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Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media
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Solute dispersion in fluid flow results from the interaction between advection and diffusion. The relative
contributions of these two mechanisms to mass transport are characterized by the reduced velocity ν, also
referred to as the Péclet number. In the absence of diffusion (i.e., when the solute diffusion coefficient Dm = 0
and ν → ∞), divergence-free laminar flow of an incompressible fluid results in a zero-transverse dispersion
coefficient (DT = 0), both in ordered and random two-dimensional porous media. We demonstrate by numerical
simulations that a more realistic realization of the condition ν → ∞ using Dm �= 0 and letting the fluid flow
velocity approach infinity leads to completely different results for ordered and random two-dimensional porous
media. With increasing reduced velocity, DT approaches an asymptotic value in ordered two-dimensional porous
media but grows linearly in disordered (random) structures depending on the geometrical disorder of a structure:
a higher degree of heterogeneity results in a stronger growth of DT with ν. The obtained results reveal that
disorder in the geometrical structure of a two-dimensional porous medium leads to a growth of DT with ν even
in a uniform pore-scale advection field; however, lateral diffusion is a prerequisite for this growth. By contrast,
in ordered two-dimensional porous media the presence of lateral diffusion leads to a plateau for the transverse
dispersion coefficient with increasing ν.
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I. INTRODUCTION

Understanding the transport of solutes in porous media is
important in many industrial and environmental processes,
including catalysis, chromatography, ground water contamina-
tion and remediation, oil recovery, and nuclear waste disposal
[1–5]. The spreading of passive solutes in fluid flow through a
porous medium results from the interplay of diffusion and
advection [6]. Even laminar flow in a porous medium is
characterized by spatial fluctuations of the velocity within
and between individual pores and by tortuous pathways that
the fluid follows. This leads to different migration velocities
of solutes in different flow streamlines, which is additionally
affected by shearing, splitting, and merging of fluid streamlets.
Diffusion acts as a mechanism providing exchange (mixing)
between solute molecules travelling along different stream-
lines in individual pores. The resulting spreading of solutes
is referred to as hydrodynamic dispersion. Thus, the three
essential processes giving rise to solute spreading in fluid
flow through porous media are diffusion, intrinsic mechanical
dispersion due to flow heterogeneity at the interpore scale,
and diffusively coupled mechanical dispersion at the intrapore
scale [7].

At the macroscopic scale (that is many times larger than
the dimensions of a single pore), the hydrodynamic dispersion
in fluid flow through porous media is traditionally modeled
by the advection–diffusion equation [6]. The basic idea of this
approach is to consider dispersion processes as an anisotropic
diffusion-like spreading of the solute concentration charac-
terized by macroscopic (effective) transport coefficients, i.e.,
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the longitudinal dispersion coefficient DL and the transverse
dispersion coefficient DT in the direction of and normal to
the average fluid flow, respectively. Dispersion processes in
porous media have also been analyzed with a wide variety of
theoretical techniques and geometrical models. For example,
Brenner [8] used the method of spatial moments to develop
a general theory for dispersion in granular and sintered,
spatially periodic porous media and showed that in the
long-time limit the dispersion of tracer particles obeys the
advection–diffusion equation. The multiple-scale expansion or
homogenization method was applied to determine dispersion
coefficients in spatially periodic porous media [9]. The method
of volume-averaging [6] was employed to derive proper forms
of the transport equation and to calculate the dispersion
coefficients in ordered and random porous media [10–14].
Koch and Brady [15] used an ensemble-averaging approach to
obtain a macroscopic equation of mass conservation. They
analyzed the derived transport equation in the long-time
limit and revealed three contributions to dispersion in fluid
flow through a bed of fixed spheres: (i) intrinsic mechanical
dispersion due to the stochastic velocity fluctuations induced
by the randomly positioned bed particles; (ii) retention of
the diffusing species in permeable particles or in regions
with closed streamlines, from which the species can escape
only by diffusion; and (iii) the presence of the diffusive
boundary-layer near the solid–liquid interface. Van Milligen
and Bons [16] proposed a heuristic model of dispersion based
on the assumption that transport in each of the pore channels
traversed by a tracer is dominated by either diffusion or
mechanical dispersion. The developed expressions for DL and
DT include three free parameters (a critical velocity and two
geometric proportionality constants), which depend on the
porous medium properties. A fit of the proposed expressions
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to an ample collection of experimental data revealed good
accuracy of the model for a wide range of flow velocities.
However, values of the parameters in the proposed model can
be only determined from fitting to experimental data.

Over the past decades, the modeling of solute transport and
dispersion in porous media has been performed also with a pore
network approach, where a porous material is represented as
an interconnected network of channels and/or pores [17–37].
In these models, the complex geometry of the void space in
porous media is replaced with a simplified and “equivalent”
pore network. Elements of this network are typically assigned
to simple shapes, e.g., spheres and cylinders, amenable to
analytical treatment. This approximation allows to reduce
computational efforts in simulations of transport phenomena.
The results obtained with a pore-network approach show
that the morphology of a porous medium strongly affects
dispersion. However, the main challenge arising due to the
above simplification is to identify and preserve essential
geometric and topological features of the real void space,
which are relevant to both advective and diffusive transport.

The lack of detailed information on the geometrical
structure of real porous media, which is required for a
direct pore-level modeling of transport phenomena, can be
overcome by physical reconstruction of the pore space mor-
phology. Several experimental techniques, such as nuclear
magnetic resonance imaging, x-ray tomography, confocal
laser scanning microscopy, and scanning transmission electron
microscopy, were used for the acquisition of information
on the three-dimensional geometrical structure of the void
space in a variety of natural and synthetic porous media.
They include sandstones, packed beds, reservoir rocks, and
chromatographic monoliths. Then, this information was em-
ployed for pore-level numerical simulations of mass transport
in these materials [38–51]. However, this simulation ap-
proach is computationally expensive and commonly requires
the use of high-performance parallel computational systems
(supercomputers).

Results obtained with the aforementioned theoretical and
numerical approaches indicate that DL and DT depend on
both the geometrical structure of the porous medium and
the reduced flow velocity ν = uG/Dm (also known as the
Péclet number), where u is the average velocity through the
medium, G is a characteristic length of the medium (e.g.,
the grain size or the mean interstitial void size), and Dm

is the free diffusion coefficient of the species in the bulk
fluid. Because the geometrical structure of the void space
in a three-dimensional random porous medium is complex,
studies of dispersion in porous media are frequently based on
replacing the random geometry by a periodic structure and
on subsequent reduction of the three-dimensional problem to
a two-dimensional one. Though these simplifications allow
us to reduce significantly computational expenses and the
theoretical complexity of the problem, the applicability of
results obtained with this simplified approach to random
three-dimensional porous media is questionable.

It is well established that advective transport in two-
and three-dimensional porous media is fundamentally dif-
ferent [52]. In three-dimensional porous domains, the flow
streamlines of the incompressible fluid can twist around
and pass each other without intersecting. By contrast, the

streamlines of a steady-state divergence-free flow field can
never pass each other in two dimensions. This, for example, is
manifested in completely different behaviors of the transverse
dispersion coefficient in two- and three-dimensional porous
media. Attinger et al. [53] showed theoretically that for pure
advective transport (Dm = 0) DT is finite in three dimensions
and zero in two dimensions. The unphysical assumption of
Dm = 0 immediately results in ν → ∞, independent of the
flow velocity u. However, the condition ν → ∞ can also
be realized with the assumption of a finite Dm and u → ∞.
Brenner [8] and Koch et al. [54] pointed out that molecular
diffusivity must always be accounted for in hydrodynamic
dispersion studies. This requirement arises not only because
diffusion is one of the principal transport mechanisms, but also
due to its coupling with advection.

