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Electro-osmotic flow through nanopores in thin and ultrathin membranes
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We theoretically study how the electro-osmotic fluid velocity in a charged cylindrical nanopore in a thin
solid state membrane depends on the pore’s geometry, membrane charge, and electrolyte concentration. We find
that when the pore’s length is comparable to its diameter, the velocity profile develops a concave shape with a
minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the
central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow
expansion and contraction near the exit or entrance to the pore and to the reduction of electric field inside the
nanopore. The induced pressure is maximal when the pore’s length is about equal to its diameter while decreasing
for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and
shown to be in a good agreement with numerically computed results.
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I. INTRODUCTION

In recent years, nanopores in thin solid state membranes
gained considerable attention due to their applications as
low-cost, high-throughput biosensors and filters [1–7]. Short
transit times in thin membranes for translocating biomolecules
and nanoparticles as well as features in the ionic current result
in high sensitivity and resolution of such devices. Signatures
in the ionic current (the duration and the depth of the “current
blockade” dips) are not only utilized to detect an object
passing through the nanopore but they also convey information
about its physical properties such as size, shape, and charge
[5,8–12]. As such, understanding of how various conductance
mechanisms, such as those due to membrane surface and bulk
charges, affect the motion of the nanosized objects through
the nanopore is of crucial importance for correct interpretation
and utilization of experimental data.

When an object translocates through a nanopore, two main
forces typically affect its motion [13]. The first is the electric
force originating from the applied electric field that results
in the electrophoretic motion of the charged nanoparticle or
biomolecule. The second force is due to the viscous drag
exerted on an object by the fluid flowing through the charged
nanopore in response to the applied electric field, or the so
called electro-osmotic flow (EOF). The EOF appears because
the surface of the membrane is charged, so that the ionic
solution within the nanopore attains a nonzero electric charge
of opposite sign which is largely concentrated within the
electric double layer formed at the walls of the nanopore. When
the electric field along the axis of the pore is applied, the ions in
the fluid filling the nanopore begin to move, and the fluid flow
(EOF) appears. In the steady state regime, the bulk motion of
the solution in the nanopore is generated (the fluid is viscous),
so that the EOF is present through the total cross sectional
area of the pore. Depending on the charges of the translocating
object and membrane, the electric and drag forces may or may
not be in one direction: For example, for a negatively charged
nanoparticle attempting to permeate through a nanopore with
negative surface charge, these two forces point in opposite
directions. Thus, their relative magnitudes will determine the
direction in which the particle translocates as well as the time
it spends in the nanopore attempting to move through it. As

this time depends exponentially on the potential energy of
the particle within the channel [14], even small variations
in values of these forces will greatly affect the duration of
the translocation event [15] and, consequently, the membrane
filtering and sensing characteristics.

To this end, in this work we conduct the theoretical analysis
of the EOF through nanopores in solid state thin membranes
[16–19]. For this purpose, we numerically compute the fluid
flow velocity through a nanopore by solving on equal footing
Poisson-Nernst-Planck equations to account for the charge
and electric field distributions in and around the nanopore
and Navier-Stokes equations to describe the EOF. Our results
show that the flow in finite length nanopores with the diameter
comparable to the length cannot be adequately described by
the results for the long channel with the Debye approximation
[20] as this approach overestimates the fluid velocity by as
much as 100%. The reason for this is the fluid flow outside the
nanopore which affects the EOF through it. These “end effects”
are manifested as a self-induced pressure gradient along the
pore. When this effect is incorporated in the simple analytical
model for the EOF velocity which we also develop on the
basis of the classical model for the infinitely long nanopores
[20], we find that the velocities given by this model agree
very well with results of numerical calculations for a broad
range of nanopore dimensions, electrolyte concentrations, and
membrane surface charge densities.

The paper is structured as follows. In Sec. II, the nanopore
geometry and the computational method employed are de-
scribed with details on boundary conditions and parameters
used in the setup of our model. In Sec. III, the results
of computations are presented and discussed, the analytical
model for the EOF fluid velocity is developed, and behavior
of the EOF in our nanopore structure is elucidated. Finally,
Sec. IV contains a brief summary of the work.

