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Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid
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The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella
typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic
transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality.
We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in
a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by
which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament
attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation
[L. Turner et al., J. Bacteriol. 182, 2793 (2000)]. We then consider a filament that is fixed on one end and
immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982)]. The detailed dynamics of the
helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical
results are provided.
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I. INTRODUCTION

Single-celled organisms employ a wide range of techniques
to swim and maneuver in an aqueous environment [1–4]. Of
the motile organisms, peritrichous bacteria such as Escherichia
coli and Salmonella typhimurium utilize rotating flagellar
filaments, each of which is connected to a motor through a
short flexible hook as illustrated in Fig. 1 [5,6]. The swimming
modes of E. coli or S. typhimurium are characterized by two
phases; a run and a tumble [7]. In the run phase, all of the
flagellar motors on the cell spin counterclockwise (CCW),
during which each flagellum is in a left-handed helical shape.
The hydrodynamic interactions between the flagella will cause
the filaments to bundle together to form a superflagellum,
which propels the bacterium forward. In the tumble phase,
one or more flagellar motors will reverse its motor rotation
to spin clockwise (CW) and initiate a transformation that
changes the chirality of the helical flagella from left-handed to
right-handed. Furthermore, the helical pitch and radius of the
flagella changes in sequence from a normal left-handed state
to a semi-coiled state (right-handed), then finally to a curly-1
state (right-handed) before going back to the normal form [6].
The ability for the flagella to take on these various states is
what is referred to as polymorphism. The right-handed flagella
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will leave the bundle and cause the cell to change its course of
swimming. Eventually, all motors return to CCW rotation, and
the cell runs again at full speed. Alternating runs and tumbles
are essential in bacterial chemotaxis and allow the cell to move
in a favorable direction in response to a spatial gradient of a
chemical attractant [6,8].

Bistable flagella exhibit coexistence of left- and right-
handed helical forms as polymorphic transition is progressed
along the filament. Pijper [9] observed polymorphic forms
of bacterial flagella in his experiments. Polymorphism was
then studied by Asakura [10], where he developed a structural
model based on flagellin subunits. Later, Calladine [11]
proposed a geometric model with 12 helical polymorphic
forms of the bacterial flagellum based on the state of 11
protofilaments. Turner et al. [6] visualized the motion of
individual flagella in real time in which E. coli cells are
fluorescently labeled, and revealed a sequence of polymorphic
transformations initiated by a motor reversal. It has been
also reported that perturbations in environmental conditions
trigger transformations from one polymorphic form to another.
Changes in the pH or salt concentration [12,13] of the solution
and the addition of alcohols [14] or certain sugars [15] cause
polymorphic transformations. Polymorphic transformations
of flagella are also observed in the temperature change in
the solution [16]. Applying mechanical forces or torques to
the filament is another way to generate transitions between
different helical forms [17,18].
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FIG. 1. A schematic showing the physiology of an E. coli cell.
The flagellar filaments are randomly distributed along the cell body.
Each filament is attached to a rotary motor via a flexible hook.

Elastic helical flagella are often modeled using Kirchhoff
rod theory because the flagellum is a long (∼20 μm) but
thin (∼20 nm) structure. Goldstein et al. [19] introduced a
Kirchhoff free-energy functional with a double-well potential
to permit two stable helical configurations. Darnton and Berg
[20] used Kirchhoff rod theory to estimate the bending rigidity
of a flagellum and the required force to transition between
polymorphic states by fitting the model to force-extension
data. This work was then extended by Vogel and Stark [21] who
calculated an upper bound on the ratio of torsional and bending
rigidities using a nonsmooth double-well energy potential.
Later, they showed that a motor-induced torque can alter the
energy state of a flagellum of a monotrichous bacterium and
therefore initiate a polymorphic transformation [22]. Recently,
Adhyapak and Stark [23] demonstrated that the ground-state
energies of a Kirchhoff free-energy function influence the
dynamics of a rotating flagellum undergoing polymorphic
transformation. There are other approaches to model polymor-
phic transformations of an elastic filament besides Kirchhoff
rod theory, such as the work by Gebremichael et al. [24], who
described the filament using a network of springs coupled to a
smooth-particle hydrodynamic model. Moreover, their model
includes the 11-protofilament structure of a real flagellum.
They investigated the flow field and propulsive dynamics
generated by a rotating flagellum and the influence of the
aqueous environment on filament deformations. However,
the smooth-particle hydrodynamic model utilizes an artificial
viscosity and thus direct comparisons to theoretical and
experimental work cannot be made. Wada and Netz [25]
discretized the elastic filament with a sequence of spherical
beads combined with a Kirchhoff-type free energy. Each bead
has a “spin” variable to keep track of its local polymorphic
state. They performed Monte Carlo simulations showing
polymorphic transformations due to an external force pulling
on the filament.