In the present paper, we investigate numerically the
transverse dispersion coefficient in a hexagonal array and in
disordered arrays of solid (i.e., impermeable), equal discs.
While the hexagonal disc array represents a two-dimensional
porous medium with a regular geometrical structure, the
disordered arrays mimic random two-dimensional porous
media. Their structural disorder was generated through a
distortion of the hexagonal array by introducing contacting
discs. Complementary, a completely random arrangement of
the discs was realized by adapting a Jodrey–Tory algorithm
[55]. Advective–diffusive transport of passive tracers was
simulated by two different approaches. The first one is based
on a random-walk particle-tracking (RWPT) technique. At the
first stage, the pore-scale velocity field of an incompressible
Newtonian fluid in laminar flow was calculated with a
lattice-Boltzmann method (LBM). Then, a large number of
point-like tracers was distributed in the void space. The
tracer displacements during each elementary time step were
determined as the sum of two independent contributions due to
advection (determined by the local flow velocity) and diffusion
(determined by Dm). This comprehensive approach to the
simulation of advective–diffusive transport accounts for the
heterogeneity of the velocity field at the intra- and inter-pore
scales of a porous medium. The second, simplified simulation
approach we used in this study is based on modifications of the
Galton-board model [56] and its successor, the Simpson model
[57]. With this approach, the geometrical structure of a porous
medium is represented by a set of rectangular void and solid
cells. Velocity in the void cells is assumed to be uniform and
along the average flow direction through the medium. We show
that, regardless of the aforementioned geometrical and physi-
cal simplifications, the proposed modification of the Simpson
model reproduces qualitatively (and for the hexagonal array
even quantitatively) the behavior of DT as a function of the
reduced velocity. The main purpose of the simplified model, in
addition to the LBM–RWPT approach, has been to eliminate
any factors, except for the geometrical disorder, that eventually
affect the dependence of DT on ν in random porous media.

The two simulation approaches have been used to study
the behavior of DT in the ordered and disordered or random
two-dimensional structures at high reduced velocities when
the contribution of diffusion to mass transport becomes
much smaller than the advective contribution, reflecting the
conditions ν → ∞ and Dm �= 0, and to analyze the effect
of order/disorder in the studied system on DT. The article is
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organized as follows. First, a brief introduction into the LBM
and RWPT techniques as well as the results obtained with
these approaches for the hexagonal and random arrays of hard
discs are presented. Afterwards, the Galton-board and Simpson
models are described with an analysis of their shortcomings.
Then, we present our modification of the Simpson model.
Results with this modification for the hexagonal disc array are
compared with LBM–RWPT simulations and experimental
data. In addition, we employ the modified Simpson model to
evaluate the transverse dispersion coefficient in disordered disc
arrays as a function of the reduced velocity. We show that in the
presence of diffusion the behavior of DT is different in ordered
and disordered two-dimensional porous media: With increas-
ing reduced velocity, the transverse dispersion coefficient
approaches an asymptotic value in ordered two-dimensional
porous media, while it grows linearly in disordered (random)
structures. These results refute the assumption frequently met
in the literature that a leveling-off in DT at high ν must be
observed both with ordered and disordered two-dimensional
porous media due to the inherent properties of incompressible
fluid flow in two-dimensional systems [58–62]. Though our
study focuses on the analysis of transverse dispersion due
to advective–diffusive transport in two-dimensional porous
media, we finalize our discussion of the results by a comparison
with data obtained for three-dimensional ordered and random
porous media.

II. LATTICE-BOLTZMANN AND RANDOM-WALK
PARTICLE-TRACKING METHODS

The lattice-Boltzmann method (LBM) is a kinetic approach
with discrete space and time, based on resolving the Boltzmann
equation instead of the Navier–Stokes equation to compute
the flow velocity field. Among the advantages of the LBM
are its inherent parallelism (supporting the implementation at
high-performance computational systems) and the capability
to handle topologically complex solid−liquid interfaces like in
random porous media. With this approach, the hydrodynamics
is simulated by tracking the time-evolution of fictitious
particles that are confined to a cubic lattice and move with
discrete velocity eα during discrete time steps along lattice
links. The particle distribution function fα(r,t) determines the
probability of finding a particle with velocity eα at lattice site r
and time t . The values of the velocities eα are chosen such that
in one time step δtLB a particle moves along a lattice link from
one lattice node to its neighbor. Next, the particle distributions
functions at each time step are redistributed according to
the collision operator. Here, we used the Bhatnagar–Gross–
Krook collision operator and the evolution equation fα(r,t)
is [63]

fα(r + δtLBeα,t + δtLB) = fα(r,t) − fα(r,t) − f
eq
α (r,t)

τ
, (1)

where f
eq
α is the equilibrium distribution function and τ is the

relaxation parameter, which is related to the fluid viscosity
by η = (2τ − 1)/6 [64]. The local fluid density ρ(r,t) and
velocity u(r,t) are determined by the first-order and second-

order moments of the particle distribution functions:

ρ(r,t) =
∑

α

fα(r,t) (2)

and

u(r,t) = 1

ρ(r,t)

∑
α

eαfα(r,t). (3)

Employing the Chapman–Enskog expansion, the equi-
librium distribution functions in Eq. (1) can be calculated
according to the following expression [65]:

f eq
α (r,t) = wαρ

[
1 + eαu

c2
s

+ (eαu)2

2c4
s

− uu
2c2

s

]
, (4)

where cs is the speed of sound and wα are weight factors
that depend on the geometry of the employed lattice. We
used the D3Q19 lattice [66,67], a cubic lattice with 18 links
at each lattice node, which can be obtained by projecting
the four-dimensional face-centered hypercubic lattice onto
three-dimensional space. In the D3Q19 lattice each node is
connected to its six nearest and twelve diagonal neighbors. It
can be shown that Eq. (4) with weight factors of wα = 1/3
(for α = 0), wα = 1/18 (for α = 1, 3, 5, 7, 10, 13), and
wα = 1/36 (for α = 2, 4, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18;
conventional numbering for links in a D3Q19 lattice) properly
recovers the Navier–Stokes equation [68]. To realize the no-
slip velocity boundary condition, a halfway bounce-back rule
was implemented at the solid–liquid interface [69]. During the
past decade, the LBM was extensively used to calculate pore-
scale velocity fields in porous media. Recently, its accuracy
was validated and confirmed by a direct comparison of the
hydraulic permeability simulated in physically reconstructed
monolithic porous media with experimental values obtained
for these materials [43,70].

In this study, we used the LBM to calculate pore-scale flow
velocity fields in the void space of hexagonal and random
disc arrays with a solid volume fraction of φ = 0.6, assuming
a laminar flow regime. The random array of discs (which
contains ca. 4.6×107 discs with diameter dp) was generated
by the Jodrey–Tory algorithm [55] in a rectangular domain
with dimensions of 2000dp×30000dp and periodic boundary
conditions. Implementation of periodic boundaries assumes
that the disc position on one side of the domain influences
the positions of discs at the opposite side. Then, hexagonal
and random arrays were discretized on a uniform lattice with
a lattice spacing of dp/100, which was used for the LBM
simulations of fluid flow. It has been shown that this grid
resolution is sufficient for accurate LBM flow simulations in
random sphere packings [71].

In the next step, the computed flow fields were used
to simulate advective–diffusive transport of inert point-like
tracers with the RWPT method [9]. It is based on the
equivalence of the advective–diffusive equation,

∂c

∂t
+ u · ∇c = Dm∇2c, (5)

where c denotes concentration, and the stochastic differential
equation describing the random walk of a tracer in an advection
velocity field [72]. In two dimensions, the discrete form of the

063108-3



HLUSHKOU, PIATRUSHA, AND TALLAREK PHYSICAL REVIEW E 95, 063108 (2017)

stochastic differential equation is

r(t + δtRW) = r(t) + u(r)δtRW + ξ
√

4DmδtRW, (6)

where r(t) stands for the tracer position at time t , δtRW is
the elementary time step of the random walk, and ξ is a
vector with a random orientation and a length governed by
a Gaussian distribution with zero mean and unity variance.
Algorithmically, Eq. (6) was realized to simulate advective–
diffusive transport of tracers in the interstitial void space of
the arrays as follows. Initially, a large number of tracers
Ntr (106) were uniformly distributed at random positions in
the void space. Then, at each elementary time step δtRW,
the displacement of a tracer was determined as the sum
of advective and diffusive contributions represented by the
second and third terms on the right-hand side of Eq. (6),
respectively. The advective contribution was calculated with
the velocity vector u from the nearest node of the lattice
used to simulate the velocity field by the LBM. The time
step δtRW was defined so that the average displacement did not
exceed dp/200. A multiple-rejection scheme was implemented
to restrict the movement of tracers to the void space [73]. The
time-evolution of tracer coordinates was monitored and the
transverse dispersion coefficient determined from

DT = 1

2Ntr

d

dt

Ntr∑
a=1

(�ya − 〈�y〉)2, (7)

where �ya and 〈�y〉 are, respectively, the transverse displace-
ment of the ath tracer and the average transverse displacement
of the tracer ensemble.

