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Shear-rate-dependent transport coefficients in granular suspensions
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A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially
inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic
Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the
interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like
expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To
first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear
flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately
solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions
when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation
are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence
of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.
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I. INTRODUCTION

Although in nature granular materials are usually immersed
in a gas or liquid phase (like the air, for instance), the influence
of the latter on the transport properties of solid particles is
generally neglected in most theoretical and computational
studies. However, high-velocity, gas-solid flows occur in a
wide range of practical applications (like circulating fluidized
beds, for instance), and hence, the impact of the gas phase
on grains should be accounted for in many circumstances. An
example corresponds to species segregation problems where
several works [1–6] have shown that the presence of the
interstitial fluid may significantly change the segregation phase
diagrams obtained in previous studies for (dry) granular flows
(namely, when the role of the gas phase is neglected).

At a kinetic theory level, the description of such multiphase
flows is quite intricate since the system involves two different
phases (solid particles and interstitial fluid), and hence, one
would need to solve a set of two coupled kinetic equations for
each one of the velocity distribution functions of the different
phases. On the other hand, in order to gain some insight
into this complex problem, most of the models proposed in
the literature for gas-solid flows have considered a single
kinetic equation for the solid particles where the effect of
the surrounding fluid on them is taken into account through an
effective external force Ffluid [7].

A simple and realistic way of modeling the fluid-solid
interaction force Ffluid is by means of a viscous drag force
given by

Ffluid = −mγ (v − Ug), (1)

where m and v are the mass and the velocity of the particles,
respectively, γ is the friction coefficient (assumed to be
proportional to the gas viscosity μg), and Ug is the (known)
mean velocity of the gas phase. The model defined in Eq. (1)
has been recently considered in different papers to study the
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shear rheology of frictional hard-sphere suspensions [8–11].
In addition, model (1) can be seen as a simplified version of the
more general particle acceleration model proposed in Ref. [12]
where the effect of the gas phase is accounted for not only
by the drag force (1) but also by means of a Langevin-like
term. This latter term takes into account the added effects
coming from neighboring particles and can be neglected when
the mean velocity of the solid particles follows the mean flow
velocity of the gas (U � Ug). Here U [defined below in Eq. (5)]
denotes the mean flow velocity of the solid particles. Thus,
the results derived from this simple version of the model can
be considered of practical interest to analyze linear transport
in dilute gas-solid flows when the mean flow velocities of the
solid and gas phases are practically the same [like, for instance,
in the simple or uniform shear flow (USF) state [13–15]].

An interesting problem is to assess the impact of the
interstitial fluid on the transport properties of solid particles
under USF. As usual, solid particles are modeled as a gas of
inelastic smooth hard spheres with a constant coefficient of
restitution 0 < α � 1. The USF state is likely the simplest
flow problem since the only nonzero hydrodynamic gradient
is ∂Ux/∂y ≡ a, where a is the constant shear rate. Due to
its simplicity, this state has been widely studied in the past
for dry elastic [16] and inelastic [17,18] gases as an ideal
testing ground to shed light on the response of the system to
large shear rates. Years ago, two independent papers [19,20]
analyzed momentum and heat transport around USF for a dry
dilute granular gas in spatially inhomogeneous states close to
the USF. The heat and momentum fluxes were determined
to first order in the deviations of the hydrodynamic field
gradients from their values in the reference USF state. Given
that the granular gas is strongly sheared, the corresponding
transport coefficients are nonlinear functions of both the shear
rate and the coefficient of restitution α. This is one of the
main new added values of these constitutive equations. On
the other hand, in order to get explicit results and due to the
mathematical difficulties involved in the general nonstationary
problem, a particular sort of perturbation was considered to
obtain the generalized transport coefficients under steady-state
conditions. Given that the (scaled) shear rate a∗ ≡ a/ν [ν
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is a collision frequency for hard spheres; see Eq. (29)]
and α are coupled in the steady state, then the generalized
transport coefficients are only functions of the coefficient of
restitution α.

