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We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration
in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below
a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry
product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and
incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays)
conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that
has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into
the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition
temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal
distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through
energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work. The above
ideas had previously been presented for the scalar order parameter case. Here we show similar results are also
obtained for vector order parameters.
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I. INTRODUCTION

Energy landscape concepts [1] such as golf course and
funnel are used in proteins [2–4] to understand the folding
kinetics, in temperature (on the x axis) and time (on the y axis)
diagrams [5,6]: (i) rapid folding below a transition temperature
and slow folding above it and (ii) U-shaped folding curves. The
rapid folding changes to become slow at low temperatures
on changing the roughness of the funnel [7]. The glassy
ruggedness and slope of the folding funnel are estimated
[3] from experimental data. In a simple model of Brownian
particle searching outside a golf course (“unfolded state”) for
a funnel inside it (“folded state”) find entropic barriers at the
golf-course edge and exponential relaxation kinetics [8]. In an
off-lattice Go model for an inherent structure energy landscape
of proteins a time-dependent effective temperature is obtained
from internal energy and entropy [9]. In a topology-based
dynamical model, the Vogel-Fulcher divergences that are well
known in glasses [10] and broad distributions are found for
unfolding of proteins [11]. Such slow relaxations in glasses
are understood to arise from entropy barriers alone in a simple
microscopic model without energy barriers [12,13].

Martensites are materials [14,15] that undergo a diffusion-
less and displacive first-order phase transition on cooling or un-
der external stress, from high-temperature high-symmetry par-
ent austenite unit cell to low-temperature low-symmetry prod-
uct martensite unit cells or variants (Nv). Steels, shape memory
alloys, high-Tc superconductors, ceramics, oxides, and pro-
teins are a few examples [14,15]. A subset of physical strain
components (NOP) are the order parameters (OPs) and the
remaining non-OP strains are minimized subject to a no-defect
Saint-Venant compatibility constraint that induces scale-free,
power-law, anisotropic interactions which orient the domain
walls in preferred crystallographic directions [16]. Martensites
can have an exponentially large number of multivariant
twinned states or nonuniform metastable local minima com-
peting with a single uniform global minimum [17]. Martensites
are classified based on conversion times [18,19]: (i) athermal,

which are expected to have rapid austenite-to-martensite
conversions in milliseconds on quenching below a transition
temperature and no conversions above it; and (ii) isothermal,
which can have slow conversions in minutes or hours.

Systematic temperature quench Monte Carlo (MC) simu-
lations are performed on strain-pseudospin clock-zero model
Hamiltonians in two spatial dimensions for scalar-OP (NOP =
1) square-rectangle (SR, Nv + 1 = 3) transition [17,20],
and vector-OP (NOP = 2) triangle-centered rectangle (TCR,
Nv + 1 = 4), square-oblique (SO, Nv + 1 = 5), and triangle-
oblique (TO, Nv + 1 = 7) transitions [21] and found both
isothermal and athermal martensite parameter regimes. The
pseudospin strain textures obtained from MC simulations and
local mean field [17,20–22] are in very good agreement with
experiments [23–25]. In the temperature-time-transformation
(TTT) diagram with temperature on the x axis and time on
the y axis [17,20,21], (i) athermal martensites have rapid
conversions below a transition temperature and delays above
it as in experiments, with Vogel-Fulcher divergences that are
insensitive to Hamiltonian energy scales, understood from the
presence of nonactivated entropy barriers; and (ii) isothermal
ones have U-shaped conversion curves, as expected to arise
from activated energy barriers. The shapes of TTT curves
transform from rapid to slow (or athermal to isothermal) at
low temperatures on changing the material elastic stiffness
constant [17,20,21].

In the athermal martensite regime, golf-course and funnel
energy landscapes that appear in Fourier space naturally in a
simple three-state strain-pseudospin clock-zero model Hamil-
tonian for scalar-OP (NOP = 1) square-rectangle transition
are used to study the rapid and slow austenite-to-martensite
conversions and re-equilibration under systematic temperature
quench MC simulations [26]. Energy landscape concepts in
martensites are used in other contexts [27–32]. In perovskite
manganites, the strain-induced metal-insulator phase coexis-
tence is understood through an elastic energy landscape [27].
In a binary alloy system, the crystallization of strain glass
and its properties are studied using the frustrated free-energy
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landscape [28]. In the iron nanoislands system, an energy
landscape is modeled to study the dynamics of electrically
driven body-centered cubic to face-centered cubic phase
transition [29]. In a single crystal, the Peierls-Nabarro energy
landscape is used to model cubic-monoclinic transition [30]. In
a shape memory alloy, the distortion-shuffle energy landscape
is used to identify the energy barrier for cubic-orthorhombic
transition [31]. The global complex energy landscapes are
proposed to model elastic moduli and energy barriers for
cubic-tetragonal and cubic-monoclinic transitions [32].