In recent years, the RWPT technique combined with the
LBM was extensively used to study hydrodynamic dispersion
in porous media [42,71,74–84]. The comparison with experi-
mental data confirmed that this approach allows to determine
longitudinal and transverse dispersion coefficients with high
accuracy [84]. The above numerical methods presented in this
section were realized as parallel codes in C/C++ languages
and implemented on an IBM BlueGene/Q supercomputer
(Jülich Supercomputing Center, Forschungszentrum Jülich,
Jülich, Germany). The calculation of a steady-state velocity
field required approximately 2 h at 256 processors, and the
simulation of hydrodynamic dispersion for 30 values of the
reduced flow velocity took about 4 h at 256 processors.

Figure 1 shows the transverse dispersion coefficient as a
function of the reduced flow velocity ν = udp/Dm obtained
for the hexagonal and random arrays of discs using the
LBM–RWPT approach. The results in Fig. 1 demonstrate
that, in contrast to the theoretical prediction for pure advective
transport (when Dm = 0) [53], DT is not zero even at very high
values of ν, at which advection is the (by far) dominating trans-
port mechanism. This means that the diffusive contribution to
mass transport, no matter how small compared to the advective
contribution, cannot be neglected in a realistic analysis of
hydrodynamic dispersion in porous media. In addition, the
behavior of DT for ν → ∞ is different for ordered and random
array; while DT in the hexagonal array levels off, it continues
to grow with ν in the random array. Thus, the structural
order/disorder is another key parameter that determines the
behavior of the transverse dispersion coefficient at high
reduced velocities. We discuss these results in detail in the last

FIG. 1. Transverse dispersion coefficient DT normalized by the
free diffusion coefficient Dm as a function of the reduced velocity
ν = udp/Dm, obtained by the LBM–RWPT approach, for a hexagonal
and a random array of equal discs with solid volume fraction φ = 0.6.
The diameter of the discs dp is 10−5 m and the free diffusion coefficient
of the tracers Dm is 10−9 m2 s−1.

section. In the next sections, we present a simplified model
of transverse dispersion in two-dimensional porous media and
show that it allows to reproduce the functional behavior of
DT in the ordered and disordered structures obtained with the
LBM–RWPT approach (Fig. 1). This signifies that geometrical
disorder in the presence of diffusion results in an increase of
DT with ν even in a divergence-free and pore-scale uniform
flow field in a two-dimensional porous medium.

III. MODIFIED SIMPSON MODEL

Though a spatially periodic porous medium is an ideal-
ization of real porous materials, this geometrical model is
of theoretical interest, because the problem of determining
the dispersion coefficients in such simplified media may
be reduced to the investigation of transport processes in a
single unit cell [8]. The simplest and most studied periodic
geometrical model of a porous medium is a hexagonal array
of infinitely long cylindrical pillars, which can be reduced
to a two-dimensional hexagonal array of discs [Fig. 2(a)].
This configuration closely resembles the Galton board, a
device constructed to demonstrate experimentally that the
normal distribution approximates the binominal distribution.
If a falling ball, when it hits a pin, can bounce to the left or
to the right with probability 0.5, then the probability f (i,n) to
find a ball in the ith compartment of the nth layer of the Galton
board [Fig. 2(b)] is governed by the binominal distribution

f (i,n) = n!

(n − i)!i!
2−n, 0 � i � n. (8)

The Galton-board model can be applied to describe trans-
verse dispersion in a hexagonal array of pillars or discs
[Fig. 2(a)] under the assumption of a uniform velocity in
the interstitial void space. With this approach, transverse
dispersion is treated as a random-walk process composed of
successive and equiprobable displacements of a tracer by a
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FIG. 2. (a) Hexagonal array of discs (dp is the disc diameter, �x and �y are the longitudinal and transverse dimensions, respectively, of the
unit cell). Blue lines illustrate the splitting and merging of flow streamlines. The red rectangle indicates a unit cell. (b) Schematic illustration
of the probability distribution to find a falling ball in the ith compartment of the nth layer of the Galton board. This probability is governed by
the binominal distribution [Eq. (8)]. The arrows show possible displacements of the ball, which occur with frequency 1/�t .

distance �y/2 along the either positive or negative directions
of the y-axis. Transverse displacements are associated with
the splitting streamlines of the flow velocity upstream of
every disc. Each transverse displacement is accompanied by
a displacement �x along the axial direction, i.e., the average
flow direction through the array. These displacements occur
with frequency 1/�t = 2u/�x, where u is the axial velocity.
The geometrical parameters �x and �y describe the unit cell
in a hexagonal disc array [red rectangle in Fig. 2(a)]. The
variance of the transverse displacement of the tracer from its
original position after n displacements is given by [85]

σ 2
T,n = n

�y2

4
. (9)

The transverse dispersion coefficient can be determined by
the method of moments [17,86,87] as

DT = 1

2

σ 2
T,n

tn
, (10)

where tn = n�t is the time required to perform n displace-
ments. Substituting Eq. (9) into Eq. (10), we get

DT = 1

4

�y2

�x
u. (11)

For a hexagonal array of discs or pillars, the values of �x

and �y can be determined from the diameter of the discs dp

and the solid volume fraction φ as

�x = dp

(
π

√
3

φ
√

2

)1/2

, (12)

�y = dp

(
π

2φ
√

3

)1/2

. (13)

The Galton-board model treats transverse dispersion as
a mechanistic process [56]. Though it allows to determine
DT using information only about the geometrical structure
of the ordered porous medium, diffusion is not considered

as a transport mechanism. Equation (11) predicts that DT

is proportional to the average velocity u and does not
depend on the solute diffusion coefficient. This contradicts
theoretical findings [54,88,89], experimental data [90,91], and
also the results of numerical simulations [14,83,84,92–95].
The Galton-board model assumes that solute molecules in a
region of merging flow streamlines experience a complete
mixing independent of the time they need to pass this
region, i.e., independent of the flow velocity and the diffusion
coefficient.

Simpson proposed a modified Galton-board model [57].
It accounts for the dependence of the rate of exchange
between solute molecules, brought to a mixing zone through
different flow streamlines, on the time that the molecules
require to pass the zone. In the Simpson model, the porous
medium is represented as an idealized structure of spatially
ordered, rectangular cells associated with either solid phase
or void space [Fig. 3(a)]. It is assumed that the flow field
in the void cells consists of only the uniform longitudinal
component determined by the average velocity u through
the porous medium. Therefore, the Simpson model does
not need to resolve the problem of the actual flow field.
Regardless of an eventual discontinuity of the void space in
the model resulting from spatially disconnected void cells,
time-continuous mass transport is maintained through the
assumption of instantaneous lateral displacements of a tracer
toward the neighboring downstream void cells as it leaves
a given cell [dashed blue lines in Fig. 3]. Each void cell
is divided into two halves along the longitudinal x-direction
[Fig. 3(b)]. It is assumed that a tracer can enter a downstream
void cell only through the fraction of its lateral boundary
belonging to the half-cell that is closest to the exited cell. In the
absence of diffusion, the tracer leaves a void cell by passing
the downstream lateral boundary that belongs to the same
half through which it has entered. To account for diffusion
as a mixing mechanism in the void cells, Simpson introduced
two quantities, q and p (q + p = 1), which correspond to the
probabilities that a tracer leaves a void cell from the same
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FIG. 3. (a) Idealized representation of a porous medium in the Simpson model. Gray and white rectangular domains represent solid and
void cells, respectively. Blue arrows show the uniform flow streamlines in the void cells and the dashed blue lines represent the (instantaneous)
lateral displacements of tracers after they leave the void cells. (b) Schematic illustration of diffusive exchange between the two halves of the
void cells in the Simpson model. Black dashed-dotted lines indicate the boundaries between the two halves of a void cell. The green filled
circle represents a tracer entering with fluid flow a given half of the void cell. After time �t = u/�x, the tracer leaves the cell from the same
half (with probability q) or through the adjoining half (with probability p).