The aim of this paper is to study transport around USF in
dilute granular suspensions. The starting point is the inelastic
Boltzmann equation [21,22] with the presence of the viscous
drag force (1). As in Refs. [19,20], the Boltzmann equation
is solved by means of a Chapman-Enskog-like expansion [23]
around the reference USF distribution f (0). Since the latter
applies for arbitrary values of the shear rate a, the successive
approximations f (k) in the perturbation expansion retain all
hydrodynamic orders in a. Consequently, the problem deals
with two kinds of spatial gradients: small gradients due to
perturbations of the USF and arbitrary shear rates due to the
background shear flow. As in Refs. [19,20], the study here is
restricted to first order in the spatial gradients in the density,
temperature, and flow velocity. The question arises then as
to whether, and if so to what extent, the conclusions drawn
from Refs. [19,20] may be altered when the new ingredient
associated with the presence of the gas phase is accounted for
in the theory.

In the first-order approximation, the momentum transport
is characterized by the viscosity tensor ηijk� while the heat flux
is characterized by the thermal conductivity tensor κij and the
Dufour-like tensor μij . As in the case of dry granular gases,
to get explicit analytical results, the steady-state conditions
are considered, and hence, the (scaled) friction coefficient
γ ∗ (which characterizes the amplitude of the drag force) is
given in terms of the (independent) relevant parameters a∗
and α. This contrasts with the results offered in Refs. [19,20]
since the transport coefficients are now explicitly obtained as
nonlinear functions of both the shear rate and the coefficient
of restitution.

For ordinary fluids (elastic collisions), several previous
works studied the shear-rate dependence of the thermal
conductivity tensor under shear flow. Thus, Evans [24] derived
years ago a Green-Kubo formula for the thermal conductivity
in a strongly shearing fluid. In a similar way as in the
equilibrium case, the thermal conductivity of a shearing steady
state is expressed in terms of fluctuations in steady heat
flux. This formula was subsequently employed to calculate
the shear-rate dependence of the thermal conductivity of a
Lennard-Jones fluid via nonequilibrium molecular dynamics
simulations methods [25]. In the context of kinetic theory,
an explicit expression of the thermal conductivity tensor was
derived [26,27] by solving the Boltzmann equation by means
of an expansion around the shear flow state. These analytical
results were shown to compare qualitatively well with the
computer simulations performed in Ref. [25]. It must be noted
that the calculations carried out in Refs. [26,27] slightly differ
from the ones carried out in this paper since the former
require an additional external force to reach a steady state
with constant pressure and linear shear field. Apart from these
papers, a more recent paper [28] for dry granular gases has
determined the thermal conductivity tensor via an expansion
around an anisotropic Gaussian distribution function. The
authors derived a generalized Fourier law for the granular
heat flux where the thermal conductivity is characterized by
an anisotropic second rank tensor. A comparison between the

results obtained here with those reported before for ordinary
[26,27] and granular [28] sheared gases will be made in
Sec. VII.

The plan of the paper is as follows. In Sec. II the Boltzmann
kinetic equation is introduced and its corresponding balance
equations derived. Section III deals with the relevant results
derived in the (unperturbed) USF problem by solving the
Boltzmann equation by means of Grad’s moment method
[29]. In Sec. IV the problem we are interested in is de-
scribed and the set of coupled linear equations defining
the generalized coefficients ηijk�, κij , and μij are provided.
Explicit expressions for these shear-rate-dependent transport
coefficients are then obtained in Sec. V by employing a
kinetic model of the Boltzmann equation. The details of the
calculations are displayed along several appendices. The shear-
rate dependence of some transport coefficients is illustrated in
Sec. VI for different values of the coefficient of restitution.
Finally, in Sec. VII the paper closes with some concluding
remarks.

