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Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is
unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing
the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is
difficult and controversial. The experimental results give several indications that the microbranching phenomenon
is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly
on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional
atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D
fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as
the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure
3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is
exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes
of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the
experimental findings.
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I. INTRODUCTION

Over the past decades, the dynamic instability in mode-I
fracture has been studied extensively [1]. These findings
deviate from the two-dimensional (2D) classic model for
mode-I fracture with a single crack that propagates in the
midline of the sample, based on linear elasticity fracture
mechanics (LEFM) [2]. This classic theory, which lacked a
supplemental criterion for instability, predicts that a single
crack will accelerate to a terminal velocity, which for mode-I
fracture is the Rayleigh surface wave speed cR . In fact, as
long as a single crack does exist, the crack obeys LEFM
predictions [3,4]. However, the experiments find that at a much
lower velocity (≈0.36–0.42cR , for a short review, see, for
example, Ref. [5]), a dynamic instability occurs, and small
microbranches start to appear near the main crack [6–10].
The additional energy that has to be spent in creating the
new surfaces prevents the crack from accelerating to the
theoretical terminal velocity. LEFM-based universal criteria
for branching [11,12] fail to describe the instability, predicting
a much higher critical velocity than in reality. Moreover, when
the small microbranches appear at v � vcr, they present a
clear three-dimensional (3D) nature. However, when enlarging
the driving displacement, the small microbranches reunite,
creating 2D patterns (right before macrobranches appear),
especially in poly(methyl methacrylate) (PMMA) [7–10].

Lattice models reproduce the existence of steady-state
cracks [13,14], and via a standard linear stability analysis,
they predict the existence of a critical velocity when the
steady-state cracks become linearly unstable [15–19]. This
critical velocity is found to be strongly dependent on the details

*highzlers@walla.co.il
†kessler@dave.ph.biu.ac.il

of the interatomic potential, such as the degree of smoothness
of the potential (as it drops to zero), or the amount of
dissipation. Simple simulations that use these same potentials
succeed in reproducing the steady-state regime, yielding the
exact point of instability and in reproducing the lattice model
results, but fail to describe the behavior in the postinstability
regime [18,20]. The early efforts on using a binary-alloy model
for modeling brittle amorphous materials failed to achieve
steady-state cracks at all [21], although more recent attempts
have succeeded in yielding propagating cracks [22,23].

Recent studies using Zachariasen’s [24] 2D continuous
random network model of amorphous materials, a model
that also recently has received experimental support from
direct imaging of 2D silica glasses [25], were used in
describing the microbranching instability [26] [using a O(104)
2D particle mesh]. The simulations reproduced qualitatively
both the regime of the steady-state propagating cracks and
the fracture patterns of the microbranches. In addition, using
perturbed lattice models, generated by adding a small amount
of disorder to the bond lengths, supplemented by an additional
three-body force law which penalizes the rotation of the bonds
away from the natural directions of the lattice, produces similar
results [27]. Larger-scale simulations [O(106) particles] using
graphics processing unit (GPU) computing yields various
qualitative and quantitative results of postinstability behavior,
such as a sharp transition between the regime of the steady
state and the microbranching, the increase in the derivative
of the electrical resistance across the crack with respect to
time (which correlates experimentally with the crack veloc-
ity), the correct branching angle, and the power-law behavior
of the branch shapes [28]. All of the theoretical models that
were mentioned above employed a 2D description of the
problem.

The large-scale simulations allow us to perform 3D sim-
ulations, attacking the microbranching phenomenon which
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is, at its heart, a 3D phenomenon [1,8,29], by taking the
O(104) particle mesh and adding a third dimension with
NZ ≈ 100. The two basic questions that we address using
our 3D simulations are as follows:

(i) Checking the reliability of the previous 2D simulations,
investigating how well the 2D description reproduces the
behavior of the more realistic 3D models.