half through which it has entered and from the adjoining
half-cell, respectively. The values of q and p depend on the
time �t that the tracer needs to travel the longitudinal distance
�x (i.e., �t = �x/u) and on the diffusion coefficient Dm

[cf. Fig. 3(b)].
Simpson proposed to determine the probabilities q and

p by resolving a one-dimensional diffusion problem in a
rectangular domain divided into two equal halves. Initially,
one of the halves contains a uniformly distributed species
at concentration c0 and the second one is empty. Then, the
species diffuses through the boundary between the two halves
of the domain. Diffusion only normal to the boundary is
accounted for. The external boundary of the domain is assumed
to be impermeable. The solution of the aforementioned one-
dimensional diffusion problem can be obtained as follows [96]:

c(y,t) = c0

2

∞∑
j=−∞

[
erf

�yv

2 (1 + 4j ) − y

2
√

Dmt

+erf
�yv

2 (1 − 4j ) + y

2
√

Dmt

]
, 0 � y � �yv, t � 0,

(14)

where c(y,t) is the species concentration at position y after
time t , c0 is the initial, uniform species concentration in
the region 0 � y � �yv/2, and �yv = dp(1 − φ)/2φ. The
value of p is determined as the fraction of species diffused
across the boundary after time �t . This fraction is calculated
by integrating c(y,t = �t) with respect to y over the range
�yv/2 � y � �yv:

p = 2

c0�yv

∫ �yv

�yv/2
c(y,t = �t)dy. (15)

With this approach, p does not depend on the initial species
concentration; i.e., the calculated value of p is applied to
characterize diffusive transport in all void cells independent
of their position in the system. Then, the variance of the
transverse displacement of the tracer from its original position

after passing n void cells is given by [85]

σ 2
T,n = (�yv + �ys)2

4
np, (16)

and the corresponding value of DT is calculated as

DT = 1

8

(�yv + �ys)2

�x
up, (17)

where �ys = �yv/(φ−1 − 1). Comparison of Eqs. (11) and
(17) shows that the Simpson model is reduced to the Galton-
board model when �yv = �ys = �y and p = 0.5. (It should
be noted that �x in the Simpson model is half the longitudinal
dimension of the unit cell in the Galton-board model, cf. Figs. 2
and 3.) The value of p = 0.5 corresponds to a complete mixing
of tracers during their motion in a void cell, which can be
observed if u → 0 (or more rigorously, if ν → 0).

However, the probability p in the Simpson model is not
constant. It is a function of velocity u, diffusion coefficient Dm,
and the parameters �x and �yv characterizing the geometry of
the system. Substituting Eq. (14) into Eq. (15) and integrating
with respect to �yv/2 � y � �yv and t = �t = �x/u, one
can derive the following expression for p [96]:

p =
√

4Dm�x

u�y2
v

∞∑
j=−∞

{(
exp

−j 2u�y2
v

Dm�x

)

−
[

exp
−(1 − 2j )2u�y2

v

4Dm�x

]}

−
∞∑

j=−∞

{
2jerfc

(
j
√

u�y2
v√

Dm�x

)

− (1 − 2j )erfc

[
(1 − 2j )

√
u�y2

v

2
√

Dm�x

]}
. (18)
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FIG. 4. Normalized lateral concentration distributions c/c0 (solid
lines) of species in a void cell after the time �t = �xdp/νDm,
calculated according to Eq. (14), for different reduced velocities ν.
Species were initially distributed with uniform concentration
(c/c0 = 1) in the region 0 � y/�yv � 0.5. The dashed lines represent
normalized average species concentrations (〈c〉/c0) in the left and
right halves of the void cell after �t .

By asymptotic analysis for u → ∞, the value of p can be
approximated as

p =
√

4Dm�x

u�y2
vπ

, (19)

and after substituting Eq. (19) into Eq. (17), the following
functional dependence of DT on u can be developed:

DT ∝ u1/2. (20)

Though Eq. (20), in contrast to Eq. (11), predicts a nonlinear
dependence of DT on the flow velocity in a porous medium, the
above functional relation with u still contradicts experimental
data [60] and the results of numerical simulations [83,92,95],
indicating that DT in ordered porous media approaches an
asymptotic value with increasing flow velocity.

Our analysis of the Simpson model has demonstrated that
this disagreement originates from the assumption of a uniform
species concentration in the void cells that is used as initial
condition for resolving the diffusion problem (to determine
the value of p). The incorrectness of this assumption is
illustrated by the data presented in Fig. 4. The solid lines
in this figure show the lateral distribution of the normalized
species concentration (c/c0) in a void cell after different
times �t = �xdp/νDm associated with different reduced
velocities ν (�t is the time available for lateral diffusion of
a tracer in a void cell, equal to the length of the cell divided
by the flow velocity). The normalized lateral concentration
distributions in Fig. 4 were obtained according to Eq. (14)
for initially uniform concentration distribution (c/c0 = 1) in
the left half of the void cell [0 � y/�yv � 0.5, Fig. 3(b)].
The results in Fig. 4 demonstrate that for ν � 100 the lateral
concentration distributions are nonuniform. According to the
Simpson model, the nonuniform concentration distribution
established in the current void cell after time �t is replaced
by the corresponding uniform one (dashed lines in Fig. 4),

which is used as initial boundary condition for the next two
downstream void cells [Fig. 3(b)]. The uniform concentrations
are obtained by averaging the concentration distributions in
the left and right halves of the current cell. This replacement
allows to avoid recalculation of p in every void cell and,
consequently, reduces significantly the numerical expenses
for the determination of DT. At the same time, the above
probabilistic approach leads to an inaccurate solution for
the diffusion problem in the void cells due to the incorrect
initial boundary conditions. In the Simpson model the actual
concentration distribution established in a void cell after time
�t = �xdp/νDm is replaced by the average concentrations in
the left and right halves of the cell. At ν � 10, when �t is
sufficiently large, the actual concentration after �t is almost
uniform and can be quite accurately represented by its average
value. With increasing ν, �t becomes smaller and tracers
diffuse a shorter average distance. This results in a non-uniform
lateral concentration distribution established within the void
cell after time �t . Therefore, the average concentration 〈c〉
in the right half of the cell becomes higher than the actual
concentration at the right side of the cell, cR = c(y = �yv).
The relative difference (〈c〉 − cR)/cR increases with ν (because
cR decreases with ν). In turn, at the next iteration, this leads to
an increased fraction of tracers that diffuse to the right half of
the right downstream void cell, resulting in an overestimation
of the mean squared displacement in the Simpson model at
high ν.

We modified the Simpson model by introducing a cal-
culation of the concentration distribution in every void cell
of the system. For this purpose, the modeled system was
represented as large hexagonal array of discs composed of
30,000 layers. Figure 5 shows a section of the array with
its first three layers. Similar to the original Simpson model,
void cells with dimensions �x and �yv (semitransparent
red rectangular regions in Fig. 5) were used to represent

Flow

dp

x

yv

yp

Y

X

FIG. 5. Simplified representation of the geometrical structure of
the hexagonal array. Void cells are shown as (semi-transparent) red
rectangular regions. The green horizontal line indicates the position
of tracers at t = 0.
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the void space of the array. At t = 0, tracers are placed in
the space between two discs of the first layer with uniform
concentration c0 (green horizontal line in Fig. 5). Then, the
concentration distribution in every void cell of the system is
successively calculated, while accounting for the generally
nonuniform initial concentration distribution obtained from
solutions for the one-dimensional diffusion problem in two
adjoining (upstream) void cells.