II. BOLTZMANN KINETIC EQUATION FOR
MONODISPERSE GRANULAR SUSPENSIONS

We consider a granular suspension of solid particles of
mass m and diameter σ immersed in a gas of viscosity μg .
Under rapid flow conditions, particles are modeled as a gas
of smooth hard spheres or disks with inelastic collisions.
The inelasticity of collisions is characterized by a constant
(positive) coefficient of normal restitution α � 1. As said in the
Introduction, a simple and usual usual way of modeling the ef-
fect of the interstitial gas on the dynamic properties of the solid
particles is through the presence of nonconservative external
forces. These forces are incorporated into the corresponding
Boltzmann kinetic equation of the solid particles. Thus, in
the low-density regime, the one-particle velocity distribution
function f (r,v,t) of grains obeys the kinetic equation [21]

∂f

∂t
+ v · ∇f + ∂

∂v
·
(

Ffluid

m
f

)
= J [v|f,f ], (2)

where the Boltzmann collision operator J [v|f,f ] is given by

J [v1|f,f ] = σd−1
∫

dv2

∫
dσ̂ 
(σ̂ · g12)(σ̂ · g12)

× [α−2f (v′
1)f (v′

2) − f (v1)f (v2)]. (3)

Here d is the dimensionality of the system (d = 2 for disks
and d = 3 for spheres), σ = σ σ̂ , σ̂ being a unit vector pointing
in the direction from the center of particle 1 to the center of
particle 2, 
 is the Heaviside step function, and g12 = v1 − v2

is the relative velocity. The primes on the velocities in Eq. (3)
denote the initial values {v′

1,v
′
2} that lead to {v1,v2} following

a binary collision:

v′
1,2 = v1,2 ∓ 1

2 (1 + α−1)(σ̂ · g12)σ̂ . (4)

As mentioned in the Introduction, a simplest way of
modeling the fluid-solid interaction force Ffluid is through the
drag force (1) where

U(r,t) = 1

n(r,t)

∫
dv v f (r,v,t) (5)
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is the mean flow velocity of the solid particles, and

n(r,t) =
∫

dv f (r,v,t) (6)

is the number density of particles. Thus, according to Eqs. (1)
and (2), the Boltzmann equation becomes

∂f

∂t
+ v · ∇f − γ�U · ∂f

∂V
− γ

∂

∂V
· Vf = J [v|f,f ], (7)

where �U = U − Ug , and V = v − U is the peculiar velocity.
Note that in the case of very dilute suspensions, γ is assumed
to be a constant [30–32].

The macroscopic balance equations for the densities of
mass, momentum, and energy can be obtained by multiplying
Eq. (7) by 1, mV, and 1

2mV 2, respectively, and integrating over
velocity. The result is

Dtn + n∇ · U = 0, (8)

DtU + (mn)−1∇ · P = −γ�U, (9)

DtT + 2

dn
(∇ · q + P:∇U) = −2T γ − T ζ. (10)

Here Dt ≡ ∂t + v · ∇ is the material derivative,

T (r,t) = m

dn(r,t)

∫
dv V 2 f (r,v,t), (11)

is the granular temperature,

Pij (r,t) = m

∫
dvViVjf (r,v,t), (12)

is the pressure tensor,

q(r,t) = m

2

∫
dvV 2Vf (r,v,t), (13)

is the heat flux, and

ζ (r,t) = − m

dn(r,t)T (r,t)

∫
dvV 2J [v|f,f ] (14)

is the cooling rate characterizing the rate of energy dissipated
due to collisions.

Notice that the interaction of solid particles with the gas
phase is modeled solely by the friction term (1) since the term
accounting for the momentum transferred from the gas (bath)
to the granular particles (which is modeled by a stochastic
force) has been neglected for the sake of simplicity. This
stochastic force contributes to the Boltzmann equation (7)
with a Langevin-like term of the form − 1

2ξ∂2f/∂V 2, where
ξ is the strength of the noise term. As said in Sec. I, this
stochastic term was considered in the complete suspension
model proposed in Ref. [12]. For elastic collisions and zero
shear rate, the inclusion of the above stochastic term yields the
balance equation ∂tT = −2T γ + mξ and so, the Boltzmann
equation (7) admits a stable steady equilibrium state. Indeed,
it is precisely the condition of admitting an equilibrium state
that gives rise to a fluctuation-dissipation theorem [33] fixing
the strength of the noise term [i.e., ξ = 2γ T /m, where T

is the steady equilibrium temperature]. The omission of this
Langevin-like term could be justified if the bath temperature is

very low compared to the granular temperature or if the mean
flow velocities of solid and gas phases are quite similar [12].