In this paper, the athermal regime re-equilibration and
nature of entropy barriers are studied in four-state, five-state,
and seven-state strain-pseudospin clock-zero model Hamil-
tonians for vector-OP (NOP = 2) triangle-centered rectangle,
square-oblique, and triangle-oblique transitions using natu-
rally appearing Fourier space golf-course and funnel energy
landscapes, and MC acceptance fractions. The rapid and slow
incubation-delay conversions are found to arise from the
presence of large and small size of the golf-course edges. The
Vogel-Fulcher conversion delays that are insensitive to Hamil-
tonian energy scales are found to have log-normal distributions
that are signatures of rare events [33]. The number of suc-
cessful conversions, that are also insensitive to energy scales,
vanishes where the entropy barriers diverge [12,17,20]. In the
incubating state, the crossing of the entropy barrier is identified
in energy occupancy distributions, MC acceptance fractions,
and heat and work releases as the structure factor enters into
the Brillouin-zone (BZ) golf course through searches for rare
energy-lowering pathways and elastic photocopying [34,35].

This paper is organized as follows. In Sec. II, we discuss
the strain-pseudospin clock-zero model Hamiltonians and the
MC simulation techniques. Section III contains golf courses,
funnels, and conversion times; evolution of strain textures in
coordinate and Fourier spaces; and energy occupancy distri-
butions of structure factor. We also present the MC acceptance
fractions and work and heat releases. Finally, Sec. IV is a
summary with an overview of potential further work.

II. STRAIN-PSEUDOSPIN CLOCK-ZERO MODEL
HAMILTONIANS

The pseudospin clock-zero model Hamiltonians for TCR,
SO, and TO transitions were systematically derived from
scaled continuous-strain free energies [16]. We outline here
for completeness. In d-spatial dimensions, the distortions of
a unit cell are described by 1

2d(d + 1) Cartesian strain tensor
components eμν and physical strains eα are linear combinations
of these components (eμν). In d = 1 dimensions, there is only
one strain e = ∂u(x)/∂x. In d = 2 dimensions, there are three
distinct physical strains, namely, dilatational or compressional
(e1), rectangular or deviatoric (e2), and shear (e3):

e1 = 1√
2

(exx + eyy),

e2 = 1√
2

(exx − eyy), e3 = exy, (2.1)

where exy,eyx are tilts and exx,eyy are stretches or compres-
sions along x and y directions of a unit cell. A subset of
physical strains (NOP) contains the OP and the remaining are

non-OP strains, which cannot be set to zero. In d dimensions,
1
2d(d + 1) − NOP are the non-OP strains that are minimized
subject to 1

2d(d − 1) Saint-Venant compatibility constraints
that ensure that all the distorted unit cells fit together smoothly
so that no dislocations are generated throughout the system.
For TCR, SO, and TO transitions, we have �e = (e2,e3) as
two-component vector-OP (NOP = 2) strain and e1 as non-OP
strain inducing the single compatibility constraint.

The scaled free energy [16] has a transition specific Landau
term F̄L that has (Nv + 1) degenerate energy minima at the
first-order transition; a Ginzburg term for domain-wall energy
costs, quadratic in the OP gradients F̄G; and a compatibility-
induced term harmonic in the non-OP strains F̄non. Thus

F = E0[F̄L + F̄G + F̄non], (2.2)

where E0 is an elastic energy per unit cell.
The discrete-strain pseudospin model Hamiltonians are de-

rived [16] by choosing continuous-strain OP �e = (e2,e3) values
only at the Nv + 1 Landau minima �e(�r) = |e|(cos φ, sin φ) →
ε̄(τ )�S(�r) into the total free energy of Eq. (2.2):

βH (�S) ≡ βF (�e → ε̄ �S). (2.3)

The Landau term in Fourier space becomes

HL(�S) = ε̄2
∑

�r
gL(τ )�S2(�r) = ε̄2

∑
�k

gL(τ )| �S(�k)|2, (2.4a)

where gL = τ − 1 + (ε̄ − 1)2 with ε̄2(τ ) = 3
4 {1 +√

1 − 8τ/9} for TCR and gL = τ − 1 + (ε̄2 − 1)2 with
ε̄2(τ ) = 2

3 {1 + √
1 − 3τ/4} for SO and TO transitions. The

scaled temperature is defined as

τ = T − Tc

T0 − Tc

, (2.4b)

where T0 is the first-order Landau transition temperature and
Tc is the metastable austenite spinodal temperature.