II. MODEL AND METHODS

In Fig. 1, a schematic diagram of our modeled membrane-
electrolyte structure with the electric potential overlaid is
shown. The nanopore of radius Rp and length Lp is in the
center of the structure: We consider pores with Rp = 5 and
10 nm while the length of the pore is varied between 15 and
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FIG. 1. A schematic diagram of our modeled nanopore structure
with the electric potential in the background. (For this plot, the mem-
brane charge is ρ = 0.4 e/nm3 and the bulk electrolyte concentration
is C = 0.1 M).

100 nm. The reservoirs above and below the nanopore have
dimensions which are much larger than the dimensions of the
nanopore, LR = 120 nm and DR = 280 nm, to ensure that far
away from the nanopore the electric potential reaches constant
values. The difference between these values is equal to the
electrolyte bias Ve = 100 mV which is applied to generate
the ionic flow through the nanopore. The 4-Å-thick layer
on the surface of the SiO2 membrane is charged with the
volume charge density ρ. In this work, we perform computa-
tions for two values of ρ: ρ = 0.4 e/nm3 and 1.2 e/nm3 which
correspond to the surface charge densities σ = 0.16 e/nm2 and
0.48 e/nm2, respectively.

To calculate the EOF fluid velocity and study its depen-
dence on various system parameters, we first compute the
electric potential �(�r) and electrolyte charge distribution, i.e.,
concentrations of chlorine and potassium ions, CCl−(�r) and
CK+(�r), respectively, in our system. This is accomplished by
solving Poisson-Nernst-Planck equations:

∇2� = − e

ε0εr

ρ(�r) (1)

with

ρ(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ, in the 4-Å layer on the
membrane surface,

0, everywhere else in the
membrane,

CK+ − CCl− , in the electrolyte,

(2)

and

∇ ·
[
zi

eDi

kBT
Ci∇� + Di∇Ci − �vCi

]
= 0, i = K+,Cl−.

(3)

Here e is the elementary charge, ε0 is the permittivity of free
space, εr = 78 is the relative permittivity of water, zi = ±1 are

the ionic charges of potassium and chlorine ions [15,21], T =
300 K is the temperature of the system, �v is the EOF velocity,
and Di is the diffusion coefficient, DK+ = 1.95 × 10−9 m2/s
and DCl− = 2.03 × 10−9 m2/s. The first two terms in the
ionic fluxes (3) represent the electromigrative flux due to the
applied electric field (drift current density) and diffusive flux,
respectively, while the last term which depends on the fluid
velocity describes the convective flux of ions due to the EOF.

The EOF through the nanopore is described via the Navier-
Stokes equation for an incompressible fluid without the inertial
term [22] as the Reynolds number for our nanopore geometry
is ∼10−3–10−4 depending on the pore’s length:

η∇2�v = ∇p − e(CK+ − CCl−)∇�, (4)

together with the continuity equation,

∇ · �v = 0, (5)

where η = 10−3 Pa s is the dynamic viscosity, and p is the total
pressure. The last term on the right in Eq. (4) is the electric
force responsible for the appearance of the electro-osmotic
flow.

To get the velocity �v(�r) of the EOF through the nanopore,
Eqs. (1)–(5) were solved self-consistently with COMSOL

R©
Multiphysics 5.1 on the axisymmetric two-dimensional do-
main (Fig. 1). A triangular finite element mesh with sizes
varying from 0.35 Å on the membrane surface to 1.4 Å in the
nanopore and 2.2 nm in the reservoirs and in the membrane was
used in calculations. Small mesh sizes next to the membrane
surface were required to capture very sharp variations in
the electric potential for the larger membrane surface charge
density. The simulations were terminated when the norm of
the residual vector for the solution became smaller than 10−6.

The boundary conditions imposed for solving Eqs. (1)–(5)
were as follows: The normal components of the ionic fluxes
were set to zero at the nanopore-membrane interface and side
reservoir walls while at the top and bottom walls of reservoirs
the ionic concentration was maintained at its bulk value. The
normal component of the electric field was set to zero at the side
reservoir and membrane walls, while � = Ve at the bottom
and � = 0 at the top boundaries of the reservoir. For the
Navier-Stokes equation, a no slip boundary condition (�v = 0)
was imposed at the nanopore-membrane interface while a slip
boundary condition (the normal component of the velocity and
its gradient are both zero) was used on the side walls of the
reservoirs. At the top and bottom boundaries of the reservoirs,
the pressure was set to zero together with the assumption that
the fluid flow is normal to those boundaries.