On the other hand, in spite of the absence of the Langevin-
like term, the Boltzmann equation (7) still admits a simple
solution in the homogenous state (zero shear rate) for elastic
collisions (α = 1). This solution is given by a time-dependent
Maxwellian distribution. For homogeneous states, Eq. (7)
becomes

∂f

∂t
− γ

∂

∂v
· vf = J [v|f,f ], (15)

where an appropriate selection of the frame of reference
where the mean flow velocity vanishes (U = Ug = 0) has
been chosen. The only relevant balance equation is that of
the temperature (10), which reads

∂ ln T

∂t
= −2γ. (16)

Since γ ≡ const, then the solution to Eq. (16) is simply

T (t) = T (0)e−2γ t , (17)

where T (0) is the initial temperature. Under these conditions, it
is easy to see that the Boltzmann equation (15) has the solution
[34,35]

f0(v,t) = n

[
m

2πT (t)

]d/2

exp

[
− mv2

2T (t)

]
, (18)

where T (t) is given by (17). An H-theorem has been also
proved [34] for the distribution f0 in the sense that, starting
from any initial condition and in the presence of the viscous
drag force γ v, the velocity distribution function f (r,v,t)
reaches in the long time limit the Maxwellian form (18) with
a time-dependent temperature.

Before closing this section, it is interesting to remark the
situations in which the suspension model (7) is expected to
provide reliable predictions. As has been previously discussed
in several papers [7,13,14,32], since the form of the Boltzmann
collision operator (3) is the same as for a dry granular gas, one
expects that the model (7) is appropriate for problems where
the stresses applied by the gas phase on particles have only
a weak influence on the dynamics of grains. This necessarily
requires that the mean-free time between collisions is much
shorter than the viscous relaxation time due to the viscous
drag force. For other kinds of systems (e.g., glass beads in
liquid water), one should take into account the influence of the
interstitial fluid on the Boltzmann collision operator.

III. SIMPLE SHEAR FLOW PROBLEM IN DILUTE
GRANULAR SUSPENSIONS

We assume now that the suspension is in steady USF. This
state is macroscopically defined by a constant density n and
temperature T , and the mean velocity U is

Ui = aij rj , aij = aδixδjy, (19)

where a is the constant shear rate. In addition, as usual in
uniform sheared suspensions [13–15], the average velocity of
particles follows the velocity of the gas phase, and so, U = Ug .
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In this case, �U = 0 and the Boltzmann equation (7) becomes

−aVy

∂f

∂Vx

− γ
∂

∂V
· Vf = J [V|f,f ]. (20)

Upon writing Eq. (20) use has been made of the fact that
the USF state becomes spatially uniform when one expresses
the Boltzmann equation in terms of the peculiar velocity Vi =
vi − aij rj [36]. In the USF problem, the heat flux vanishes and
the only relevant balance equation is that of the temperature
(10). In the steady state and for the geometry of the USF,
Eq. (10) reads

2

dn
Pxya = −2T γ − ζT . (21)

Equation (21) implies that the viscous heating term
(−aPxy > 0) is exactly canceled by the cooling terms arising
from viscous friction (γ T ) and collisional dissipation (ζT ).
Thus, in stationary conditions, for a given value of γ , the
(steady) temperature is a function of the shear rate a and the
coefficient of restitution α. Equivalently, one might chose γ

and α as independent parameters instead of a and α. This
was the choice made in Refs. [13–15]. Since we are mainly
interested here in obtaining the shear-rate dependence of the
transport coefficients, the former choice will be considered in
this paper. A remarkable point is that a steady state is still
possible for suspensions when the collisions are elastic (α = 1
and so, ζ = 0) provided γ = −Pxya/(dp), where p = nT is
the hydrostatic pressure.

The USF state is non-Newtonian. This can be characterized
by generalized transport coefficients measuring the departure
of transport coefficients from their Navier-Stokes forms. Thus,
one can define a non-Newtonian shear viscosity coefficient
η(α,a) by

Pxy = −η(α,a)a. (22)

Moreover, while Pxx = Pyy = Pzz in the Navier-Stokes do-
main, normal stress differences are present in the USF state.