The Ginzburg term becomes

HG( �∇ �S) = ξ 2ε̄2
∑

�r
( �∇ �S)2 = ξ 2ε̄2

∑
�k

�K2| �S(�k)|2 (2.5)

where ξ is the domain-wall thickness constant.
The harmonic non-OP term is minimized subject to

Saint-Venant compatibility constraint �∇ × [ �∇ × �e(�r)]T = 0
for physical strains [16] that guarantees the lattice integrity
during distortion of the unit cells throughout the system:

�
2e1 − (

2

x − 
2
y

)
e2 − 2
x
ye3 = 0, (2.6a)

with gradient terms as difference operators �∇ → �
 for sites �r
on a computational grid. In Fourier space, with μ = x,y and
kμ → Kμ(�k) ≡ 2 sin(kμ/2), Eq. (2.6a) becomes

O1e1 + O2e2 + O3e3 = 0, (2.6b)

with the coefficients O1 = − 1√
2

�K2, O2 = 1√
2
(K2

x − K2
y ), and

O3 = 2KxKy for the square lattice and O1 = − �K2, O2 =
(K2

x − K2
y ), and O3 = 2KxKy for the triangular lattice. Here,

�K2 = (K2
x + K2

y ).
The minimization of non-OP strain generates scale-free and

power-law anisotropic interactions between the OP strains and
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FIG. 1. The martensite energy landscape spectrum: The relief
plot of ε��

′ (�k), dimensionless martensite energy spectrum (a) ε22(�k),
(b) ε23(�k), and (c) ε33(�k) for TCR, SO, and TO transitions.

becomes

HC = A1

2
ε̄2

∑
�k

∑
�,�

′=2,3

S�(�k)U��
′ (�k)S∗

�
′ (�k) (2.7)

where A1 is the elastic stiffness constant. The kernels plotted
in [21] are U22(�k) = ν(O2/O1)2, U23(�k) = ν(O2O3/O1)2, and
U33(�k) = ν(O3/O1)2 with ν = (1 − δ�k,0).

The Hamiltonian is diagonal in Fourier space [21]:

H (�S) = K0

2

∑
�k

∑
�,�

′=2,3

ε��
′ (�k)S�(�k)S∗

�
′ (�k). (2.8a)

The dimensionless martensite strain spectrum,

ε��
′ (�k) ≡ K0

[
{gL(τ ) + ξ 2 �K2}δ��

′ + A1

2
(1 − δ�k,0)U��

′ (�k)

]
,

(2.8b)

is plotted in Fig. 1 for T = 0.79, which depicts the energy
landscapes similar to that used in protein folding [2–8]. Here,
K0(T ) = 2E0ε̄(T )2. This is a clock-zero model Hamiltonian
with an austenite �S = (S2,S3) = (0,0) and Nv martensite
variants:

�S = (1,0),

(
− 1

2
, ±

√
3

2

)
;

(
± 1

2
, ± 1

2

)
; (±1,0),

(
± 1

2
, ±

√
3

2

)
(2.8c)

for TCR (Nv + 1 = 4), SO (Nv + 1 = 5), and TO (Nv + 1 =
7) transitions, respectively.

We have carried out systematic MC temperature quench
and hold simulations on a square lattice in two dimensions
[21]. We quench the austenite with 2% of randomly sprinkled
martensite seeds of Nv strain-pseudospin values, at t = 0,
to below the Landau transition T 	 T0 and held for t � th
MC sweeps (MCSs). The Metropolis algorithm [36,37] is
used for acceptance of energy changes that are calculated
through fast Fourier transforms. We visit all N = L × L sites
randomly, but only once, in each MCS. Parameters are L =
64,T0 = 1; Tc/T0 = 0.9, ξ = 1; A1 = 4; 2A1/A3 = 1; E0 =
3,4,5,6; th � 10 000, and conversion times are averaged over
Nruns = 100 runs.