To incorporate hydrodynamic effects in cellular locomo-
tion, resistive-force theory has been used to approximate the
local drag on a short segment of the filament due to the fluid
[26,27]. However, this theory does not accurately resolve
the fluid flow resulting from the flagellum [28,29]. For a
more accurate description of the fluid dynamics, slender-body
theory [30–33] employs a superposition of stokeslets along
the centerline of a rigid filament. A similar approach is to
use regularized stokeslets [34,35], which yields a similar
result to slender-body theory for rigid helices [36] but can
be extended to elastic filaments [34]. Recent studies have
used full three-dimensional numerical computations of the
Navier–Stokes equations in an immersed boundary framework
to capture the two-way fluid-structure interaction between the

filament and the aqueous environment [37,38]. In particular,
Lim and Peskin [38] incorporated the Kirchhoff rod theory
to describe the flagellar dynamics of a pair of monostable
helical filaments interacting with the surrounding viscous
fluid. Large-scale physical models have also been developed
to study hydrodynamic interactions of rotating helices. Kim
et al. [39,40] constructed a macroscopic model demonstrating
that flagellar bundling depends on the direction of motor
rotation and the chirality of the helical filaments. More
recently, Rodenborn et al. [36] used rigid metal helices
attached to a stepper motor to test various hydrodynamic
theories.

In this paper, we present a fluid-structure interaction
model that describes a single helical flagellum capable of
polymorphic transformations in a viscous fluid. The elastic
energy functional for the helical flagellum includes a double-
well potential in the twist energy that allows two stable helical
configurations with opposite chirality [19]. The structural
properties of the flagellum are described by the Kirchhoff rod
theory and the surrounding fluid is governed by the Stokes
equations. In this work we focus on two mechanisms by
which a bacterial flagellum undergoes transformation. The first
mechanism to switch helical shapes is by reversing the motor
rotation, which has been observed in experiments [6,18] and
occurs during the tumble swimming phase. The other means of
polymorphic transformation that we consider is motivated by
Hotani’s experiments [17], in which a filament anchored at one
end is subject to a viscous fluid flow. Hotani observed that a
sufficiently high flow velocity using a methylcellulose solution
can produce periodic transformations in a S. typhimurium
filament. Goldstein et al. [19] and Coombs et al. [41] examined
the dynamics in Hotani’s experiments and developed a theory
that relates the transformation front speed to the flow velocity
and the geometric properties of the helical filament. Unlike
their analysis, which simplifies the hydrodynamic forces
acting on the filament, our model incorporates fluid-structure
interaction. The detailed flagellar dynamics in a viscous
fluid will be discussed in both mechanisms. Our simulation
results will be compared to experimental and theoretical data,
which may provide physical insight into the mechanisms of
polymorphic transformations.

II. MATHEMATICAL MODEL

We consider a model of a single helical flagellum immersed
in a viscous fluid. The flagellar filament is described by
Kirchhoff rod theory in which we assume that the flag-
ellum is a long thin rod and that stresses are applied to
each cross-section along the filament. The configuration and
orientation of the flagellum is determined by its center-
line X(s,t) and an orthonormal triad of direction vectors
{D1(s,t), D2(s,t), D3(s,t)} (see Fig. 2), where s is a La-
grangian parameter with 0 � s � L, t is time, and L is the
contour length of the filament. The shape of the flagellum at
rest can be defined by the minimum of the energy functional
[19,38]:

E = Ebend + Etwist + Eshear + Estretch. (1)
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FIG. 2. An illustration of the parametrization of the flagellar
filament. The centerline of the flagellum is parameterized by
X(s,t) and its orientation is determined by an orthonormal triad
{D1(s,t),D2(s,t),D3(s,t)}.

The first two energy terms are defined by

Ebend = 1

2

∫ L

0
[a1(�1 − κ1)2 + a2(�2 − κ2)2]ds, (2)

Etwist =
∫ L

0

[
a3

4
(�3 − τ1)2(�3 − τ2)2 + γ 2

2

(
∂�3

∂s

)2
]
ds.