A solution for this one-dimensional diffusion problem
with initially non-uniform concentration distribution can be
obtained by a superposition-reflection method [96]. For this
purpose, we divided the void cells along the y-direction into

L equal regions with dimension �yv/L (here, L = 100). The
initial (entering) concentration cl0 in the lth (0 < l � L) region
was assumed to be uniform and equal to the concentration in
the center of the region, yl = (l − 0.5)�yv/L. Then, a solution
for this diffusion problem can be represented as a superposition
of solutions for individual subproblems resolved for l instant
diffusion sources with initial concentration cl0, the same width
�yv/L, and positioned between (l − 1)�yv/L and l�yv/L.
Assuming an impermeability of the external boundary of a
void cell, the concentration cl at the center of the lth region
yl = (l − 0.5)�yv/L after time �t = �x�yv/νDm can be
calculated according to the following expression:

cl = 1

2

L∑
k=1

ck0

{
erf

(
yl − ak

2
√

Dm�t

)
+ erf

(
yl + bk

2
√

Dm�t

)
− erf

(
yl + ak

2
√

Dm�t

)
− erf

(
yl − bk

2
√

Dm�t

)

+
∞∑

j=1

[
erf

(
2j�yv − yl − ak

2
√

Dm�t

)
− erf

(
2j�yv + yl + ak

2
√

Dm�t

)
+ erf

(
2j�yv − yl + bk

2
√

Dm�t

)

− erf

(
2j�yv + yl − bk

2
√

Dm�t

)
+ erf

(
2j�yv + yl − ak

2
√

Dm�t

)
− erf

(
2j�yv − yl + ak

2
√

Dm�t

)

+ erf

(
2j�yv + yl + bk

2
√

Dm�t

)
− erf

(
2j�yv − yl − bk

2
√

Dm�t

)]}
, (21)

where ak = (k − 1)�yv/L and bk = k�yv/L (0 < k � L).

Thus, Eq. (21) allows us to determine the tracer concentration
distribution in the system after time t + �t depending on the
concentration distributions in the void cells at time t .

A principle distinction of this approach from the original
Simpson model is the elimination of the averaging procedure
used to produce uniform tracer concentrations in the two
halves of a void cell as initial condition for resolving the local
diffusion problem. This modification allows to account for
diffusive fluxes originating in lateral concentration gradients
in each void cell. In contrast to the original Simpson model,
the tracer concentration distribution is determined not only by
ν and the geometrical parameters characterizing the structure
of the array (�x, �yv, and �yp), but also by the position of
a void cell in the array. Therefore, DT cannot be calculated
with Eq. (17), because the value of p in the proposed
modification of the Simpson model is not the same any more
in different void cells of the system. To evaluate the transverse
dispersion coefficient obtained with the proposed model, we
used the method of moments [17,26,86,87]. According to this
method, DT(t) can be calculated from the variance of the
transverse displacement of tracers from their original position
(cf. Fig. 5) as

DT(t) = dσ 2
T

2dt
. (22)

Replacing the derivative by its finite-difference approxima-
tion, Eq. (22) can be rewritten as

DT(t) = σ 2
T,n − σ 2

T,n−1

2�t
= �σ 2

T,n

2�t
, (23)

where σ 2
T,n is the variance of the transverse displacement of

tracers after passing n layers of the hexagonal array and t =
n�t . For a large number of tracers σ 2

T,n is equivalent to the
variance of the transverse concentration distribution of tracers
at the nth layer of the array.

The modeling of transverse dispersion, employing the
approach described above, is carried out according to the
following iterative scheme. At the beginning of each time-
iteration with the duration �t = �xdp/νDm, the initial (en-
tering) concentration distribution for every rectangular void
cell is spatially associated with the distribution at its upper
(upstream) lateral boundary (cf. Fig. 3). Then, Eq. (21) is
used to determine the concentration distribution established
in a void cell after time �t through lateral diffusion. This
concentration distribution corresponds to that observed at
the bottom (downstream) lateral boundary of the void cell,
assuming a uniform x-component and zero y-component of
flow velocity in the cell. Transverse advective transport in the
system is realized by introducing instant lateral displacements
of the tracers after time �t from the bottom (downstream)
lateral boundary of a given void cell to the upper boundaries
of two adjoining downstream void cells. Since the splitting
of flow streamlines enveloping a disc in a hexagonal array is
symmetric, the outgoing concentration distribution calculated
for a given void cell is also split into two equal halves, left
and right (cf. Fig. 3). At the end of an iteration, each of the
halves is transferred to the left or right nearest downstream
void cells and set as the initial concentration distribution at
the next iteration for the right or left halves of the left or right
downstream cells, respectively.

In contrast to the Simpson model, the proposed approach
requires resolving a diffusion problem for each void cell.
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However, it allows to model more realistically diffusive
transport resulting from lateral concentration gradients in
a porous medium. This transport significantly affects the
exchange between species carried by different flow streamlines
and, therefore, the transverse dispersion coefficient. In the next
two sections, we present results obtained through analyzing
the effect of order/disorder (and the finite value of Dm) on
DT in the hexagonal and random arrays of discs using the
proposed approach.

IV. HEXAGONAL ARRAY OF DISCS

The system we analyze in this section is a hexagonal array of
discs with solid volume fraction φ = 0.6, which is between the
limits corresponding to random-loose (∼0.55) and random-
close packing (∼0.64) for monosized, frictionless hard spheres
[97]. Similar to the representation of a porous medium used in
the Simpson model, the real geometrical structure of the array
is replaced by spatially ordered void cells with longitudinal and
transverse dimensions �x and �yv, respectively (cf. Fig. 5).
The lateral distance between the centers of two neighboring
void cells in the same layer is �yp. The values of �x and
�yp are determined by the disc diameter and the solid volume
fraction in the array

�x = dp

2

(
π

√
3

2φ

)1/2

(24)

and

�yp = dp

(
π

2φ
√

3

)1/2

. (25)

The lateral dimension �yv of the void cells was determined
by adjusting the hydraulic diameter of the rectangular void cell
to that of the actual pore in the hexagonal array:

�yv = dp(1 − φ)

2φ
. (26)

At t = 0, the tracers are placed in the gap space between two
discs of the first layer (n = 0) with a uniform concentration.
The fluid flow in a void cell has only one constant longitu-
dinal component u. Transverse displacement of tracers from
upstream void cells to downstream cells occurs with frequency
1/�t = u/�x. The length of these displacements is �yp/2.
The time-dependent transverse dispersion coefficient DT(t)
was calculated according to Eq. (23) using the variances of the
transverse concentration distributions determined at layers n

and (n − 1) of the array, where t = n�t .
Figure 6 shows how the values of �σ 2

T,n/�t change with
increasing number of passed layers, n, in the hexagonal array at
several reduced flow velocities ν = udp/Dm. Different values
of ν were realized by adjustment of the fluid flow velocity u,
assuming dp = 10−5 m and Dm = 10−9 m2 s−1. The results
in Fig. 6 show that the behavior of �σ 2

T,n/�t at high ν is
characterized by oscillations, which decay with the number of
layers passed by the tracers. (To achieve a better visualization,
the data at ν = 1000 and 10 000 for n < 10 and n < 130,
respectively, have been removed.) This specific oscillatory
behavior originates in the initially localized distribution of
tracer concentration and the spatially periodic structure of

FIG. 6. Dependence of �σ 2
T,n/�t on the number of passed layers

n in a hexagonal disc array with solid volume fraction φ = 0.6
for selected reduced velocities ν = udp/Dm. The quantity �σ 2

T,n

is defined as (σ 2
T,n − σ 2

T,n−1), where σ 2
T,n is the variance of the

transverse distribution of the tracer concentration at the nth layer
of the array. At the first layer (n = 0), tracers were positioned with
uniform concentration in the gap space between two discs (cf. Fig. 5).
The disc diameter dp is 10−5 m, the free tracer diffusion coefficient
Dm is 10−9 m2 s−1, and �t = �x/u. For a better visualization, the
data obtained at ν = 1000 and 10 000 for n < 10 and n < 130,
respectively, have been removed.

the array. At high ν, the time tracers need to pass a pore
with fluid flow is insufficient to equilibrate their concentration
by lateral diffusion (cf. Fig. 4). Consequently, the transverse
position of tracers after passing the first few layers of the
array is mainly governed by splitting and merging of flow
streamlines, resulting in abrupt changes in σ 2

T calculated at two
successive layers. With increasing number of passed layers, the
variance of the transverse concentration distribution becomes
progressively affected by lateral diffusion in void cells. This
results in a gradual decrease of the difference between values of
σ 2

T calculated at two successive layers and in a corresponding
decay of oscillations with n, as observed in Fig. 6. The rate
of the oscillation decay depends on the reduced velocity
characterizing the ratio between contributions of advection
and diffusion to mass transport: The smaller the value of ν the
larger is the effect of diffusion on the variance of the transverse
concentration distribution.