The TTT phase diagram for TCR, SO, and TO transitions
is depicted in Fig. 2 as a log-linear plot of conversion
times t̄m versus scaled temperature variable [17,21] η(T ) =
{gL(τ ) + A1[U ]/2}/2ξ 2 that shows the boundary between

-3 -2 -1 0
η

10
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t
m
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T
1
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4

FIG. 2. Temperature-time-transformation phase diagram: On
quenching, conversion times t̄m for domain-wall vapor to liquid
have rapid, moderate, and delayed conversions at the transition
temperatures T = T1(= 0.15,0.38,0.38), T2(= 0.47,0.55,0.61), and
T4(= 0.68,0.81,0.81) that are marked in the scaled temperature
variable η(T ) for TCR, SO, and TO transitions.

domain-wall (DW) vapor and liquid phases. Here [U ] 

0.5 is the BZ average of U��

′ (�k) in TCR, SO, and TO
transitions. The crossover temperatures that are understood
through the parametrization of pseudospin strain textures with
an effective droplet energy [21] are T = T1 or η(T ) = −2
where conversion times (in units of MCS) t̄m ∼ 1, T = T2, or
η(T ) = −1 where t̄m ∼ 10 and T = T4 or η(T ) ∼ −0.5 where
t̄m diverges. For T > T4, there are no conversions to martensite
and hence the initial seeds disappear to go back to austenite.

To study the re-equilibration under a quench-and-hold
protocol, we track the dynamic structure factor [26]

ρ(�k,t) ≡ |�S(�k,t)|2 (2.9)

and its BZ average, the martensite fraction,

nm(t) = 1

N

∑
�k

ρ(�k,t) = 1

N

∑
�k

| �S(�k,t)|2, (2.10)

that is zero in austenite and unity in twinned or uniform marten-
site. We define conversion time t = tm when nm(tm) = 0.5 or
50% [17,20,21,26]. On quenching to different temperatures,
we find the conversion success fraction [17] φm that is the
number of successful conversion pathways to martensite out
of Nruns.

III. RESULTS AND DISCUSSIONS

A. Golf courses, funnels, and conversion times

On quenching to a temperature T2 < T < T4, Fig. 3 shows
the single run Hamiltonian energy of Eq. (2.8a) that is quite flat
at H (t) ≡ H22 + H23 + H33 
 0 (and H22 = H23 = H33 
 0)
during incubation and then falls rapidly to lower energies in
TCR, SO, and TO transitions. So the relevant spectrum is
thus a zero-energy plane through the ε��

′ (�k) = 0 or ε22(�k) =
ε23(�k) = ε33(�k) 
 0 surface and the negative energies below
it. The resulting relief plot of ε��′(�k) is shown in Fig. 4
(top row) that depicts a momentum space anisotropic golf
course defined by ε��

′ (k) = 0 and funnel for ε��
′ (k) < 0 inside

it. Figure 4 (bottom row) shows the temperature-dependent,
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FIG. 3. Evolution of Hamiltonian energy: On quenching to a
temperature T 
 T4, the total Hamiltonian energy H (t) vs time t

(in MCS) showing incubation at constant energy H (t) ∼ 0 in TCR,
SO, and TO transitions.

anisotropic golf-course edge that is large (small) at low (high)
temperatures. Such energy landscape concepts are used in
configuration space to study the rapid and slow folding of
proteins [2–4,8].

Figure 5 shows the single run martensite fraction nm(t)
versus time t after quenches to T1,T2, and T4 that have different
values in different transitions [21]. See Fig. 2. The martensite
fraction nm(t) rises rapidly to unity and conversion times tm 

1 MCS at low temperatures T = T1 where the golf-course edge
is large. At moderate temperatures T = T2, the golf-course
edge is moderate and tm 
 10 MCS. As the transition is
approached T 
 T4(	 T0), nm(t) shows incubation behavior
and tm ∼ 103 − 104 MCS where the golf-course edge is
small [26]. For T > T4, the four petaled golf-course topology
provides an infinite entropy barrier for conversions [26].