(ii) Studying the direct 3D experimental features of the
microbranches, which have not previously been modeled.
We note that several 3D fracture molecular-dynamics sim-
ulations, containing large numbers of atoms, have been
studied previously using different potentials (for example,
see Refs. [30–32]), but herein we focus on the features
of the 3D instability and the resulting microbranches. It is
important to note that atomistic simulations cannot reproduce
the fracture patterns on the real physical length scales of
the experiments. However, the aim is to reproduce scaled
results and scaled structures of the real fracture length
scales.

II. MODEL AND GENERAL METHODOLOGY

Our simulations consist of ≈3 × 106 atoms, which include
1.7 × 107 bonds (central force laws), and ≈3.4 × 107 three-
body interactions (see Appendix B for the exact parameter of
the three-body potential that was used). These simulations can
be performed in reasonable run times by using parallel GPU
computing (see Appendix C).

We used a perturbed hexagonal close-packed (hcp) struc-
ture, which is a 3D extension of the 2D perturbed hexagonal lat-
tice that was studied in Refs. [27,28]. As in our 2D studies, the
interactions are taken to be only between nearest neighbors in
the unperturbed hcp lattice with an in-plane lattice constant of
a = 4 and c = √

8/3a (see Fig. 9 in Appendix A). Every atom
has 12 closest neighbors. We add a small amount of disorder
to the bond lengths ai,j = (1 + εi,j )a where εi,j ∈ [−b,b] and
b is constant and in this paper is set to b = 0.1 (for the system
shape, see Fig. 10 in Appendix B). In most of our simulations,
we employed a piecewise-linear radial force law (in this paper,
kr = 1) between the initially neighboring atoms. However, in
some of them we used a more physical smooth force law using
a smoothness parameter α, which when α → ∞ reproduces
the piecewise-linear model (see Appendix B). In addition,
we add a three-body potential and Kelvin-type viscosity as
described in detail in our 2D lattice studies [27,28]. We relax
the system, and then we strain the lattice under a mode-I tensile
loading with a given constant strain grip boundary condition
corresponding to a given driving displacement ±� (which is
normalized relative to the Griffith displacement �G) of the
edges and seed the system with an initial crack. For a detailed
discussion regarding the model and the governing equations,
see Appendixes A and B. The crack then propagates via the
same molecular-dynamics Euler scheme (the simulations were
always stable using a reasonable value of dt , so we have not
needed any more sophisticated numerical schemes). In Fig. 1
we present close-in snapshots of the (same) crack tip in a
steady-state crack from different viewing angles. We can see
that at small driving displacement the crack is actually 2D
in nature.

FIG. 1. A snapshot of the (same) crack tip in a steady-state crack
using a perturbed hcp lattice from different viewing angles. Each atom
shares 12 nearest neighbors (nns), defining “bonds” that connect each
other by a force law and is allowed to move in all three coordinates.
The crack creates a mirrorlike pattern. The left snapshot is a clear
XY -plane view whereas the right has a slight tilt, showing how deep
the system is.

III. MICROBRANCHING INSTABILITY
IN A 3D-PERTURBED LATTICE

The crack velocity v (which we normalize to the Rayleigh
wave speed cR) increases with �/�G (see Fig. 2). We define
the Rayleigh wave speed here as that calculated from cl and
ct (the longitude and the transverse wave speeds) on the XY

plane [(0001) in the crystallographic notation], which is the
major fracture surface in our simulations (there is a symmetry
along the Z axes in steady-state cracks, see Appendix C).
We can see that using a perfect nonperturbed lattice (in these
simulations we also used kθ = 0 in addition to b = 0, but this
result is valid for all values of kθ ), we get a (nonphysical)
velocity gap (such as in 2D [15–18]) in which slow cracks are
prohibited. However, adding disorder and the three-body force
law, the velocity gap shrinks, and by using a finite value of α,
the velocity gap shrinks dramatically with steady-state cracks
with almost zero velocities, yielding the correct experimental
behavior [1].
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FIG. 2. The v(�) curve of the perturbed hcp with different values
of two-body and three-body force laws. With a finite value of α and
kθ/kr , the velocity gap shrinks dramatically, yielding the correct
experimental behavior.