The data in Fig. 6 reveal that with increasing number of
passed layers, the ratio between �σ 2

T,n and �t approaches
a time-independent, asymptotic value which depends on ν.
Independence of �σ 2

T,n/�t from time means that transverse
dispersion in the disc array can be considered as a diffusion-
like process. This conclusion is supported by the data in Fig. 7,
where the transverse concentration distributions at n = 104 are
shown, calculated with the presented approach at four selected
values of ν. All distributions in Fig. 7 are fitted excellently with
a Gaussian, resulting in adjusted coefficients of determination
equal to unity [98].

Figure 8 shows the dependencies of the transverse disper-
sion coefficient normalized by Dm on the reduced velocity,
obtained with the presented approach (solid circles), the
LBM–RWPT simulations (solid line), and the Simpson model
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FIG. 7. Normalized transverse tracer concentration distributions
c(y)/c0 after passing n = 104 layers in the hexagonal array of discs
with solid volume fraction φ = 0.6 for selected reduced velocities
ν = udp/Dm. At the first layer (n = 0), the tracers were positioned
with a uniform concentration c0 = 1.0 in the gap space between two
discs (cf. Fig. 5). The diameter of the discs dp is 10−5 m and the free
diffusion coefficient of the tracers Dm is 10−9 m2 s−1.

(open triangles) along with experimental data (open squares)
from Ref. [60]. The values of DT received with the presented
approach were calculated according to Eq. (23), using the
variances of the transverse tracer concentration distributions
determined in the array for n > 500, where steady-state
(long-time) behavior of �σ 2

T,n/�t is found (cf. Fig. 6). Though
the presented simplified approach does not account for a
non-uniform velocity profile in the void space between discs
and diffusion in longitudinal direction, it allows not only to
reproduce the behavior of DT/Dm with increasing ν, but also
provides DT-values close to those obtained with a comprehen-
sive simulation approach (LBM–RWPT) and by experimental

FIG. 8. Dependencies of the normalized transverse dispersion
coefficient DT/Dm on the reduced velocity ν = udp/Dm in a
hexagonal disc array with solid volume fraction φ = 0.6, determined
according to the presented approach (solid circles), obtained with the
LBM–RWPT simulations (solid line), based on the Simpson model
(open triangles), and from experiments (open squares) [60].

measurements. By contrast, the original Simpson model is not
capable of describing adequately the behavior of DT at high ν.

The data in Fig. 8 demonstrate that DT in the studied
system for ν � 10 exceeds Dm. This confirms that, apart from
diffusion, tracer transport in the lateral direction is also realized
by an additional mechanism related to advection. During its
motion along a flow streamline, a tracer can diffuse to a
neighboring streamline. If initial and neighboring streamlines
split around the nearest downstream disc (cf. Fig. 5), this
results in a change of the transverse tracer position by
≈�yp after time �t = �x/2u (the time needed by a tracer
to pass one half of a layer in the disc array) relative to
the transverse position of a tracer that follows the initial
streamline. Average diffusive displacement during the same
time interval is given by (2Dm�t)1/2 = (2dp�x/ν)1/2 and
becomes smaller than �yp at high ν. It results in an increased
variance of the transverse displacement of tracers (and in-
creased DT) compared to purely diffusive transport. The above
mechanism of enhanced transverse transport can be realized
only if Dm �= 0, because with pure advective transport (Dm =
0) the tracers always follow their initial flow streamlines.
Already a very small diffusive contribution of the tracers
(compared to advection) is sufficient to drive the additional
advective–diffusive transport mechanism. Thus, realization of
the condition ν → ∞ following these two diverse approaches
(Dm = 0 versus Dm �= 0, but u → ∞) results in a different
behavior of DT in ordered two-dimensional porous systems.
While DT = 0 at any value of ν for the purely advective
transport, the presence of diffusion leads to an increase of
DT with ν which, however, lessens monotonically.

The difference in the functional dependence of DT on
ν, observed at moderate (ν < 102) and very high (ν > 103)
values of the reduced velocity (cf. Fig. 8), can be explained by
the different spatiotemporal conditions behind the concentra-
tion equilibration in the void cells resulting from transverse
diffusion. If �t (the time needed by a tracer to pass a
void cell due to flow) is large enough to result in a mean
diffusive displacement exceeding the width of the void cell,
then any initial (i.e., at the entrance of a void cell) and
laterally non-uniform concentration distribution relaxes after
�t into a uniform one, which in turn becomes the initial
concentration distribution for the next downstream void cells.
This concentration equilibration is a consequence of the two
external (right and left), impermeable boundaries of the void
cells. It explains why the Simpson model, which assumes
a uniform initial concentration for one half of any void
cell, can describe the DT−ν dependence sufficiently accurate
at moderate values of ν (cf. Fig. 8). Using Eqs. (24) and
(26) (determining the dimensions of the void cells in the
hexagonal array), one can define the critical value νcrit for
which the average transverse diffusive displacement of the
tracers 〈�y〉 = (2Dm�t)1/2 = (2dp�x/ν)1/2 during the time
interval �t is equal to the half-width of the void cell

νcrit =
(

π
√

3

2φ

)1/2
16φ2

(1 − φ)2 . (27)

For ν < νcrit, the presence of the two impermeable bound-
aries in the void cells noticeably affects the concentration
distribution after �t and drives equilibration within any cell.
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Flow

FIG. 9. Region of a structure generated for group arrays_2. Black
circles correspond to the contacting discs. Such contacting pairs exist
in every second layer of the array. In an individual layer, only two
randomly chosen discs are allowed to be in contact.

Therefore, νcrit can be considered as the upper limit of the
reduced velocity at which the Simpson model still allows to
determine DT with sufficient accuracy. For the hexagonal array
of discs with φ = 0.6, Eq. (27) provides νcrit ≈ 163. The data
presented in Fig. 8 show that for ν < 200, the Simpson model
describes the DT−ν dependence in this system satisfactorily.

With a further increase in ν and a corresponding reduction
of �t , the average diffusive displacement of tracers 〈�y〉
becomes smaller than the half-width of the void cells. For
instance, 〈�y〉 ≈ 0.14�yv and 0.04�yv for ν = 103 and 104,
respectively. This means that the effect of the impermeable
walls on the concentration redistribution (equilibration) within
the void cells during �t decreases with ν. At very high
values of ν, only tracers located initially (at the entrance
of the void cells) very closely to the boundary between the
right and left halves of a void cell can cross this boundary
during �t and subsequently change their transverse position

by �yp. Therefore, the mechanism for transverse dispersion
becomes dominated by successive changes in the tracers’
transverse positions, resulting from the exchange between the
two halves of the void cells. The probability of this exchange
is proportional to �t and inversely proportional to the average
flow velocity and ν. On the other hand, the number of the void
cells that a tracer visits per time is proportional ν. This causes
DT to approach a constant value at high values of ν.

In the next section, we present results obtained with the
proposed modification of the Simpson model to analyze the
effect of diffusion on the transverse dispersion coefficient in
disordered two-dimensional porous media.

V. DISORDERED ARRAYS OF DISCS

For this investigation, disordered two-dimensional porous
media were generated by disturbing (in a random manner)
the geometrical order of the hexagonal array of discs. The
distortion was introduced by creating pairs of contacting
discs in the layers of the array. In a single layer, only two
randomly chosen discs were allowed to touch. To receive a set
of porous structures with a graded degree of heterogeneity
(DoH), we prepared three classes of disc arrays (all with
a solid volume fraction of φ = 0.6), for which single pairs
of contacting discs were repeatedly formed in every second,
fourth, or tenth layer. Below, we refer to these groups of
disordered structures as arrays_2, arrays_4, and arrays_10,
respectively. For each group, ten disordered arrays with
different positions of the contacting discs were generated.
An example of a structure of an array for group arrays_2
is shown in Fig. 9. The DoH increases with the number
of layers containing contacting discs, i.e., DoH(arrays_2) >

DoH(arrays_4) > DoH(arrays_10) > DoH(hexagonal array).
Then, the evolution of tracers, initially distributed with uniform
concentration c0 in the gap space between two central discs
in the first layer of the arrays, was calculated according to
Eq. (21). The lateral dimension of the void cells corresponding
to the contacting discs was set to zero (�yv = 0).