The temperature dependence of conversion times [21] t̄m(T )
and conversion success fraction φm for a fixed elastic stiffness

−1

0

ππ
−π

−2

0

−π
ππ

−1

0

−π

ππ
−π−π −π

(a) (c)(b)

π

π−π

FIG. 4. Anisotropic golf courses and funnels: Relief plot of
relevant martensite spectrum ε��

′ (�k) vs �k in the Brillouin zone
for T = 0.79(<T4) showing the anisotropic golf course, with a
zero-energy plane that has a funnel for negative energies as shown in
(a) ε22(�k), (b) ε23(�k), and (c) ε33(�k). The edge of golf course ε22(�k) = 0,
ε23(�k) = 0, and ε33(�k) = 0 is plotted, respectively, in the bottom row,
at T1(= 0.38) (in pink), T2(= 0.55) (in blue), and T4(= 0.81) (in red)
of SO transition.

FIG. 5. Martensite fraction: On quenching to temperatures 
T =
−0.06(T ≈ T4), − 0.16(T = T2), − 0.52(T = T1), martensite frac-
tion nm(t) vs time t showing incubation delays and rapid conversions,
respectively, in (a) TCR, (b) SO, and (c) TO transitions. The
conversion time t = tm is marked at nm(tm) = 0.5.

A1 and different Hamiltonian energy scales E0 is plotted in
Fig. 6 for TCR, SO, and TO transitions. The conversion success
fraction φm is unity for T < T1, where conversion times
t̄m ∼ 1 MCS, and decreases linearly at T = T2, where t̄m 

10 MCS, to become φm = 0 at T 
 T4 with Vogel-Fulcher
conversion times [10] t̄m = t0 exp[b0|T1 − T4|/|T − T4|], with
t0 = 1.6,b0 = 1.7. The success fraction φm and conversion
times t̄m are found insensitive to energy scales E0 and hence
are understood to arise from the dominant entropy barriers that
vanish at T = T1 and diverge at T 
 T4 with vanishing of rare
conversion pathways [17].

We calculate the arithmetic mean rate 〈rm〉 ≡ 〈1/tm〉 that
determines t̄m = 1/〈r̄m〉, with 1/th < rm < 1 in TCR, SO,
and TO transitions. The variance in the rates is σ 2

rm
=

〈(rm − 〈rm〉)2〉. The probability densities P (rm) versus rm for
various 
T are shown in Fig. 7, as histograms for different
temperatures. For each histogram of Nhist data points, the Scott
optimized bin size [38] is used, of drm = 3.5σr/[Nhist]1/3, as
in the SR case [17]. The histograms again narrow sharply for
T < T2, as in the delta-function-like peak on the right. See
also Figs. 5 and 6. For calculated 〈rm〉 and σ 2

rm
from the data,

the best fits shown as solid lines are the log-normal curves that
are signatures of rare events [33].
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1
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FIG. 6. Vogel-Fulcher conversions and vanishing pathways: The
log-linear plot of mean conversion times log10(t̄m) vs temperature
deviations 
T = T − T4 showing, at transition T4, Vogel-Fulcher
divergences that are independent of energy scales E0 = 3,4,5, and 6.
Inset: The success fraction φm vs 
T showing, at the transition T4,
vanishing of rare conversion pathways and insensitivity to E0.
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FIG. 7. Log-normal distribution of conversion rates: The proba-
bility distributions P (rm) vs conversion rates rm plotted for different
temperature deviations 
T for (a) TCR, (b) SO, and (c) TO
transitions. The log-normal distributions (solid lines) are the best
fits to the data (symbols).

B. Evolution of strain textures in Fourier space

For deep quenches T < T1, the edge is large and hence
the structure factor distribution ln[1 + |�S(�k,t)|2] rolls into
the golf course quickly within t̄m ∼ 1 MCS. For moderate
quenches T1 < T < T2, the edge is also moderate and hence
the distribution enters into the golf course in t̄m ∼ 10 MCS. To
study the re-equilibration and nature of the entropy barriers,
we consider the shallow quenches T2 < T < T4 where the
distribution shows ageing or incubation to enter into the golf
course.