063004-2



THREE-DIMENSIONAL TO TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 95, 063004 (2017)

FIG. 3. An XY -plane view of the experimental microbranching
phenomenon in PMMA taken from Refs. [8,10] (left) for increasing
driving displacement. In color (right) we see our simulation XY -
plane view where the color denotes the Z location of the broken
bonds (dark red for the top edge and dark blue for the bottom edge).
We can see that, despite the quite noisy simulations, in general the
qualitative picture is quite good. The upper picture yields a mirrorlike
steady-state crack and is valid for all v/cR � 0.7.

In Fig. 3 we show several microbranching patterns (top
views), both experimental (in PMMA) and from our 3D
simulations using kθ/kr = 5 (where the color denotes the
Z locations). The broken bonds are plotted in the fractured
system, and their Z locations can be associated with the
color where dark red represents the top edge and dark blue
stands for the bottom edge. We see that below the critical
velocity, in the regime of steady-state cracks, the crack has a
“mirror” surface. Increasing the driving displacement, small
microbranches appear nearby the main crack, whereas the sizes
of the microbranches increase dramatically with the driving,
yielding at first a “mist” surface and with large �, a “hackle”
surface. Despite the noisy results (due to the relatively small
sizes of the simulations), the pictures are qualitatively quite
similar to the experimental findings, at least in the sense that
the length of the microbranches increases dramatically with the
driving displacement, yielding eventually large macrobranches
(in the simulations, a macrobranch is a branch that reaches the
end of the sample, such as in the experiments, on a different
length scale). A quantitative (scaled) overview is presented
in Figs. 4 and 5. We note that without a three-body force
law we do not get the microbranching pattern, but rather
a cleavagelike behavior (with or without the presence of
disorder). Using too strong a three-body force law (kθ/kr =
6.7) yields microbranches that propagate in straight lines
with the natural angle of the lattice (60◦), which is again
nonphysical.

The transition between the regime of steady-state cracks
and the postinstability side-branching regime is very sharp in
the 3D simulations. In Figs. 4 and 5 we present two quantitative
parameters that demonstrate this sharp transition (in the inset
there is a zoomed picture of the transition area). In Fig. 4
the total number of broken bonds as a function of the crack
velocity is displayed. In the small velocity regime, only the
bonds necessary for yielding a single main crack are broken.
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FIG. 4. The total number of broken bonds as a function of the
crack velocity (the constant number of bonds in the low velocity
regime represents the broken bonds of the main crack). A clear
transition between the steady-state regime and the microbranching
behavior can be seen. In the small box there is a zoomed picture of
the transition area.

Beyond the critical velocity, the number of broken bonds
increases linearly as in the experiments [8] and is broadly
similar (although much sharper here) to what is seen in the
hexagonal perturbed 2D lattice [28].

In Fig. 5 we measure δy, the width of the microbranching
region, as a function of the crack velocity (see the definition
inside Fig. 5). δy is a second measure of the sizes of the
microbranches. As above, a sharp transition can be seen
between the single crack and the microbranching regimes.
We note that using the piecewise-linear force law, the critical
velocity vcr seems to be very close to the Yoffe criterion [11]
(which is ≈0.73cR). But, as we showed previously in 2D, the
quantitative value of vcr can be controlled via the interatomic
potential parameters, such as α and η (see Appendix B
for explicit definitions of these parameters) [16,18,28]. We

FIG. 5. The width of the fracture region as a function of the crack
velocity. A clear transition between the steady-state regime and the
microbranching behavior can be seen. In the small box there is a
zoomed-in picture of the transition area.
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can see that using a finite value of α, the critical velocity
decreases (see the small boxes in Figs. 4 and 5 for a given
kθ ) to the exact value of the 2D simulations; in α → ∞ we
reproduce the 2D critical velocity vcr ≈ 0.73cR (see Fig. 7 in
Ref. [17]), whereas also with α = 5 we reproduce the 2D value
vcr ≈ 0.68cR (see Fig. 4(a) in Ref. [18]). That means that the
critical velocity is not universal and is potential dependent.
Thus, for example, we can vary the values of α and η to
reproduce the exact experimental critical velocity of a given
material, very much like we did in 2D [18,19]. In both Figs. 4
and 5, the results appear insensitive to the exact value of kθ ,
despite the fact that the microbranches in the two cases appear
different.