Figure 10 shows the lateral concentration distributions
of tracers after passing n = 104 layers in two selected

FIG. 10. Normalized transverse concentration distributions of tracers, c(y)/c0, after passing n = 104 layers in two disordered arrays of
discs from groups arrays_10 (a) and arrays_2 (b) at selected values of the reduced velocity ν = udp/Dm. The solid volume fraction φ is 0.6
in both arrays. At the first layer (n = 0), the tracers were positioned with a uniform concentration c0 = 1.0 in the gap space between two discs
(cf. Fig. 5). The diameter of the discs dp is 10−5 m and the free diffusion coefficient of the tracers Dm is 10−9 m2 s−1.
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FIG. 11. Dependence of �σ 2
T,n/�t on the number of passed

layers n in a selected disordered structure from group arrays_2
with solid volume fraction φ = 0.6 at selected reduced velocities
ν = udp/Dm. The quantity �σ 2

T,n is defined as (σ 2
T,n − σ 2

T,n−1), where
σ 2

T,n is the variance of the transverse distribution of the tracer
concentration at the nth layer of the array. At the first layer (n = 0),
tracers were positioned with a uniform concentration in the gap space
between two discs (cf. Fig. 5). The disc diameter dp is 10−5 m, the
free tracer diffusion coefficient Dm is 10−9 m2 s−1, and �t = �x/u.

arrays from groups arrays_2 and arrays_10, obtained at
four reduced velocities. Concentration distributions simulated
for a random structure from group arrays_10, shown in
Fig. 10(a), are smooth except for ν = 104. By contrast,
distributions calculated for a structure from group arrays_2
[Fig. 10(b)] are characterized by abrupt changes in tracer
concentration already at ν = 10. These changes occur at a
lateral distance comparable with the disc diameter, implying
that their appearance originates in the presence of the disc
contacts. Contacting discs in a layer of the array do not
allow tracers to be located in the space between these discs
after they have been transported from the upstream layer. It
results in zero tracer concentration at the transverse position
corresponding to the contact point between two discs. During
the transport to the next downstream layer of the array, the
absence of tracers at some transverse position is partially
compensated by advection (represented in the model by lateral

displacements of the tracers between two neighboring layers of
the structure) and lateral diffusion in the void cells. However,
the relative contribution of diffusion to equilibration of local
concentration decreases with higher ν. At low values (ν � 10),
the time tracers spend to pass a void cell in longitudinal
direction is sufficient to achieve a close-to-uniform transverse
concentration even in a single void cell (cf. Fig. 4). With
increasing ν, this time shortens and local equilibration requires
to pass a larger number of void cells. For structures from
group arrays_10, only every tenth layer contains a pair of
contacting discs. Consequently, tracers passing the other nine
layers of the array at ν � 103 have sufficient time for lateral
equilibration before experiencing a distortion at the tenth layer.
It results in the smooth transverse tracer distributions simulated
at ν � 103, as shown in Fig. 10(a). By contrast, the structures
belonging to group arrays_2 contain contacting pairs of discs
in every second layer (Fig. 9). Even at ν = 100, the time
that the tracers spend to pass one layer is insufficient for
lateral equilibration (cf. Fig. 4). This produces the nonsmooth
concentration distributions simulated for ν � 100 [Fig. 10(b)].

The presence of the contacting discs is also responsible
for the appearance of fluctuations in the dependencies of
�σ 2

T,n/�t on the number of layers that the tracers have passed
with the flow. In Fig. 11, we illustrate these dependencies at
ν = 10, 100, and 1000 for a selected disordered structure from
group arrays_2. Random fluctuations in �σ 2

T,n/�t (observed
in Fig. 11) make an evaluation of DT with Eq. (23) challenging.
The determination of the transverse dispersion coefficient
according to Eq. (23) is based on the so-called tangent
definition of DT [26]. As an alternative, DT can be calculated
using its secant definition [26]

DT(t) = σ 2
T(t)

2t
, (28)

where t = n�t and n is the number of layers the tracers have
passed after time t . According to Eq. (28), the transverse
dispersion coefficient can be determined from the slope of
σ 2

T plotted versus time. Figure 12 illustrates this depen-
dence for disordered structures from groups arrays_10 and
arrays_2 at different ν-values. The functions σ 2

T(t) obtained
for each of the ten disordered structures from groups arrays_2,
arrays_4, and arrays_10 were fitted with straight lines and

FIG. 12. Variances σ 2
T of the transverse tracer concentration distributions as a function of time, simulated for two disordered arrays of discs

from groups arrays_10 (a) and arrays_2 (b) with solid volume fraction φ = 0.6 at selected reduced velocities ν = udp/Dm. The diameter of
the discs dp is 10−5 m and the free diffusion coefficient of the tracers Dm is 10−9 m2 s−1.
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FIG. 13. Normalized transverse dispersion coefficient DT/Dm vs.
the reduced flow velocity ν = udp/Dm, determined for the disordered
structures (black symbols) and the hexagonal array of discs (red
symbols). The solid volume fraction is 0.6, the diameter of the discs dp

is 10−5 m, and the free tracer diffusion coefficient Dm is 10−9 m2 s−1.
Black symbols represent the values of DT/Dm averaged over the ten
different realizations for each array group, and the error bars denote
the corresponding ranges for the simulated values.

the corresponding transverse dispersion coefficients were
determined using Eq. (28). It should be pointed out that
the relative difference between DT-values obtained for the
hexagonal array of discs according to Eqs. (23) and (28) did
not exceed 2% within the whole range of reduced velocities
we analyzed in this study (10 � ν � 4×104).

Figure 13 shows the transverse dispersion coefficient
normalized by Dm as a function of the reduced velocity for
the three groups of disordered structures (black symbols),
determined after Eq. (28), and for the hexagonal array (red
circles). Black symbols represent DT/Dm-values averaged
over all ten different realizations for each array group and the
error bars indicate the corresponding ranges for the simulated
values. Transverse dispersion coefficients determined for the
hexagonal array and the disordered structures demonstrate
similar values at a given ν in the range 10 � ν � 103, but they
exhibit a fundamentally different behavior for higher ν. In the
hexagonal array, DT/Dm approaches its asymptotic value of
∼13.4, but it increases with ν for the disordered structures:
at ν � 104, the dependence of DT/Dm on ν becomes close
to linear for all disordered arrays of discs. This finding agrees
with the simulations by Van Milligen and Bons for an irregular
two-dimensional network of channels [36]. Similar to the
approach in this study, the model employed by Van Milligen
and Bons does not account for Taylor dispersion, i.e., a uniform
flow velocity within an individual channel (or a void cell in
the present study) is assumed. By contrast, the results in Fig. 1
were obtained by the LBM–RWPT approach, which models
advective–diffusive transport with full resolution of the flow
field, thereby accounting for the fundamental non-uniformity
of the flow velocity at the pore scale. The results obtained with
that comprehensive approach for the dependence of DT/Dm

on ν in a structure with a completely random disc arrangement

also reveal the absence of a tapering-off in the dispersion data
and the attainment of a plateau with increasing ν (cf. Fig. 1).
This allows to conclude that the increase in DT/Dm with ν, as
observed in Figs. 1 and 13 for the disordered structures, does
not originate in a non-uniformity of the local flow velocity,
but is a result of the random (disordered) geometry of the
employed systems.