After a temperature quench, we track the strain-pseudospin
�S = (S2,S3) textures in terms of variant label V that can be
V = 0 in the austenite and V = 1,2, . . . ,Nv in the martensite
to represent the variants of Eq. (2.8c) for TCR, SO, and TO
transitions. We define energy occupancy ρ(ε,t) or Fourier
intensity at a given �k, as in protein folding simulations [9]:

ρ(ε,t) =
∑

�k
∑

�,�′=2,3 δε��′ ,ε��′ (�k)ρ(�k,t)∑
�k ρ(�k,t)

. (3.1)

Figures 8–10 show the single run evolution of the strain
textures both in coordinate and Fourier spaces and also the
energy occupancy for TCR, SO, and TO transitions. See [39].
On quenching the dilutely seeded austenite into T2 < T <

T4(	 T0), the coordinate space textures (first row) as found
earlier in [21] show that the initial t = 0 dilute martensite
seeds in the austenite disappear quickly to form single variant
droplet(s), recalling Ostwald ripening, to form DW vapor.
The incubating vapor droplet(s) grows through fluctuations
and autocatalytic twinning or elastic photocopying [34,35] to
convert to DW liquid of wandering walls. The domain walls
then orient at a later time into the preferred crystallographic
directions to form DW crystal.

The conversion-incubation time is best understood in
Fourier space. The second row of Figs. 8–10 shows the same
evolving strain textures but now in Fourier space as contour
plots. The initial distribution of dilute martensite seeds at
t = 0 rapidly convert to isotropic Gaussian distribution (broad
+-shape distribution in the case of TCR) of DW vapor that
incubates and generates wings along the kx axis to reduce
in size with an increase in height as in the SR case [17].
The wings along the kx axis (both axes in the case of TCR)
persist for a long time before generating wings along the ky

axis during elastic photocopying. The anisotropies along both
axes reduce and width becomes small in size for the +-shape
distribution of DW liquid to fit and enter into the golf course
at t = tm. Thus, finding out these constant-energy anisotropic
pathways constitute an entropy barrier. Once inside the funnel,
the distribution of liquid orients along the preferred directions
to form the DW crystal.

The evolution of energy occupancy ρ22(ε,t) versus ε22(�k)
is shown in the third row of Figs. 8–10. The evolution of
the total occupancy ρ(ε,t) versus ε shows a similar behavior
(not shown). The edge of the golf course is ε22(�k) = 0. In
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FIG. 8. Evolution of strain textures and energy occupancy in TCR transition: On quench and hold to T = 0.63, snapshots of OP textures in
the Brillouin zone as ln(1 + |�S(�k)|2) contours (second row) of corresponding coordinate space textures (first row) showing incubation during
domain-wall vapor to liquid which finally converts to crystal. See [39] for these evolutions in both coordinate and Fourier spaces. The energy
occupancy ρ22(ε,t) of the structure factor vs ε22(�k) (third row) showing the shifting of density of states when the distribution enters into the
golf course. See text.
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FIG. 9. Evolution of strain textures and energy occupancy in SO transition: On quench and hold to T = 0.79, snapshots of OP textures
in Brillouin-zone ln(1 + |�S(�k)|2) contours (second row) of corresponding coordinate space textures (first row) showing incubation during
domain-wall vapor to liquid which finally converts to crystal. See [39] for these evolutions in both coordinate and Fourier spaces. The energy
occupancy ρ22(ε,t) of the structure factor vs ε22(�k) (third row) showing the shifting of the density of states when the distribution enters into the
golf course. See text.

the vapor phase and during the incubation, the occupancy is
small and remains the same. When the wings are generated,
a small peak is seen at higher energies in the occupancy. At
t = tm, when the entropy barrier is crossed, the distribution
enters into the golf course and the occupancy moves into
the negative (gL(T ) < ε(T ) < 0) energy funnel. In TCR, SO,
and TO transitions, the final “equilibrium” distribution (not
shown) is an inverse-energy falloff in the excitation energy

above the bulk Landau term, ε̃ ≡ ε − gL > 0 as in the SR
case [26],

ρ(ε̃,t ; T ) → 1/ε̃, (3.2)

that is found in inhomogeneous harmonic oscillators [13].
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FIG. 10. Evolution of strain textures and energy occupancy in TO transition: On quench and hold to T = 0.79, snapshots of OP textures in
the Brillouin zone as ln(1 + |�S(�k)|2) contours (second row) of corresponding coordinate space textures (first row) showing incubation during
domain-wall vapor to liquid which finally converts to crystal. See [39] concerning these evolutions in both coordinate and Fourier spaces. The
energy occupancy ρ22(ε,t) of the structure factor vs ε22(�k) (third row) showing the shifting of the density of states when the distribution enters
into the golf course. See text.
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FIG. 11. Monte Carlo acceptance fractions and domain-wall
thermodynamics: The Monte Carlo acceptance fraction Aact(t) vs time
t is almost zero in the incubating state and shows a peak at martensite
conversion time t = tm. The rates of work and heat releases Ẇ and
Q̇ are also zero in the incubating state and show a dip with large
releases at t = tm. In the “equilibrium”, both the acceptance fractions
and rates of heat and work releases are again zero as shown in (a,d)
TCR, (b,e) SO, and (c,f) TO transitions. See text.