In addition, we can cut thin horizontal slices from the XY

fracture pattern, yielding 2D patterns and compare them to pure
2D fracture patterns [27]. In Fig. 6 we present two fracture
patterns of a 2D perturbed hexagonal lattice and two 2D
slices of the 3D hcp perturbed lattice, one for relatively small
driving and one for large driving displacement. We can see,
despite the relatively large noise (resulting from the breaking
of one or a few bonds) that characterizes the 3D simulations,
the patterns are quite similar to the pure 2D simulations
for small driving displacement. This fact is encouraging and
supports the assumption that for at least some features (e.g.,
XY -plane features of the microbranches), the 2D studies are
relevant. However, for large driving displacement, the 3D
patterns look rather different from the 2D patterns, although the
fracture pattern is still much more developed at large driving
displacements. Nevertheless, we note that different horizontal
slices of the same 3D fracture pattern (for different Z’s) yield
different patterns. This fact indicates that, for the 3D regime,
as long as the microbranches are sufficiently small, there is no
symmetry along the Z axis. Note that the driving displacement
v/cR required to produce a given amount of side branching is
much greater than in 2D since out of plane bonds are being
broken as well.
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FIG. 6. A comparison between the fracture pattern (in lattice scale
units) of a pure 2D perturbed hexagonal simulation and the thin slices
of the 3D fracture pattern using our perturbed hcp lattice. Despite the
greater noise of the 3D simulations, the patterns look quite similar.
The 2D patterns are taken from Ref. [27].

IV. THE 3D-2D TRANSITION

Moreover, we can compare our 3D simulations to the 3D
experimental properties of the microbranches. Experimental
postmortem pictures of the XZ plane of the fractured surface
by Sharon and Fineberg [8] reveal that, nearby the origin of
instability, the microbranches are localized on the Z axis. At
high velocities, the microbranches merge, creating a Z-plane
quasisymmetric pattern, yielding a 3D-2D transition [1,8–10].
In PMMA (as opposed to glasses or gels), nice symmetric
2D-like stripes are created in association with the largest
microbranches [8].

In Fig. 7 we present two experimental pictures of the XZ

plane of the fracture surface that demonstrates the 2D-3D
transition in PMMA, taken from Ref. [8]. Below, we depict
XZ slices taken at a constant distance from the main crack
(relative to the Y axis) of our 3D simulations (the pictures
from the main crack plane itself are too noisy due to our
finite size simulations). We see that the fracture patterns
looks surprisingly similar. At a small driving displacement
(�/�G = 2.5 in the simulations), right beyond the critical
velocity, the microbranches are localized in the Z directions,
yielding purely 3D behavior in both the experiments and
the simulations. Increasing the driving displacement further
(�/�G = 4 in the simulations), the microbranching increases
in the Z direction from top to bottom of the sample, yielding
a 2D-type behavior. The periodic stripes structure is a result
of the periodic microbranches on the XY plane (Fig. 3) [7].
After the onset of branching, the energy flowing into the crack
tip is divided between the main crack and the daughter cracks.
The daughter cracks, which compete with the main crack, have
a finite (similar) lifetime because the main crack can outrun
them and screen the daughter cracks from the surrounding
stress field. The daughter cracks then die, and the energy that
had been diverted from the main crack returns. The scenario
then repeats itself, causing the branching pattern to be more or
less periodic.