As mentioned above, the DoH for a disc array increases with
the number of layers containing contacting discs (disordered
layers). Figure 13 demonstrates a clear relationship between
the DoH and slope characterizing the dependence of DT/Dm

on ν for ν � 104. This dependence becomes steeper with
increasing number of disordered layers in a structure. The
hexagonal disc array is perfectly ordered and the dependence
of DT/Dm on ν in Fig. 13 is characterized by zero slope (a
constant value of DT/Dm) at high ν. Structures from group ar-
rays_2 contain pairs of contacting discs in every second layer.
It results in the highest DoH among all analyzed structures.
The slope of the corresponding dependence of DT/Dm on ν is
steepest compared to the other disc arrays. The observations
based on Fig. 13 imply that the geometrical disorder not only
changes the behavior of the transverse dispersion coefficient
at high reduced velocities (linear dependence of DT on ν

for disordered structures vs. a constant DT-value for ordered
structures), but also determines how strong DT increases
with ν.

Though geometrical disorder is prerequisite to the absence
of DT approaching an asymptotic value at high reduced
velocities, this is not a sufficient condition. For purely
advective transport (Dm = 0), tracers are carried only by
the flow along individual streamlines. As a consequence,
tracers initially located at the same position keep identical
positions also during their transport through a porous medium,
independent of a regular or random flow pattern. That scenario
can be conceptually realized by allowing the tracers to follow
individual streamlines (schematically shown in Figs. 5 and 9),
assuming that the exchange between two streamlines is
impossible. It results in zero transverse dispersion in both
ordered (Fig. 5) and disordered (Fig. 9) structures. This
agrees with theoretical results for purely advective transport in
two-dimensional porous media [53]. The presence of diffusion
changes drastically the behavior of DT at high reduced veloc-
ities. Even an infinitesimal but finite contribution of diffusion
(realized at ν → ∞) to the exchange of tracers carried with
different streamlines results in a non-zero transverse dispersion
coefficient in both ordered and disordered two-dimensional
structures. If Dm �= 0, there always is a non-zero fraction
of tracers that can diffuse from one streamline to another
during a finite time interval. Then, the subsequent diverging
of the flow streamlines leads to lateral spreading of tracers
and a nonzero transverse dispersion coefficient. This scenario
is similarly realized in ordered and disordered structures
except for one distinction: Regions of splitting and merging
of flow streamlines in ordered structures are spatially regular,
whereas in disordered structures, they are located at random
positions. As a consequence, the lateral position of a tracer
carried only by flow in an ordered structure is characterized by
time-periodic oscillations with constant amplitude determined
only by the characteristic length of the structure (the disc
diameter in this study). In a disordered structure, it appears
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FIG. 14. Transverse dispersion coefficient DT normalized by the
free diffusion coefficient Dm as a function of the reduced velocity
ν = udp/Dm, obtained by the LBM–RWPT approach, for a hexagonal
and a random array of equal discs (black circles and black squares,
respectively), and for a FCC and a random packing of equal spheres
(red circles and red squares, respectively). The solid volume fraction
of all structures is φ = 0.6.

as oscillations with random amplitudes determined also by
the length scale characterizing the disorder (the distribution
of positions of contacting discs in this study). In combination
with diffusion leading to the exchange between neighboring
streamlines, this results in completely different behaviors of
DT in ordered and random porous media, as observed at high
values of ν (Fig. 13).

Finally, we want to discuss the difference in the dependence
of DT on ν in two- and three-dimensional porous media.
Figure 14 shows the normalized transverse dispersion coef-
ficient as a function of ν, obtained with the LBM–RWPT
approach, for a hexagonal and a random array of equal discs
(black circles and black squares, respectively), and for a FCC
(face-centered cubic) and a random packing of monosized
spheres (red circles and red squares, respectively). Though
all structures have identical solid volume fraction (φ = 0.6),
the presented DT−ν dependencies differ both quantitatively
and qualitatively. Similar to the random array of discs, the
random packing of spheres is characterized by a linear growth
of DT at high values of the reduced velocity. However, the
slope of this growth is larger than for the two-dimensional
random structure. It results in much higher values of DT in
the sphere packing than in the random array of discs for
ν > 103. At the same time, in the range of ν between 10
and 100, the transverse dispersion coefficient in the ordered
and random two-dimensional structures is larger than in
the random packing of spheres. In contrast to the random
structures, the values of DT in the three-dimensional ordered
(FCC) structure at high ν are significantly smaller than in the
two-dimensional ordered system. Moreover, DT in the FCC
packing of spheres does not tend to flatten even at ν = 5×104.
The data in Fig. 14 demonstrate that results and conclusions on
transverse dispersion in two-dimensional porous media cannot
be straightforwardly applied to three-dimensional media.

VI. CONCLUSIONS

The goal of this study was an investigation into the effect
of order and disorder in two-dimensional porous media on
the transverse dispersion coefficient (DT) and its behavior in
dependence of the reduced velocity (ν), characterizing the ratio
between advective and diffusive contributions to mass transfer.
Advective–diffusive transport has been simulated in hexagonal
and disordered arrays of equal discs. While the hexagonal array
represents an ordered porous medium, the disordered arrays
mimick random porous media. Disorder has been realized
with a distortion of the hexagonal array by the introduction
of contacting discs at random positions in its layers. To
simulate advective–diffusive transport, an approach based on
geometrical representations of the analyzed structures by void
and solid cells has been used. Additional physical assumptions
of the employed approach involved a uniform flow field in
the void cells, diffusion only normal to the flow (i.e., in the
transverse direction), and instant lateral transport between
the upstream and downstream neighboring void cells. The
aforementioned simplifications have been introduced to the
model with the only aim to reveal the extent to which order and
disorder of a porous medium impacts the dependence of DT on
ν. For this purpose, we have also provided results obtained with
a LBM–RWPT approach (Fig. 1), which does not involve these
geometrical and physical simplifications. This comprehensive
simulation approach is based on a pore-scale simulation of
the complete flow field computed for the actual geometry of a
porous medium and accounts for diffusion along all directions.

Results obtained with both the LBM–RWPT approach and
the proposed simplified model of advective–diffusive transport
(Figs. 1 and 13) have revealed that DT levels off with increasing
ν in the ordered porous medium, while it grows linearly in the
disordered structures at high ν. Considering the simplifications
introduced (intentionally) to the proposed model, this sup-
ports the categorical conclusion that the observed distinction
in these functional behaviors originates exclusively in the
geometrical disorder of the two-dimensional random porous
media.

At the same time, realizing this scenario with a zero-
diffusion coefficient results in DT = 0 for both ordered and
random two-dimensional porous media [53]. Consequently, it
is important to distinguish very clearly between the two possi-
ble (and different) cases to achieve the condition ν → ∞. The
first one (Dm = 0) is unphysical and realized at any velocity. In
this case, tracers strictly follow the individual flow streamlines
during their transport through a porous medium. This results in
a zero-transverse dispersion coefficient in ordered and random
structures at any value of the flow velocity, u. The second
case is realized as u approaches infinity, but Dm �= 0. Then, an
increase in the flow velocity has a two-fold effect: It reduces the
time for diffusive exchange between neighboring streamlines
and increases the number of exchange regions (that a tracer
visits per time) proportionally to the value of u. Depending
on the geometrical structure and corresponding pattern of the
flow field, this results at high values of ν in either a constant
value of DT (ordered porous media) or a linear growth of
DT with ν (random porous media). Figure 13 shows that the
slope characterizing this growth depends on the DoH of a
structure. The slope is zero for the hexagonal disc array and
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increases with the number of the introduced structural defects
(contacting discs).

It should be noted that the morphological descriptor based
on the number of contacting discs cannot be applied to
random arrays, because their heterogeneity does not originate
in the (systematically and exclusively) introduced pairs of
contacting discs. Therefore, the derivation of relationships
between the transverse dispersion coefficient and parameters
characterizing the geometrical structure of a porous medium
requires the identification of alternative, universal morpho-
logical descriptors. This identification is still an outstanding
scientific problem. One of the promising approaches is based
on using spatial tessellations of the void space in porous
media. For instance, it was shown that the second and third
statistical moments of the volume distributions for the Voronoi
cells in computer-generated random packings of monosized
spherical particles and the longitudinal dispersion coefficients

(DL) show a highly similar dependence on the solid volume
fraction and packing protocol (resulting in different packing
microstructures) [99]. However, the quantitative incorporation
of information obtained with the statistical analysis of the
Voronoi volume distributions into morphology–transport rela-
tionships is a still unresolved problem.
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