(3)

Here, a1 and a2 are bending moduli, a3 is the twist modulus,
γ is the twist-gradient coefficient, and �i = ∂ Dj

∂s
· Dk for

any (i,j,k) that is a cyclic permutation of (1,2,3). The twist
energy contains two stable states �3 = τ1 and �3 = τ2. The
coefficient γ controls the width of the front as the filament
transitions from one stable state to the other. The intrinsic
curvature is defined by κ =

√
κ2

1 + κ2
2 , and τ1 and τ2 determine

the intrinsic twist (or torsion). The intrinsic strain vector
(κ1,κ2,τ ) (where τ = τ1 or τ = τ2) determines the equilibrium
shape of the helical filament characterized by the radius R and
pitch P ,

R = κ

κ2 + τ 2
, (4)

P = 2πτ

κ2 + τ 2
. (5)

In general, the values of κ1, κ2, τ1, and τ2 need not be constant
along the flagellum. The last two terms in Eq. (1) describe how
the filament resists shearing and stretching as follows:

Eshear = 1

2

∫ L

0

[
b1

(
∂ X
∂s

· D1

)2

+ b2

(
∂ X
∂s

· D2

)2
]
ds, (6)

Estretch = 1

2

∫ L

0
b3

(
∂ X
∂s

· D3 − 1

)2

ds, (7)

where b1 and b2 are shear force constants and b3 is the stretch
force constant.

Let f (s,t) and n(s,t) be the applied force and moment
densities acting on the rod, respectively, and let F(s,t) and
N(s,t) be the internal force and moment transmitted across a
section of the filament, respectively. The balance equations for
the momentum and angular momentum are then described as

follows:

0 = f + ∂ F
∂s

, (8)

0 = n + ∂ N
∂s

+
(

∂ X
∂s

× F
)

, (9)

where f (s,t) = ∑3
i=1 fi Di , n(s,t) = ∑3

i=1 ni Di , F(s,t) =∑3
i=1 Fi Di , and N(s,t) = ∑3

i=1 Ni Di , and the constitutive
relations are given by

Fi = bi

(
∂ X
∂s

· Di − δ3i

)
for i = 1,2,3, (10)

N1 = a1(�1 − κ1), (11)

N2 = a2(�2 − κ2), (12)

N3 = a3 (�3 − τ1)(�3 − τ2)

(
�3 − τ1 + τ2

2

)
− γ 2 ∂2�3

∂s2
,

(13)

where δ3i is the Kronecker δ. The above relations can
be derived by taking variational derivatives of the energy
functionals given by Eqs. (2) and (3) and Eqs. (6) and (7)
(see Appendix in Ref. [42]).

Bacterial motility involves very small length scales (20 μm
or smaller), so we assume that the fluid is governed by the
Stokes equations [43,44]:

0 = −∇p + μ	u + g, (14)

0 = ∇ · u. (15)

Here, u(x,t) is the fluid velocity, p(x,t) is the fluid pressure,
μ is fluid viscosity, and g(x,t) is the body force in which the
force and torque exerted by the rod are applied to the fluid
through a smoothed δ function δc(x) with unbounded support

g(x,t) =
∫ L

0
( − f (s,t)) δc(x − X) ds

+ 1

2
∇ ×

∫ L

0
( − n(s,t)) δc(x − X) ds, (16)

where

δc(x) = 15c4

8π (|x|2 + c2)7/2
∀ x ∈ R3. (17)

The regularization parameter c controls how the force is
distributed on the fluid near the filament, as shown in Fig. 3 for
various values of c. This function is a widely used choice for
the regularized δ function [34,44,45] due to its simplicity in
deriving an analytical formula for the fluid velocity, while
satisfying

∫
δc(x) dx = 1 and the first moment condition∫

x δc(x) dx = 0 [34]. In the limit c → 0, the Dirac δ function
is recovered. The linear and angular velocities at the filament
are computed using regularized stokeslets and rotlets [43,44],
and the filament evolves according to

∂ X
∂t

= u(X,t), (18)
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FIG. 3. The regularized δ function for various smoothing param-
eter values of c.

∂ Di

∂t
= w(X,t) × Di for i = 1,2,3, (19)

where w(x,t) = 1
2∇ × u(x,t) is the angular fluid velocity.

The numerical method can be summarized as follows. For
a given configuration of the flagellum with M material points,
we compute a point force fi and torque ni via Eqs. (8)–(13) at
each material point s = i	s, where 	s = L

M−1 is the filament
grid size and i is the index for the material points. From the
regularized point forces and point torques given in Eq. (16), we
use the fundamental solutions to find the regularized stokeslet
uS , rotlet uR , and dipole uD . The velocity and angular velocity
can then be computed by

u = 1

μ

M−1∑
i=0

uS[− fi	s] + 1

μ

M−1∑
i=0

uR[−ni	s] (20)

and

w = 1

μ

M−1∑
i=0

uR[− fi	s] + 1

μ

M−1∑
i=0

uD[−ni	s], (21)

respectively, after which the new position of the flagellum and
the orientation of the directional triad can be found by Eqs. (18)
and (19). More details of the numerical method can be found
in Ref. [44].