For long cylindrical pores, the solution of the above system
of equations for the fluid velocity is well known [20,23]. Within
the Debye approximation for the electric potential (which is
valid for � � kBT ) and assuming separability of �(�r) in z and
x directions and no applied external pressure, the z component
of the EOF velocity is given by

vz(r) = −ε0εrEz�0

η

[
1 − I0(κr)

I0(κRp)

]
, (6)

where κ = (ε0εrkBT /2Ce2)
−1/2

is the inverse Debye length,
C is the bulk electrolyte concentration (except where it is
noted, all calculations are performed for C = 0.1 M), Ez is the

063105-2



ELECTRO-OSMOTIC FLOW THROUGH NANOPORES IN . . . PHYSICAL REVIEW E 95, 063105 (2017)

constant electric field along the central axis of the nanopore,
In(x) is the modified Bessel function of the first kind of the
nth order [24], and �0 is the electric potential on the pore’s
surface which for zero applied electrolyte bias is equal to [25]

�0 = σ

ε0εrκ

I0(κRp)

I1(κRp)
. (7)

For the two membrane charge densities considered in
the present work, �0 = −40 and −120 meV, respectively,
suggesting that the smaller charge density (barely) corre-
sponds to the Debye approximation while for the larger one
(0.48 e/nm2), this approximation, and consequently the above
equation for vz, cannot be used. However, as it is shown in
the next section, Eq. (6) works well in our analytical model if
�0 is replaced with the potential difference �� between the
surface and the center of the nanopore, �� = �(Rp,Lp/2) −
�(0,Lp/2) (which is equal to −35 and −78 meV for our
membrane charge values) provided that the “end effects” are
also accounted for.

Note that Eq. (6) predicts that the fluid velocity reaches a
maximum at the center of the pore. In the limit of a thin double
layer (κ−1 � Rp), Eq. (6) reduces to a constant value of vz =
ε0εrEz�0/η which is the classical Helmholtz-Smoluchowski
result for the EOF fluid velocity [26,27].

III. RESULTS AND DISCUSSION

We first checked the validity of the above numerical
approach against the results of Eq. (6) and found very good
agreement between the two for long nanopores and smaller
surface charge densities as expected (see Appendix).

The computed EOF velocity contour plots with flow
streamlines are shown in Fig. 2 for pore radii 5 and 10 nm
and length of 25 nm. We see that within the nanopore, the
direction of the fluid flow is along the pore’s axis, as expected,

FIG. 2. Contour plots of the computed EOF velocity with
streamlines for a nanopore with (a) Rp = 5 nm and (b) 10 nm.

since it is where the electric potential changes most rapidly in
the z direction (see Fig. 1), i.e., the electric field is the largest in
magnitude. The radial component of the fluid velocity is only
noticeable near the pore’s inlet and outlet, and in those regions,
the fluid flow extends over a distance of a few pore radii
Rp away from the pore ends. We also observe the formation
of a local minimum in the fluid velocity around the center
of the pore with larger radius of 10 nm [Fig. 2(b)] while v

remains maximal along the central axis of the nanopore when
Rp = 5 nm [Fig. 2(a)].

Figure 3 shows that the minimum appears and becomes
deeper with decreasing length of the pore for a fixed Rp.
The dashed and dotted curves in these plots correspond to the
results given by Eq. (6), and one can immediately draw several
observations from the comparison between the different types
of curves: First, the velocities obtained from Eq. (6) with
�� (�0) exceed the numerically computed ones by as large
as 40% (100%) particularly for ρ = 1.2 e/nm3, and second,
the fluid velocity vz does not have a local minimum along
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FIG. 3. Fluid velocity profile in x direction in the center of the pore for different nanopore lengths Lp and membrane charge densities:
(a) Rp = 5 nm and (b) Rp = 10 nm. The solid curves are the results of the numerical simulations while the dashed (dotted) curves are the
results of Eq. (6) with �� (�0). For both dashed and dotted curves, Ez = Ve/(Lp + αRp) where values of parameter α are given in text (see
Sec. III for details).
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FIG. 4. z component of the electric field Ez along the central pore axis for a nanopore with (a) Rp = 5 nm and (b) Rp = 10 nm and different
pore lengths. The horizontal dashed lines represent the values of the electric field as computed by Ez = Ve/(Lp + αRp) with α given in the
text, and the vertical dot-dashed lines show the location of the inlet (z = 0) and outlet (z = 15, z = 50, and z = 100 nm) for each nanopore.

