. This can be seen from the downward
pointing perturbation electric field E′ in Fig. 3(a) near x = 0
and z = 0. Therefore, the electromigration speed of shock
wave, which is proportional to the local electric field, reduces
in the regions where the TE displaces the LE. On the other
hand, the local electric field increases where the LE displaces
the TE and consequently the electromigration speed of the
interface increases in these regions. Therefore, based on
the perturbation electric field shown in Fig. 3(a) and the
kinematic condition at the interface Eq. (29), we infer that
electromigration tends to restore the original shape of shock
wave.

In contrast to the restoring character of electromigration, the
streamlines presented in Fig. 3(b) show that the electroviscous
flow has a destabilizing effect. That is, perturbation of the
shock wave leads to a cellular fluid motion that tends to
further destabilize the interface, as shown in Fig. 3(b). The
origin of such a cellular flow pattern remains to be explained.
The electroviscous flow is driven by the perturbation in electric
body force, which has two contributions due to the coupling of:
(i) base-state interfacial charge and perturbation electric field
and (ii) base-state electric field and perturbation interfacial
charge [18]. For the situation presented in Fig. 3, the negative
base-state interfacial charge couples with the perturbation
electric field to apply a body force along the direction
of interface perturbation. Also, considering the change in
perturbation electric field across the interface in Fig. 3(a),
we note that the perturbation interfacial charge is positive
(negative) for interface displacement in the positive (negative)
z direction. Consequently, the coupling of upward-pointing
base-state electric field and perturbation interfacial charge
also leads to an electric body force along the direction of

the interface disturbance. Therefore, the net effect of the
perturbation electric body force is to drive a flow along the
interface perturbation, resulting in a destabilizing cellular
motion of the fluid as shown in Fig. 3(b).

D. Comparison with experiments

The linear stability analysis of an electrophoretic shock
wave presented above suggests that the shock wave is
unconditionally unstable. As shown in Fig. 2(a), for any value
of applied electric field, there exists a range of disturbance
wave numbers for which the growth rate is positive. In
contrast, ITP experiments are routinely performed at high
electric fields of order 1 kV m−1 without any instability
[3,13]. This discrepancy can be explained by noting that
ITP experiments are usually performed in microcapillaries and
microchannels with thickness d ∼ O(10–100 μ m). In such
microchannels the wave number of disturbance k ∼ d−1. For
typical electric field of order 1 kV m−1 and d ∼ 10–100 μm,
Eq. (33) yields τev/τv ∼ O(10–1000). That is, typical ITP
experiments are performed in the viscous-dominated regime
(τev/τv 
 1), where the linear stability analysis correctly
predicts the ITP shock to be stable (see Fig. 2). In other words,
in a typical ITP experiment the inertial limit with τev/τv � 1
is not realized.

We note that in the current work, we have performed
stability analysis of an electrophoretic shock wave in an
unbounded domain. Therefore, the only length scale involved
in our analysis is k−1. In practice, electrophoresis experiments
are performed in microchannels where the characteristic length
scale is the width or depth of the microchannel, d. Therefore,
the threshold criterion for the onset of instability, Eq. (37),
derived for an unbounded system does not apply directly to
practical electrophoresis systems. Nevertheless, based on our
stability analysis we expect that the instability of shock wave
sets in when the timescale of destabilizing electroviscous
flow (τev) becomes smaller than the timescale of restoring
electromigration (τem). Therefore, replacing k with d−1 in the
definition of τem in Eq. (31) we can analyze the experimental
data on instability in terms of the following dimensionless
number:

τev

τem
= 2ημL

ε(γ − 1)2ELd
. (38)

We expect the shock instability to set in for small values of
τev/τem when electroviscous flow dominates electromigration.
Therefore, high values of conductivity gradient γ , electric field
EL, and channel thickness d would promote the instability.
Whereas, increasing the viscosity η and mobility of LE μL

would inhibit the instability.
To test this hypothesis we compare the above instability

criterion with experimental data of Persat et al. [13]. Persat
et al. performed detailed experimental visualization of ITP
instability in a shallow microchannel with depth of 10 μm for
varying electric field. In their anionic ITP experiments, LE
was Tris hydrochloride (100 mM, pH = 8.0) and TE was Tris
Hepes (100 mM, pH = 8.0). For this ITP system, our numerical
simulations predict that μL = −68.47 × 10−9 m2 V−1 s−1,
μT = −15.91 × 10−9 m2V−1 s−1, and γ = μL/μT = 4.3
(same as the measured value [13]). Persat et al. [13] reported
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their experimental data in terms of average electric field
Eav ≡ (EL + ET )/2 = (γ + 1)EL/2. Their experiments
showed that ITP shock wave becomes unstable around
Eav = −12 kV m−1, while at lower electric field of Eav = −2
kV m−1 the shock is stable. Note that, here electric field
values are negative because electric field is applied in the
opposite direction when LE and TE ions are negatively
charged. At average electric field Eav values of −2 and −12
kV m−1, Eq. (38) yield τev/τem = 2.3 and 0.39, respectively.
This agrees with our hypothesis that the electrophoretic shock
becomes unstable only when τev is smaller than τem. The exact
threshold value of τev/τem below which shock instability sets
in would also depend on the geometry of microchannel. The
threshold criterion can be obtained empirically or through
numerical simulations; in this paper, we have obtained the
threshold criterion for an unbounded domain.

IV. CONCLUSION

We have used linear stability analysis to describe the
EHD instability of a concentration shock wave that arises
in nonlinear electrophoresis processes, such as ITP. We have
shown that EHD instability results from the competition
between destabilizing electroviscous flow and restoring elec-
tromigration of the shock wave. In particular, we have obtained
a threshold criterion for the onset of instability in terms of
the ratio of timescales corresponding to electroviscous flow
and electromigration. We have also elucidated the physical
mechanism of instability and validated our results with
published experimental data.

For our analysis, we have used an example of shock wave in
ITP. However, concentration shocks exist in other electric-field
driven transport processes such as electromigration-dispersion
[5,6], shock-electrodialysis based water deionization [8,26],
and concentration-polarization at microchannel and nanochan-
nel interfaces [27]. The analysis presented in this paper
can be extended to analyze stability of concentration shock
waves in such processes. We note, however, that the physical
mechanism proposed in this work for shock instability, based
on the competition of electroviscous flow and electromigration
of the shock, would be the same for the aforementioned
processes.
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APPENDIX: DETERMINANT FOR THE
DISPERSION RELATION

To obtain the dispersion relation given by Eq. (30), we
substitute the general solution given by Eqs. (21) and (22) in
the interface jump conditions, Eqs. (24)–(29). This yields six
homogeneous linear algebraic equations for the coefficients
AL, AT , BL, BT , CL, and CT . For a nontrivial solution, the
determinant of the respective coefficients given by Eq. (A1)
should be zero:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2ηk + ρs

k
+ ρuITP 2ηk + ρs

k
− ρuITP −2ηqL, 2ηqT iεĒL iεĒT

2iηk + ikε[Ē2]
s

−2iηk iη
(
k + q2

L

k

) + ikε[Ē2]
s

−iη
(
k + q2

T

k

)
μLkε[Ē2]

s
− εĒL εĒT

1 −1 1 −1 0 0

k k −qL qT 0 0

− ik[Ē]
s

0 − ik[Ē]
s

, 0 1 − μLk[Ē]
s

−1

0 0 0 0 σL σT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A1)
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