In our simulations, the filament at s = 0 is fixed in space
and the flagellum is initialized with a Higdon helix [46],

X(s,0) =

⎡
⎢⎣

R
(
1 − e−ks2)

cos(2πs/P )

R
(
1 − e−ks2)

sin(2πs/P )

s

⎤
⎥⎦ for 0 � s � L,

(22)

where we choose k = 2 μm−2, so that the helical axis is
aligned with the fixed point. Table I lists the physical and
computational parameters used in our simulations. These
values pertain to E. coli and S. typhimurium and are taken from
the experimental literature [5–7] and other modeling studies
of bacterial flagella [38].

TABLE I. Physical and computational parameters.

Parameter Symbol Value

Length L 6 μm
Shear modulus b1, b2 8.0×10−1 gμm/s2

Stretch modulus b3 8.0×10−1 gμm/s2

Bending modulus a1, a2 3.5×10−3 gμm3/s2

Twist modulus a3 1.0×10−4 gμm5/s2

Twist-gradient coefficient γ 1.0×10−3 g1/2μm3/2/s
Intrinsic curvature κ 1.3055 μm−1

Right-handed intrinsic twist τ1 −2.1472 μm−1

Left-handed intrinsic twist τ2 2.1472 μm−1 or 1.4310 μm−1

Fluid viscosity μ 0.01×10−4 g/(μm · s)
Time step 	t 1.0×10−7 s
Filament grid size 	s 3.0×10−2 μm
Regularization parameter c 5	s

III. RESULTS AND DISCUSSION

A. Motor-driven polymorphic transformation
of a single flagellum

We present numerical simulations of a single flagellum that
is driven by a rotary motor. At s = 0, we fix the point on the
filament to act as the motor that is capable of rotating CW or
CCW with a prescribed angular frequency ω. The directional
triad at s = 0 is initially set to

D1(0,0) = [1,0,0]T , (23)

D2(0,0) = [0,1,0]T , (24)

D3(0,0) = [0,0,1]T , (25)

and rotates about the axis of the helical filament according to

Di(0,t) = Q(ω,t,0)Di(0,0), (26)

for i = 1,2,3, where Q is a rotation matrix defined by

Q(ω,t1,t2)

=

⎡
⎢⎣

cos[2πω(t2 − t1)] − sin[2πω(t2 − t1)] 0

sin[2πω(t2 − t1)] cos[2πω(t2 − t1)] 0

0 0 1

⎤
⎥⎦, (27)

where t2 � t1. The motor spins CCW if ω > 0 and CW if
ω < 0. We then reverse the motor at a later time t0, so that

Di(0,t) = Q(−ω,t0,t)Q(ω,0,t0)Di(0,0), (28)

for t > t0 and i = 1,2,3. Although experiments show that a
bacterial motor rotates CW and CCW asymmetrically [47], in
this work we assume the motor rotates CW and CCW at the
same rate for simplicity.

The filament is attached to the motor through a flexible
hook, which is also governed by the Kirchhoff rod theory.
The length of a hook for an E. coli bacterium ranges from
50 to 80 nm [48–50]. In our simulations, we simply choose
the hook length to be 2	s = 60 nm. The hook is known to
be much more flexible than the filament, hence we take its
bending modulus to be two orders of magnitude smaller than
that of the filament. We assume that the hook is intrinsically
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FIG. 4. Snapshots of a bistable helix with τ1 = −2.1472 μm−1 and τ2 = 1.4310 μm−1, rotating at 100 Hz. The shade of the rod indicates
the torsion value where gray is negative (left-handed) and black is positive (right-handed). The horizontal planes show the vertical velocity of
the fluid and the markers shown in magenta are passive fluid tracers.

straight (τ = 0, κ = 0); however, as the name suggests, the
hook is actually highly curved [48,50]. We have performed
simulations of a rotating flagellum with curved hooks (data
not shown) and we found that the hook curvature has little
effect on the dynamics of a motor-driven flagellum.

Figure 4 shows snapshots of a simulation of a motor-driven
flagellum where a filament is undergoing a polymorphic
transformation from the left-handed helix (gray) to the right-
handed helix (black) as the motor reverses from CCW to CW
(see Movie 1 in the Supplemental Material [51]). In each
panel, the horizontal plane shows the vertical component of
fluid velocity and the fluid is tracked by passive markers with
their trajectories indicated using tails (magenta). Initially, the
filament is a normal left-handed helix and the motor is rotating
CCW at 100 Hz. The helix remains left-handed and the fluid
flows upward away from the motor. At time t0 = 0.05 s, the
motor switches to CW rotation but at the same frequency. The
motor reversal initiates a change in chirality from left-handed
to right, which forms a kink in the filament. This simulation

shows qualitatively similar behavior to experiments in Ref. [6,
Fig. 6], where they record a single rotating filament undergoing
polymorphic transformation. The CW rotation causes the
filament to drive fluid downward briefly as the kink appears
from the motor. However, as the filament kink propagates
toward the free end, the fluid flow is directed upwards again.
This is consistent with previous studies of rotating flagella
[38], in which the left-handed helix turning CCW and right-
handed helix turning CW pump the fluid upward, and these
are the only combinations that push the cell body forward.
Hence, bistable flagella have the advantage of unbundling
its superflagellum while continuing to drive fluid away from
the cell body and swim forward. Although two monostable
left-handed helices can unbundle when their motors rotate in
different directions, the helices would push fluid in opposing
directions [38].