the central axis. As the pore becomes longer, the concave
shape of the numerically computed velocity profile gradually
disappears and velocity reaches a maximum value along the
central axis of the pore, qualitatively similar to the vz profile
predicted by Eq. (6). Note that the concave shape of the fluid
velocity was previously observed in numerical calculations
of the EOF through long nanopores (see, e.g., Ref. [28]).
However, in what follows we strive to provide a qualitative
explanation for its appearance as well as to devise a way to
rectify Eq. (6) so that values of vz agree with the numerically
computed EOF velocities.

One of the reasons for the apparent disagreement between
the numerically computed EOF velocity and the one deter-
mined by Eq. (6) is the magnitude of the electric field Ez

in the z direction due to the applied bias Ve. A conventional
argument that Ve changes linearly over the pore’s length leads
to Ez = Ve/Lp since usually Lp � κ−1. However, as can be
seen from the electric potential distribution shown in Fig. 1,
the potential changes over distances extending a few Rp’s
away from the nanopore’s ends. This is because inside the
nanopore, the positive and negative ionic charges do not fully
compensate each other (due to the presence of the membrane
surface charge) and the nanopore as a whole has a nonzero
electric charge. In this case, the electric field inside the pore
can be approximated as [29,30]

Ez = Ve

Lp + αRp

(8)

with α being a numerical parameter dependent on the nanopore
radius, surface charge, and bulk electrolyte concentration
values.

The overall form of Eq. (8) can be justified by representing
the nanopore region in terms of the nanopore and two access
sections. Using the nanopore and access resistances with
the pore diameter modified by the surface charge [31] and
substituting them into the equation for the potential drop along

the nanopore length [25], one can find that parameter α in the
above equation can be expressed as

α = π

2

1 + Du

1 + Du/4
, (9)

where Du ≈ |σ |/CRp is the Dukhin number [31]. For our
nanopore radii Rp = 5(10) nm, this gives α ≈ 2.1(1.9) for
ρ = 0.4 e/nm3 and 2.9 (2.3) for ρ = 1.2 e/nm3 which results
in excellent agreement between the numerically computed
electric fields and the values given by Eq. (8), see Fig. 4, as
well as with other calculations of the electric field in charged
nanopores [29,30].

However, the main reason for the concave shape of the
velocity profile in the fluid flow through finite length nanopores
is the presence of the self-induced pressure drop P along
the pore shown in Fig. 5 for the larger membrane charge of
1.2 e/nm3 (results for the smaller charge are analogous and
are not shown). The pressure changes approximately linearly
along the pore’s axis [32,33]; the deviations from linearity
are due to the concentration polarization effects [34], i.e., the
electric force in the Navier-Stokes equation (4) is not constant
in the z direction but rather exhibit a slight variation due to the
changing ionic concentration along the pore’s axis. This effect
diminishes as pore’s radius increases which is manifested by
a more linear pressure drop in Fig. 5(b) vs Fig. 5(a).

This pressure drop appears due to the fluid flow expansion
or contraction near the pore’s outlet or inlet or in other words,
it is the result of the finite length of the nanopore: Outside
of the nanopore’s outlet, the fluid velocity decreases with the
distance away from the pore (streamlines diverge, see Fig. 2).
Since the fluid is incompressible, one can write for its velocity
outside the pore [35]

v(R) ≈ Q

2πR2
, (10)
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FIG. 5. Induced pressure P along the central pore axis for nanopores of different lengths and (a) Rp = 5 nm, (b) Rp = 10 nm (ρ =
1.2 e/nm3). The total pressure drop �P is defined as difference between the maximum and minimum pressure values. The vertical dot-dashed
lines show the location of the inlet (z = 0) and outlet (z = 15, z = 50, and z = 100 nm) for each nanopore. The inset in (a) shows distribution
of the pressure in the fluid.

where R is the distance between the pore’s exit and observation
point, and Q is the volumetric flow rate. This results in the
appearance of the fluid friction force between the layers of the
fluid and as such, the pressure is induced to maintain the flow.
We can estimate the induced pressure δP by equating it to
the fluid friction force per unit area [36] which leads to δP =
(1/2)βηQ/R3

p. Here we introduced a variational parameter β

to relate R and Rp since the fluid velocity decays appreciably
over a few Rp’s away from the pore. Note that because we
consider the fluid flow outside the nanopore, β does not depend
on Lp.