The elements of the pressure tensor Pij can be obtained by
multiplying both sides of Eq. (20) by mViVj and integrating
over velocity, giving

aikPkj + ajkPki + 2γPij = �ij , (23)

where

�ij ≡
∫

dv mViVjJ [V|f,f ]. (24)

So far, the hierarchy (23) is still exact. However, the exact
expression of the collision integral �ij is not known (even for
elastic collisions). A good estimate of �ij can be obtained by
using Grad’s approximation to f [29],

f (V) → fM(V)

(
1 + m

2nT 2
ViVj�ij

)
, (25)

where

fM(V) = n

(
m

2πT

)d/2

e−mV 2/2T (26)

is the local equilibrium distribution function, and

�ij = Pij − pδij (27)

is the traceless part of the pressure tensor. When Eq. (25) is
substituted into the definition of �ij and nonlinear terms in
�ij are neglected, one gets the result [37]

�ij = −ν(β�ij + ζ ∗Pij ), (28)

where

ν = 8

d + 2

π (d−1)/2

�
(

d
2

) nσd−1

√
T

m
(29)

is an effective collision frequency,

ζ ∗ = ζ

ν
= d + 2

4d
(1 − α2) (30)

is the dimensionless cooling rate evaluated in the local
equilibrium approximation, and

β = 1 + α

2

[
1 − d − 1

2d
(1 − α)

]
. (31)

As we will show below, the determination of the collisional
moment �ij by considering only linear terms yields Pxx 	= Pyy

but Pyy = Pzz. This latter identity disagrees with computer
simulation results [13–15]. The evaluation of �ij by retaining
all the quadratic terms in the pressure tensor Pij has been
recently carried out in Ref. [15]. As expected, the addition
of these nonlinear terms allows us to evaluate the normal
stress differences in the plane normal to the laminar flow
(e.g., Pyy − Pzz). However, given that this difference is quite
small, the expression (28) can be considered as a reliable
approximation. Apart from its simplicity, the linear Grad
solution is also essentially motivated by the desire of analytic
expressions that show in a clean way the shear-rate dependence
of the rheological properties.

Once the collisional moment �ij is known, the set of
coupled equations for Pij can be easily solved. In terms of the
reduced shear rate a∗ = a/ν and the coefficient of restitution
α, the expressions for the (scaled) elements P ∗

ij = Pij /p are

P ∗
yy = P ∗

zz = 1

1 + 2χ
, P ∗

xx = d − (d − 1)P ∗
yy, (32)

P ∗
xy = − ã

(1 + 2χ )2
, (33)

where ã = a∗/β, and χ is the real root of the cubic equation

ã2 = dχ (1 + 2χ )2, (34)

namely,

χ (̃a) = 2

3
sinh2

[
1

6
cosh−1

(
1 + 27

d
ã2

)]
. (35)

The (scaled) friction coefficient γ ∗ = γ /ν is defined as

γ ∗ = βχ − 1
2ζ ∗. (36)

In the case of elastic collisions (α = 1), Eqs. (32)–(36) agree
with those obtained [16] for a thermostatted dilute gas under
USF. Moreover, the analytical results given by Eqs. (32)–(36)
compare quite well with Monte Carlo simulations of the
Boltzmann equation [15], even for strong inelasticity.

Since γ ∗ � 0, then necessarily 2βχ − ζ ∗ � 0, according to
Eq. (36). This means that, at a given value of the coefficient of
restitution, there is a threshold value of the (scaled) shear rate
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FIG. 1. Dependence of the threshold shear rate a∗
th on the

coefficient of restitution α. The dashed line corresponds to a two-
dimensional system (d = 2), and the solid line refers to a three-
dimensional (d = 3) system. Points above the curves correspond to
physical solutions (γ ∗ � 0) while points below the curves refer to
unphysical solutions (γ ∗ < 0).

a∗
th such that the steady-state condition (21) admits a physical

solution for a∗ � a∗
th. This physical solution yields a positive

granular temperature and is related to what Sangani et al. [14]
call ignited state. The value of a∗

th is determined from the
condition

2βχ = ζ ∗. (37)

In particular, for elastic collisions, ζ ∗ = 0 and so a∗
th = 0.