As the kink in the filament propagates from the motor to the
free end, the helical axes of the left- and right-handed form a
block angle at the point of transition as illustrated in Fig. 5(a).
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FIG. 5. A schematic diagram of the block angle α formed by a kink in the helical filament (left) and estimated block angles from our
simulations for various helical shapes (right). Simulation results and experimental data from Hotani [52] are in good agreement.

This block angle α is found theoretically [19] by

α = 180◦ − θ1 − θ2, (29)

where θ1 and θ2 are the pitch angles of the helix that is formed
near the point of transition. The pitch angle is estimated by [11]

θi = arctan(2πRi/Pi), (30)

where i = 1,2. Here R1 and P1 are the apparent pitch and
radius of the helix below the kink and, similarly, R2 and P2

are the helical properties above the kink. Figure 5(b) plots
the block angles that are estimated in our simulations along
with experimental measurements by Hotani [52], which shows
that our simulations are in good agreement with block angles
observed in experiments.

Figure 6(a) illustrates how the torsion value along the
filament changes over time when the motor rotates at the rate of
100 Hz and switches from CCW to CW at the time t = 0.05
s. The torsion is calculated by �3 = ∂ D1

∂s
· D2. The filament

is initially left-handed (blue) and deforms into a right-handed
(red) helix following the kink propagation. The sharp transition
appearing in the figure corresponds to the location at which
the filament is torsion-free and shows how fast the kink travels

along the filament, from which we estimate the propagation
speed of the kink as the slope of this torsion-free curve.
For frequencies from 50 to 150 Hz, there is a clear linear
relationship between the motor frequency and the kink prop-
agation speed; see Fig. 6(b). An E. coli cell typically rotates
its filaments around 100 Hz which results in a propagation
speed of approximately 147.9 μm/s. At this frequency, two
transformations complete in about 0.081 s for a 6 μm filament
which is consistent with typical time scale of 0.1 s for the
tumble phase [6]. In addition, we also investigate the kink
speed as a function of fluid viscosity in the absence of the
hook; see Fig. 6(c). As fluid viscosity increases, the kink speed
decreases logarithmically. These simulations are done without
a hook because the filament with a hook buckles at higher
viscosity. We also examine the effect of the regularization
parameter c on filament dynamics for c ∈ [2	s,6	s], and for
the same range of rotation frequencies and fluid viscosities as
in Fig. 6. We find that decreasing the value of c will slightly
increase the kink propagation speed (see Appendix); however,
the qualitative behavior of the filament does not change.

Next we perform simulations of a filament with various
helical properties as it is known that flagella can attain various
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FIG. 6. Torsion along the filament over time (left) and kink propagation speed plotted against motor rotation frequency (middle) and fluid
viscosity (right). The intrinsic twist values are given as τ1 = −2.1472 μm−1 and τ2 = 2.1472 μm−1. The left panel illustrates how torsion
changes over time at the rotating frequency of 100 Hz. The negative value (blue) of torsion corresponds to the left-handed helix and the positive
value (red) corresponds to the right-handed helix. The kink speed is estimated as the slope of the curve where the filament is torsion-free. The
middle and right panels show that the kink speed is approximately proportional to the motor frequency and decreases logarithmically with
increasing fluid viscosity, respectively.
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FIG. 7. Mean fluid flux driven by a helical flagellum rotating at 100 Hz for various pitches and radii. The markers on the left panel denote
the mean flux for four helical shapes commonly observed in nature [11,17], which are shown on the right.

helical shapes [11]. In Fig. 7, we plot the mean fluid flux
that is driven by a rotating helical filament at 100 Hz for
various helical pitches and radii. The markers denote normal,
semi-coiled, curly-1, and curly-2 helical shapes. The fluid flux
depends more strongly on the helical radius than the helical
pitch. Moreover, the semicoiled shape has the highest fluid
flux among the four common states.

B. Dynamics of a single flagellum in a steady viscous flow

In this section, we investigate the dynamics of a flagellum
that is subject to a steady fluid flow. This is motivated by
the experiments performed by Hotani [17], wherein a single
flagellum derived from S. typhimurium attaches at one end to a

glass surface and is subject to a viscous fluid flow. Note that this
flagellum has no motor, and also has no hook. The steady flow
generates a hydrodynamic torque on the filament and produces
polymorphic transformations that propagate along the filament
from the anchored end toward the free end. Hotani used a
methylcellulose (400 cps) solution to apply a fluid flow and
found that polymorphic transformation occurred when fluid
speed was 6–8 μm/s.