As a matter of fact, these large microbranches result from
the merging of several small microbranches as we can see

FIG. 7. Top row: an XZ-plane view of the experimental mi-
crobranching phenomenon in PMMA of the Sharon and Fineberg
experiments (which are taken from Ref. [8]), along with simulation
results (where the color denotes the Z location of the broken bonds for
presentation reasons) for small driving on the left and for large driving
displacement on the right. Bottom row: the simulational XZ-plane
view. We see that very much like the experiments, at the small driving
displacement, the microbranching is 3D, and for the large driving
displacement, the microbranches are 2D in character.
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FIG. 8. A comparison between experimental and simulation
results for the average length of the microbranch and the microbranch
width (normalized to the maximal yielded value) as a function of
the driving displacement (normalized to the Griffith value). The
experimental data are taken from Refs. [1,8].

carefully in Fig. 7 (there is not a perfect symmetry along the
Z axis; for different Z’s, the microbranch propagates different
distances). This behavior shares similar features with recent
experimental work [29].

We can now quantify this 2D-3D transition (of course
in normalized units). Looking carefully at the PMMA ex-
perimental results, we can see that the region of instability
v = vcr ≈ 340 m/s (Fig. 11(a) in Ref. [8]) is quite different
from the point of 2D-3D transition v ≈ 550 m/s (Fig. 19
in Ref. [8]), ensuring the fact that at first (near v ≈ vcr) the
microbranches are 3D whereas only for higher velocities do
they become 2D. In Fig. 8, we plot the width of the largest
microbranch (in the Z direction) in the 3D simulations for
a given �/�G along with the total number of broken bonds
(from Fig. 4), both of them are normalized to their largest
value. We plot them both as a function of �/�G and not as
a function of v/cR since the crack velocities are an output
parameter (and in our simulations are much higher than the
PMMA experimental results). For the experimental results,
we used Fig. 17 in Ref. [1] for transferring the data from v/cR

to �/�G.
We can see that the 3D simulation results reproduce the

2D-3D transition almost perfectly. At �/�G ≈ 1.3, in both the
experimental and the simulation results, small microbranches
start to appear on the main crack. Those microbranches are
localized in the Z direction, whereas only at �/�G ≈ 1.8–1.9
does the width of the microbranches increase dramatically,
yielding “2D microbranches” when several microbranches
reunite, covering the whole Z direction, yielding a 3D-2D
transition.

V. SUMMARY AND FUTURE WORK

In conclusion, as long as we look at the XY plane, the 3D
simulations share similar features with the 2D simulations, and
quantitative measures as to the total number of microbranches
or the size of the opening of the microbranches as a function

of crack velocity look the same. On the other hand, our current
simulations also reproduce pure 3D features, especially the
XZ-plane patterns when the 3D-2D transition occurs. Thus,
we believe that the lattice models and simulations offer a
good theoretical framework for studying the microbranching
instability, including the 3D effects. We are left with the
following question. In 2D [28], enlarging the system allows
quantitative study of the branches. How will the 3D system
behave on a larger scale? The answers should be attainable
within the scope of available supercomputers using thousands
of nodes or tens of GPUs.

APPENDIX A: GENERATING THE PERTURBED LATTICE

We start with a perfect ideal hcp lattice, where c = √
8/3a

(see Fig. 9) when each atom has 12 nearest neighbors, 6 on
the XY plane (yielding a 2D hexagonal lattice) and 6 in the Z

direction (3 up and 3 down). As in the 2D studies [27,28], we
randomize the length of each bond ai,j ,

ai,j = (1 + εi,j )a, i = 1,2, . . . ,natoms, j ∈ N (i), (A1)

where εij ∈ [−b,b] and b is constant for a given lattice. In
this paper we set b = 0.1 and a = 4. N (i) refers to the nearest
neighbors of site i.