C. Textural thermodynamics and acceptance fractions

At a given Monte Carlo sweep t , the expressions for the
free energy F 
 FLMF(t), internal energy U (t), and entropy
Sentr(t), in terms of the { �S(�r,t)} configurations, are obtained
[40] from partition functions [22] for vector-OP TCR, SO,
and TO transitions following the same procedure as used in
scalar-OP SR transition [17,20,35].

After a temperature quench, the total change in the internal
energy is, by a first law of thermodynamics type of relation,

dU (t) = d-W (t) + d-Q(t), (3.3)

where d-W (t) = dFLMF(t) is the work done by the domain
walls and d-Q(t) = T dSentr(t) is the heat release by the
spins at bath temperature [26]. One can track the relative
changes of d-Q,d-W through an effective temperature Teff from
d-W (t) = [1 − T

Teff
]dU (t) and d-Q = T

Teff
dU (t) that is similar to

the “microcanonical” definition,

T

Teff(t)
= T

dS(t)

dU (t)
, (3.4)

as used in protein folding models [9]. The effective temperature
reaches the bath temperature in equilibrium Teff(t) → T ,
where the local internal stresses vanish [26]. The detailed study
of the DW liquid to DW crystal and effective temperature will
be pursued elsewhere.

The single run rates of heat and work emissions by the
domain walls are shown in Figs. 11(d)–11(f), where the rates
are Ẋ = X(t + 1) − X(t). The rates are zero in the ageing
state and large at t = tm where the entropy barrier is crossed
[26]. The rates again become zero in the equilibrium. The MC
acceptance fractions Aact(t) are shown in Figs. 11(a)– 11(c)
for TCR, SO, and TO transitions, respectively. Notice, Aact(t)
is roughly zero during incubation and rises to peak at t = tm to
signal crossing of the entropy barrier [26] and becomes zero
again in the equilibrium.

On cooling, the incubation for transition and transition
enthalpy and entropy can be calculated [41–46] systematically
for martensitic transitions in two and three spatial dimensions,
which could be pursued in our further study [47].

IV. SUMMARY AND FURTHER WORK

We conducted systematic temperature quench Monte Carlo
simulations to study the re-equilibration in the athermal
martensites using protein folding concepts such as golf courses
and funnels that appear naturally, in our vector-OP (NOP = 2)
four-state (Nv + 1 = 4), five-state (Nv + 1 = 5), and seven-
state (Nv + 1 = 7) strain-pseudospin clock-zero model Hamil-
tonians for triangle-centered rectangle, square-oblique, and
triangle-oblique transitions. The simulation results are as
follows.

(i) The energy landscape concepts such as golf courses
and funnels of protein folding and Monte Carlo acceptance
fractions from harmonic oscillators turn out to be very useful
in understanding the re-equilibration process in athermal
martensites. The incubation delays and rapid conversions in the
temperature-time-transfomation phase diagram are understood
from the presence of small and large edges of the golf course,
respectively.

(ii) The incubation-delay times that are insensitive to
Hamiltonian energy scales are found to have log-normal
distributions, which are signatures of rare events. The conver-
sion success fraction also found insensitive to energy scales
becomes zero at the Vogel-Fulcher transition temperature with
diverging entropy barriers from vanishing of rare pathways.

(iii) The DW vapor to liquid conversion and incubation in
coordinate space is understood best in Fourier space as the
ageing for the structure factor distribution to find constant-
energy anisotropic pathways while facing the entropy barrier
to enter into the golf course. This is reflected in the occupancy
as shifting of the density of states into the negative funnel
region. Once inside the funnel, the distribution of DW liquid
orients later to form DW crystal.

(iv) Monte Carlo acceptance fractions show a peak and
heat and work releases show a dip when the entropy barrier
is crossed, and are zero in the ageing state. An effective
temperature can be defined similar to protein folding models
that reaches bath temperature in the equilibrium when local
internal stresses vanish.

Further work could also include systematic MC temperature
quench simulations to study the re-equilibration using pro-
tein folding concepts in strain-pseudospin clock-zero model
Hamiltonians for athermal martensitic transitions in three
spatial dimensions [47].
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