In our simulations, the flagellum (without a hook) is
clamped at its motor end so that the triad at the motor
end is unable to rotate. To include the background fluid
flow, we simply add on the desired velocity u0 onto our
computed velocity field. Figure 8 shows snapshots of a
simulation showing the transformation from left-handed (gray)

FIG. 8. Simulation of an experiment by Hotani [17] using intrinsic torsion values τ1 = −2.1472 μm−1 and τ2 = 1.4310 μm−1. Fluid (water)
is flowing upward at 2000 μm/s. The shade of the rod indicates the torsion value where gray is negative (left-handed) and black is positive
(right-handed). The arrows indicate CW (red) or CCW (blue) rotation and their length is proportional to the motion over the previous 0.008 s.
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to right-handed (black) helical forms, and vice versa (see
Movie 2 in the Supplemental Material [51]). In this figure,
the lowest point on the filament is held in space and the fluid
is flowing vertically upward at the speed of 2000 μm/s. The
fluid flow applies a torque at the bottom of the filament and
if a sufficient torque is generated, the filament will change its
chirality. As the handedness changes first from left to right, the
free-end of the filament rotates CCW (blue arrow). However,
the portion of the filament below the kink tends to remain
nearly stationary. As the first kink nears the free-end, a new
transformation occurs at the fixed-end and the filament rotates
CW (red arrow). As the filament transforms from right-handed
to left-handed, the filament rotates much faster than during
the first transformation. This asymmetry is caused by the two
different values of the intrinsic twist, i.e., τ1 = −2.1472 μm−1

for the left-handed helix and τ2 = 1.4310 μm−1 for the
right-handed helix. When τ1 = −τ2, the rotational speeds
during chiral transformations are the same (data not
shown).

The simulations based on Hotani’s experiment can be
further analyzed by evaluating torsion �3. Figure 9 compares
the torsion along the filament over time (left column) and
its projection (right column) for two cases. The top panels
illustrate a symmetric case with τ1 = −2.1472 μm−1 and τ2 =

2.1472 μm−1, and the bottom panels illustrate an asymmetric
case with τ1 = −2.1472 μm−1 and τ2 = 1.4310 μm−1 (see
Movie 3 for a symmetric case and Movie 4 for an asymmetric
case in the Supplemental Material [51]). The simulation
quickly settles into a stable periodic motion. The sign of the
torsion indicates the chirality of the helical filament, in which
the negative value corresponds to the left-handed helix and
the positive value corresponds to the right-handed helix. The
slopes of the sharp changes in the plot show how fast the kink
propagates along the filament. A polymorphic transformation
begins at s = 0 as indicated by the transition from blue
to red. Torsion builds up as the background steady flow
causes the helix to turn and eventually results in handedness
reversal, which relieves the torsion, but then torsion starts
to build up with the opposite sign, alternating two helical
forms periodically. For a symmetric case, the kink speed of
the left-handed form is approximately the same as that of
the right-handed form [Figs. 9(a) and 9(b)]. However, the
asymmetry of the two types of handedness shows up as
different propagation speeds of the two types of transitions
[Figs. 9(c) and 9(d)]. In both cases, the constant speed of
propagation ends rather abruptly by accelerating to essentially
infinity (vertical lines in the figure) when the transition zone
gets close enough to the free end of the flagellum. Increasing

FIG. 9. Values of torsion �3 from simulations of Hotani’s experiment plotted against time t and filament position s. The negative value
(blue) of torsion corresponds to the left-handed helix and the positive value (red) corresponds to the right-handed helix. The intrinsic torsion
values used are τ1 = −2.1472 μm−1, τ2 = 2.1472 μm−1 (top) and τ1 = −2.1472 μm−1, τ2 = 1.4310 μm−1 (bottom). The fluid viscosity is
0.01 × 10−4 g/(μm · s). The background flow speed is set to 2000 μm/s.
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the flow velocity will increase the kink propagation speed (data
not shown).

Hotani found in his experiment that no transformations
occurred when the flow velocity was lowered to 1 μm/s [17]. In
our simulations, we learn that there is a minimum flow velocity
at which polymorphic transformation occurs and that it is
inversely proportional to fluid viscosity, as shown in Fig. 10(a).
In the case of water, the filament reaches an equilibrium
configuration when the flow speed is less than 1425 μm/s.
For methylcellulose [μ = 4 × 10−4g/(μm · s)], polymorphic
transformation occurs when the flow speed is 4 μm/s or
higher, which is in good agreement with Hotani’s experiment
(we use the viscosity for Hotani’s stock solution, since the
exact viscosity of the diluted methylcellulose solution is not
known). Furthermore, Hotani showed that chirality change is
primarily caused by periodic changes in torque at the fixed
end, rather than tension. Our simulations show qualitatively
similar behavior in that n3 at the motor periodically changes
signs, while there is little variation in f3 at the motor (see
Fig. 10(b) and Ref. [17, Fig. 5]).