APPENDIX B: THE EQUATIONS OF MOTION

In most of our calculations, between each two atoms there
is a piecewise-linear radial force (two-body force law) of the
form

�f r
i,j = krk

′
i,j (|�ri,j | − ai,j )r̂j,i , (B1)

where

k′
i,j ≡ θH (ε − |�ri,j |). (B2)

The Heaviside step function θH guarantees that the force drops
immediately to zero when the distance between two atoms |�ri,j |
reaches a certain value of ε > ai,j (the breaking of a bond). In
this paper we set ε = a + 1. Alternatively to Eq. (B2), we can
use a smoother force law, which, instead of a sharp failure at
|�ri,j | = ε, has a more realistic smooth transition wherein the
force law drops to zero, of the form [16,18]

k′
i,j ≡ 1 + tanh[α(ε − �ri,j )]

1 + tanh(α)
, (B3)

where α is the smoothness parameter such that when α → ∞
the force law reverts to the piecewise-linear force law. The
results in this paper refer to the piecewise-linear model, unless
mentioned otherwise.

FIG. 9. A diagram of the unit cell of the ideal hcp lattice, where
c = √

8/3a. Each atom has 12 nearest neighbors, 6 on the XY plane
(reproducing the 2D hexagonal lattice).
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In addition there is a three-body force law that depends on
the cosine of the angles between each set of three neighboring
atoms, defined of course by

cos θi,j,k = �ri,j · �ri,k

|�ri,j ||�ri,k| , (B4)

that acts on the central atom (atom i) of each angle and may
be expressed as

�f θ
i,(j,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�ri

k′
i,j k

′
i,k r̂i

= kθ (cos θi,j,k − cos θC)

×
[ �ri,j + �ri,k

|�ri,j ||�ri,k| + �rj,i(�ri,j · �ri,k)

|�ri,j |3|�ri,k| + �rk,i(�ri,j · �ri,k)

|�ri,j ||�ri,k|3
]

× k′
i,j k

′
i,k, (B5)

whereas the force that is applied on the other two atoms (atoms
j,k) may be expressed as

�f θ
j,(i,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�rj

k′
i,j k

′
i,k r̂j

= kθ (cos θi,j,k − cos θC)

×
[ �rk,i

|�ri,j ||�ri,k| + �ri,j (�ri,j · �ri,k)

|�ri,j |3|�ri,k|
]
k′
i,j k

′
i,k. (B6)

Of course, the forces satisfy the relation �f θ
i,(j,k) = −( �f θ

j,(i,k) +
�f θ
k,(i,j )). The three-body force law drops immediately to zero

when using a piecewise-linear force law when the bond breaks
[Eq. (B2)] or may be taken to vanish smoothly using Eq. (B3).

We note that, in the 3D case, there are a lot of possible
angles between each set of three bonds. To shorten the run
times (the calculation of the three-body force law is extremely
time consuming), in most of our calculations, we do not
include all the possible angles between triplets but only 12
of them. We chose to take the six 60◦ angles inside the XY

plane (for reproducing the 2D-hexagonal problem that was
studied before for Nz = 1) and another six angles, three 60◦
angles that connect each atom with its two neighbors that are
located on the upper parallel plane and three angles on the
lower parallel plane (for convenience, see Fig. 9). However, in
some of our calculations, we used all twenty-four 60◦ angles,
whereas the results do not vary qualitatively, and the fracture
patterns remain similar. There is a certain preferred angle θC

for which the three-body force law vanishes, which is set to
θC = π

3 .
In addition, it is convenient to add a small Kelvin-type

viscoelastic force proportional to the relative velocity between
the two atoms of the bond �vi,j [16–18,33],

�gr
i,j = η(�vi,j · r̂i,j )k′

i,j r̂i,j , (B7)

with η as the viscosity parameter. The viscous force vanishes
after the bond is broken, governed by k′

i,j . The imposition
of a small amount of such a viscosity acts to stabilize the
system and is especially useful in the relatively small systems
simulated herein.

FIG. 10. A small-scale perturbed hcp yielded by Eq. (A1) after
relaxing the system under Eqs. (B1)–(B8).

The set of equations of motion of each atom is then

mi
�̈ai =

∑
j∈12 nn

( �f r
i,j + �gr

i,j

) +
∑

j,k∈12 nn

�f θ
i,(j,k) +

∑
j∈24 nn

�f θ
j,(i,k).