Near the pore’s inlet, the situation is analogous but the pres-
sure there drops below the fixed external value to compensate
for the contraction of the fluid streamlines. Assuming that this
decrease in pressure is the same in magnitude as its increase
near the pore’s outlet, for the total pressure change along the
pore’s length, one can thus write

�P = β
ηQ

R3
p

. (11)

The fluid flow due to the induced pressure contributes to
the net EOF, so that Eq. (6) has to be modified to account for
its effect [32]:

vz(r) = −R2
p

4η

�P

Lp

(
1 − r2

R2
p

)
− ε0εrEz��

η

[
1 − I0(κr)

I0(κRp)

]
,

(12)

where for simplicity we assumed that the pressure-induced
flow is parabolic (Poiseulle flow) in the radial direction and
that the pressure changes linearly along the pore (see Fig. 5).

To determine the value of β, we computed the pressure drop
along the pore from the data in Fig. 5 and compared it with
�P given by Eq. (11) in which Q was obtained by integrating
Eq. (12) over the pore’s cross sectional area which leads to

�P = −8Ve

R2
p



α/2 + 

ε0εr��

1 + 16/πβ

[
1 − 2I1(κRp)

κRpI0(κRp)

]
,

(13)

where  is the aspect ratio of the nanopore,  = Lp/(2Rp),
and we also used Ez = Ve/(Lp + αRp). The values of the
pressure drop vs the aspect ratio of the nanopore are shown
in Fig. 6 where one can see that the agreement between the
numerically computed and approximate values of �P is quite
good when β = 1.75, particularly for pores with  � 2. The
pressure reaches maximum at  ∼ 1 and decreases at smaller
and larger values of the aspect ratio. The deviations at smaller
aspect ratios are likely due to the fact that the EOF is not
yet established in short pores (for the pressure driven flow,
the flow becomes fully developed when Lp � Rp [32]), i.e.,
the fluid velocity is smaller than the one given by Eq. (6).
In the opposite limit of the long pores Lp � Rp, �P ∝ L−1

p

due to the decreasing electric field magnitude.
With the value of β thus fixed, we can now find the fluid

velocity profile in the radial direction as given by Eqs. (12)
and (13). In Fig. 7, we replot the numerically computed EOF
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FIG. 6. Induced pressure drop �P vs aspect ratio of the pore
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FIG. 7. Same as in Fig. 3 but with dashed lines from Eqs. (12) and (13) with β = 1.75 and dotted lines with β = 3.

velocities (solid curves) but compare them now with results of
Eq. (12) (dashed curves): The agreement between two sets of
data is very good (unlike Fig. 3) for all studied nanopores
demonstrating the importance of the induced pressure effects
on the EOF through the nanopores in thin and ultrathin
membranes.

Note that an equation for the pressure drop similar to
Eq. (11) but with fixed β = 3 was derived for the pressure-
driven flow through the circular orifice in the infinitely thin
screen [37,38]. It was later utilized for the description of the
end effects in the pressure driven flow through the finite length
channels [39], where a good agreement between the exact
numerical and approximate results was found. However, as
can be seen from the dotted curves in Fig. 7, the parameter

β = 3 is much too large to provide a good agreement with the
numerically computed EOF fluid velocities for our nanopores
[25,40].