The twist energy barrier to switch helical forms is crucial
for the chirality change in Hotani’s experiment and also for the
tumble phase during locomotion. Coombs et al. [41] analyzed
the symmetric double-well twist energy in Ref. [19] and found
that the critical velocity U ∗ at which chirality changes in
Hotani’s experiment is related to the twist energy barrier H by

H ∼ 2πσLU ∗

P
. (31)

The coefficient σ measures the local drag due to the fluid
derived from resistive-force theory [41,53] and is given by

σ = 2πR2ζ||
(P 2 + 4π2R2)1/2

, (32)

where ζ|| is the drag coefficient parallel to the filament and is
proportional to fluid viscosity. Note that Eq. (31) implies that
the critical velocity is inversely proportional to fluid viscosity
when all other parameters are held fixed, which we observe
in Fig. 10(a) for an asymmetric twist energy. We also observe

this relationship in the symmetric case (data not shown). The
height of the energy barrier in our double-well twist energy
for the symmetric case (−τ1 = τ2 = τ ) is

H = a3

4
τ 4. (33)

Together with Eqs. (4) and (5) for the helical radius and pitch,
we find the critical flow velocity follows

U ∗ ∼ τ (τ 2 + κ2)1/2

κ2
H. (34)

Figure 11 plots the background flow velocity against the energy
barrier corresponding to 0.8 � τ � 2.7 on a log-log scale.
In our simulations, we find the critical velocity at which the
helical filament changes handedness follows Eq. (34) for a
limited range of torsion values 2.0 < τ < 2.5. If we decrease
τ below 2.0, where the helical radius is sufficiently large,
the critical threshold plateaus and becomes independent of
H . Although the energy barrier is low, the critical velocity
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FIG. 11. Background flow velocity plotted against the energy
barrier H = a3

4 τ 4 for the symmetric twist energy τ = −τ1 = τ2. The
result by Coombs et al. (solid curve) was scaled to fit the data. Both
axes are plotted on a log scale.
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remains high. When τ > 2.5, the helical radius decreases and
the filament straightens out and cannot generate enough torque,
and thus we do not observe a handedness change even for very
high flow velocities.

IV. SUMMARY AND CONCLUSIONS

This paper presents a fluid-structure interaction model of
a bacterial flagellum capable of polymorphic transformation.
The structural properties of the flagellum are described by
the Kirchhoff rod theory that incorporates two stable helical
configurations of opposite handedness. The flagellum is
coupled to the fluid through a regularized stokeslet and rotlet
formulation. We performed numerical simulations that are mo-
tivated by experiments in which polymorphic transformations
are observed. Two mechanisms causing shape transitions were
considered: a motor-driven flagellum and a flagellum under a
steady viscous fluid flow.

In our motor-driven simulations, we showed that a reversal
in the motor rotation can initiate a polymorphic transformation
of the flagellar filament between different helical shapes.
Our model assumes the hook to be intrinsically straight
and its length to be fixed at 60 nm. Although the hook is
actually curved and can have different lengths, we found
that the hook curvature has little effect on the dynamics of
a flagellum. We have shown that a bistable helical filament
implemented with a double-well energy functional induces
polymorphic transformations by switching the direction of
motor rotation from CCW to CW or vice versa, resulting in
reversible transformations. Previous studies of rotating helices
show that the bundling of flagella and the direction of fluid
pumping depends on the direction of motor rotation and the
chirality of the helices [38,39]. It is reported that the only
combinations that push the cell forward, or pump the fluid
away from the cell body, are that when the flagellar filament
is either the left-handed helix with its motor turning CCW
or the right-handed helix with its motor turning CW. Hence,
one immediate advantage of a bistable helix is that flagella
can unbundle while continuing to drive fluid away from the
cell body. This in turn will allow a bacterium to disband
its superflagellum while continuing to swim in a forward
direction. Although two monostable left-handed helices can
unbundle when rotating in opposite directions, the helices
would push fluid in opposing directions [38]. As shown in
Fig. 4, the fluid is driven away from the motor for the majority
of the transformation period. Furthermore, our simulations
show that the speed at which the kink propagates along filament
is proportional to the motor rotation frequency but decreases
logarithmically with fluid viscosity. Hence, the rapid rotary
motor (∼100 Hz) of an E. coli bacterium enables the cell to
quickly tumble and begin a new run.