(B8)

In this paper the units are chosen so that the radial spring
constant kr and the atoms’ mass mi are unity.

After defining the steady-state optimal length of each bond
ai,j by Eq. (A1), we first relax the system under the equations
of motion, Eqs. (B1)–(B8) with a small amount of viscosity,
yielding the minimal-energy locations of the atoms in the
lattice. In Fig. 10, we can see a small-scale 3D perturbed
hcp using our model.

After relaxing the initial lattice, we strain the lattice
under a mode-I tensile loading with a given constant strain
corresponding to a given driving displacement ±� of the
edges and seed the system with an initial crack. The crack then
propagates via the same molecular-dynamics Euler scheme
using Eqs. (B1)–(B8).

APPENDIX C: PARALLELIZATION BY GPU COMPUTING

As mentioned in Secs. I and II, running 3D simulations,
using approximately 3 × 106 particles cannot reasonably be
performed by a single CPU and thus force us to use multithread
computing. We choose to use GPU computing, parallelizing
the code via CUDA [34,35], akin to what we implemented
before in 2D [28]. This kind of programming forces the
programmer to use the different levels of memory carefully
[35], which makes achieving an acceleration up to ≈100
faster than a regular C code possible using a single CPU. This
tool makes the simulation of millions of atoms in reasonable
simulation times possible. See the Appendix of Ref. [28] for
more implementation details. In our simulations, we used
132 × 310 × 70 ≈ 3 × 106 particles (N = 65 in the Slepyan
model notation).

APPENDIX D: THE RAYLEIGH SURFACE WAVE SPEED
FOR HCP WITH kθ �= 0 LATTICES

Since the models in this paper use a three-body potential
law (aside the central two-body force law) with kθ �= 0, we
need to recalculate the Rayleigh wave speed cR , which is the
terminal velocity for mode-I fracture for different kθ/kr ’s. The
most convenient way to calculate the Rayleigh wave speed is
to calculate first the longitude (primary) cl and the transverse
(secondary) ct wave speeds and then to calculate the Rayleigh
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FIG. 11. The longitude and the transverse sound wave speeds
along with the resulting calculated Rayleigh surface wave speed using
Eq. (D1) for the hcp lattice as a function of kθ/kr . In the circles
there are the results with only twelve 60◦ angles that were taken into
account, whereas in the triangles, the result is with all twenty-four
60◦ angles.

wave speed via the well-known formula [36],

(
1 − c2

R

c2
t

)2

− 4

(
1 − c2

R

c2
l

)1/2(
1 − c2

R

c2
t

)1/2

= 0. (D1)

Since in a hcp lattice, the sound velocities are inhomoge-
neous, yielding a different sound velocity for each direction,
we defined that the relevant variables are the variables on the
XY plane, which is the major fracture plane, and thus, the crack
velocities are normalized to the sound velocities on the XY

plane (which inside this plane, are homogeneous, as for a
2D hexagonal lattice). In this manner we define the Rayleigh
wave speed on the XY plane by Eq. (D1). We calculate cl and
ct via measuring the wave velocities by initiating longitude
and transverse small deformations at the end of the samples
in the different lattices that we use in this paper and then
find cR via Eq. (D1). The results are shown in Fig. 11
with the circles indicating the results with only twelve 60◦
angles that were taken into account and with the triangles
indicating the results with all twenty-four 60◦ angles. The value
of kθ with all twenty-four 60◦ angles was chosen to reproduce
the quantitative values of the model with only twelve 60◦ angle
models.

We can see that, for both lattices, the numerical values
for the wave velocities using kθ = 0 are very close to
the 2D values [28] as can be calculated analytically. For
larger values of kθ , the different sound velocities are higher
(≈10%–15%) than the 2D velocities [28]. In addition, we
can see that the results for the sound velocities (specifi-
cally, cR) with kθ/kr = 3.5 with all twenty-four 60◦ angles
are very much like the kθ/kr = 5 with only twelve 60◦
angles.
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