Finally, in Fig. 8, we show how the electrolyte concentration
C affects the fluid velocity. One can see from these plots that
the dependence of v on C has a nonmonotonic character for
pores with Rp = 5 nm: Fluid velocity at the pore’s center
first increases with increasing electrolyte concentration and
then decreases. This can be easily understood by analyzing
concentration dependence of vz(r) in Eq. (12). The electric
potential on the membrane surface �0 [Eq. (7)] monotoni-
cally decreases with C [13]. However, for small electrolyte
concentrations and Rp = 5 nm, the velocity at the center
of the pore has not yet reached Helmholtz-Smoluchowski
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FIG. 8. The fluid velocity profile in x direction at the center of the nanopore of length Lp = 25 nm for different bulk electrolyte concentrations
C: (a) Rp = 5 nm and (b) 10 nm. The dashed lines are the results of Eq. (12).
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saturation limit, that is, the electric double layers from opposite
sides of the pore overlap, and overall, vz increases with C.
When Helmholtz-Smoluchowski limit is reached, the only
dependence on concentration in Eq. (12) is through �0, and
thus, vz decreases. For Rp = 10 nm, the velocity decreases
with C [Fig. 8(b)] because in this case κRp � 1 in the studied
range of concentrations.

In the same plots, we also compare the numerically
computed velocities with the ones given by Eq. (12). One
can see that the agreement is very good for all concentrations
except for the lowest one, C = 10 mM, when the approximate
calculations significantly underestimate the numerical results.
The main reason for this is a strong z dependence of the
electric field in and around the nanopore as compared to
the ones shown in Fig. 4 and used in Eqs. (12) and (13).
At low electrolyte concentrations, the electric field varies
greatly along the nanopore length (there is a lot of the electric
field “leakage” from the top and bottom membrane surfaces
into the nanopore) and it is hard to ascribe just one value
for it for the whole nanopore length. In other words, at
low electrolyte calculations and/or nanopore aspect ratios,
the full scale numerical calculations are better suited for the
description of the EOF.

IV. CONCLUSION

In this paper, we theoretically studied the EOF through
nanopores of variable radii in thin and ultrathin solid state
membranes for different nanopore dimensions, electrolyte
concentrations and membrane charges. Numerical analysis of
the EOF fluid velocity is performed via self-consistent solution
of the Poisson-Nernst-Planck and Navier-Stokes equation in
two dimensions accounting for large fluid reservoirs above and
below nanopore. These large domains, while greatly increasing
the computational cost, are necessary to properly account for
the end effects around the inlet and outlet of the nanopore. We
found that the computed fluid velocity profiles are not only
different by as much as 100% from the results predicted by
classical equations derived for infinitely long capillaries, but
that they also develop a concave shape for sufficiently wide
and/or short nanopores. This behavior stems from the presence
of the self-induced pressure gradient along the nanopore due
to the flow expansion or contraction near ends of the pore as
well as the reduction of the electric field inside the nanopore
due to the increase of the effective nanopore length caused
by the access resistance and the membrane surface charge.
Based on the classical model for the EOF in long pores, we
also developed a simple analytical model incorporating these
effects, and found that its results are in a good agreement with
those of the numerical calculations.

Although in this work we concentrate on thin and ultrathin
membranes, our results concerning the magnitude of the
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FIG. 9. The fluid velocity profile in x direction at the center of
the nanopores with Rp = 5 nm and varying length Lp (solid curves).
The dashed lines are the results of Eq. (6) with Ez = Ve/Lp .

induced pressure and how it affects the EOF velocity are also
applicable for other pore dimensions as Eq. (13) does not
depend explicitly on the nanopore length. In this respect, they
can be used to predict and quantitatively estimate the induced
pressures near the nanopore inlet or outlet and their effect, for
example, on translocation of “deformable” particles through
the nanoporous membranes [33] and other nanofluidic devices.

ACKNOWLEDGMENTS

We are grateful to I. A. Jou for helpful discussions. This
work was supported by NSF CAREER Award No. DMR-
1352218.

APPENDIX: VALIDATION OF THE APPROACH

To check the validity of our numerical approach, we
computed the EOF velocity in very long nanopores where
numerical results are expected to approach the values given by
Eq. (6) for smaller surface charge densities when the Debye
approximation is valid. As results in Fig. 9 show, this is
indeed the case: For 200-nm-long pores, the relative difference
between numerically computed and approximate values of the
velocity is about 15(7)% for ρ = 0.4(0.2) e/nm3 while for a
500-nm-long nanopore, the difference is ∼10(2) %.
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