In the case of a single flagellum in a steady viscous flow,
we simulated the filament dynamics subject to a viscous
flow when one end of the filament is tethered in place and
showed that a sufficiently large flow velocity can produce a
periodic transformation of helical flagella that is consistent
with experiments performed by Hotani [17]. The passing fluid
applies torque to the filament and torsion builds up until
the filament flips the handedness to release it, resulting in
the kink propagation from the fixed end to the free end.

It is intriguing to see that the constant kink speed changes
suddenly to infinite speed when the kink reaches the free
end zone. As observed in experiments by Hotani [17], we
also observed that the portion of the filament that has not yet
changed handedness tends to rotate as the kink propagates,
whereas the filament portion below the kink has a tendency to
remain motionless. The filament rotates CCW as the chirality
changes from left to right, and rotates CW as it changes from
right to left. Moreover, having an asymmetric twist energy
(τ1 �= −τ2) causes different CW and CCW rotation speed.
Finally, we studied the critical flow velocity required for
chirality change for various cases. We found that the minimum
velocity required for transformations to occur is inversely
proportional to fluid viscosity and therefore highly viscous
fluids (such as methylcellulose used by Hotani) require low
flow velocities (≈ 4 μm/s). Furthermore, we examined the
case of a symmetric double-well twist energy and found that for
an intermediate range of intrinsic torsion values (2 � τ � 2.5)
our simulations agree with the analysis in Ref. [41].

Future work includes simulating the bundling and un-
bundling behavior of two or more bistable flagella. This will be
an extension of Ref. [38], in which the two flagella that were
considered each had only a single stable helical configuration.
Simulating multiple bistable flagella can provide insight into
the advantage bistable helices have over monostable helices.
Another topic to consider in future investigation is the role of
the hook in bacterial motility. Recent experiments show that
lower hook compliance makes it more difficult for flagella to
bundle [54]. Furthermore, a modeling study of a monotrichous
bacterium by Shum and Gaffney [55] shows that the hook’s
length and rigidity considerably affects swimming motion.
Taking into account various properties of the hook, such as
length and stiffness, and their role in flagellar bundling is an
interesting topic for further study.
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APPENDIX: REGULARIZATION PARAMETER

The interaction between the flagellar filament and the
surrounding fluid is mediated by the regularized δ function,

δc(x) = 15c4

8π (|x|2 + c2)7/2
∀ x ∈ R3. (A1)

where c controls how the force is spread near the filament.
Although a precise relationship between the regularization
parameter c and the filament thickness is not known, a general
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FIG. 12. Kink propagation speed plotted against motor rotation frequency (left) and fluid viscosity (right) for various regularization
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dotted lines on the left panel denote the lines of best fit, and the dotted curves on the right panel denote a logarithmic best fit curves. The solid
curve in each panel estimates the result for c = 0.01 μm based on the best fit parameters.

rule-of-thumb is to set c to be the filament radius. This means
that c = 0.01 μm is a more suitable choice in our simulations.
However, a small value of c requires a small time step 	t .
Since δc(x) behaves like O(c−3) at the location of the filament,
we find that 	t = O(c3), which enforces a severe time step
restriction. A value of c = 0.01 μm would require a time step
that is 153 = 3375 times smaller than the time step used for
c = 5	s = 0.15 μm, and this would be impractical even for
a simulation running in parallel. For this reason, we choose
c = 5	s in our simulations and yet we obtain results that are
qualitatively similar to those found in experiments.

Decreasing the value of the regularization parameter does
show some quantitative differences in our simulations, how-
ever, the overall dynamics tends to stay the same. Figure 12
shows the kink propagation speed of a motor-driven rotating
filament for various rotation frequencies [Fig. 12(a)] and fluid
viscosities [Fig. 12(b)], where we vary the regularization
parameter c = 2	s, . . . ,6	s. In each case, decreasing the
regularization parameter tends to increase the propagation
speed. This is primarily due to the increased magnitude of
the force applied at the location of the filament.

We find that the kink speed v approximately depends on
the frequency ω and the regularization parameter by

v ≈ A1ω + B1, (A2)

where

A1 = −0.0918
c

	s
+ 1.7448, (A3)

B1 = 2.4392
c

	s
+ 5.1276, (A4)

and 	s = 0.03 μm. Moreover, the v depends logarithmically
on the fluid viscosity by

v ≈ A2 ln μ + B2, (A5)

where

A2 = 0.1118
c

	s
− 26.5611, (A6)

B2 = 6.7786
c

	s
− 179.1203. (A7)

Using the above best fit results, we estimate the kink speed for
c = 0.01 μm to follow

v ≈ 1.7439ω + 5.1520, (A8)

v ≈ −26.5611 ln μ − 179.0525, (A9)

as shown in Fig. 12.
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