However, for inelastic collisions, ζ ∗ 	= 0 and a∗
th > 0. Thus,

the rheological properties are well defined only for shear rates
beyond the nonvanishing a∗

th in the case of granular suspensions
(α 	= 1). The α dependence of a∗

th is plotted in Fig. 1 for d = 2
and d = 3. For strong inelasticity, the curves highlight that the
granular suspension is in general beyond the Navier-Stokes
domain (non-Newtonian regime) since the (reduced) threshold
shear rate a∗

th is not small in general. Thus, for instance, a∗
th �

0.512 at α = 0.8 in the physical three-dimensional case.
The fact that for granular suspensions (α 	= 1) a steady

state is possible only for sufficiently high shear rates can
be easily understood from a physical point of view. For
γ ∗ = 0, the balance equation (37) establishes an intrinsic
connection between the shear field [through the nonlinear
function χ (α,a∗)] and the collisional dissipation [through the
cooling rate ζ ∗(α)] in the system. Thus, the magnitude of the
(scaled) shear rate a∗ is set by the coefficient of restitution
α. Since ζ ∗ ∝ 1 − α2, then the cooling rate increases with
inelasticity. Moreover, the rheological function χ increases
with increasing a∗. Consequently, one needs to consider higher
values of a∗ as α decreases to verify the condition (37) and
achieve a steady state.

The (reduced) nonlinear shear viscosity η∗ = η/η0 can be
easily identified from Eqs. (22) and (33). Here η0 = p/ν is the

FIG. 2. Shear-rate dependence of the (scaled) generalized shear
viscosity η∗(α,a∗)/η∗(α,0) for d = 3 and three different values of the
coefficient of restitution α: α = 1 (solid line), α = 0.9 (dashed line),
and α = 0.8 (dash-dotted line). Note that a∗

th � 0.359 and a∗
th � 0.512

for α = 0.9 and α = 0.8, respectively.

Navier-Stokes shear viscosity of an ordinary (elastic) gas of
hard spheres. The expression of η∗ is given by

η∗(α,a∗) = 1

β(1 + 2χ )2
. (38)

Since χ ∼ a∗2/3 for very large shear rates, then η∗ ∼ a∗−4/3

and goes to zero in the limit a∗ → ∞. To illustrate the shear-
rate dependence of η∗, Fig. 2 shows the ratio η∗(α,a∗)/η∗(α,0)
versus a∗ for d = 3 and three different values of the coefficient
of restitution α. As mentioned before, except for elastic
collisions and although η∗ is well defined for shear rates
smaller than the threshold value a∗

th, the curves in Fig. 2
start from the point a∗ = a∗

th for α 	= 1. It appears that shear
thinning (viscosity decreases with increasing shear rate) is
always present, regardless of the value of the coefficient of
restitution. We also observe that, at a given value of a∗,
inelasticity inhibits the momentum transport. However, the
influence of inelasticity on the (scaled) shear viscosity is not
quantitatively significant.

IV. TRANSPORT COEFFICIENTS FOR STATES
CLOSE TO USF

Let us assume that we perturb the USF by small spatial
gradients. This will give rise to new contributions to the
momentum and heat fluxes that can be characterized by
generalized transport coefficients. Since the system is strongly
sheared, the corresponding transport coefficients are highly
nonlinear functions of the shear rate. The evaluation of these
coefficients is the main objective of the present paper.

As in previous papers [19,20,38], in order to analyze this
problem one has to start from the Boltzmann equation (7) with
a general time and space dependence. First, it is convenient
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to continue using the relative velocity V = v − U0, where
U0 = a · r is the flow velocity of the unperturbed USF state.
As said before, the only nonzero element of the tensor
a is aij = aδixδjy . On the other hand, in the perturbed state
the true velocity U is in general different from U0 since
U = U0 + δU, δU being a small perturbation to U0. As a
consequence, the true peculiar velocity is now c ≡ v − U =
V − δU. In addition, for the sake of simplicity, we also assume
that the interstitial gas is not perturbed and hence, Ug = U0.
Thus, in the Lagrangian frame moving with velocity U0, the
convective operator v · ∇ can be written as

v · ∇f = (V + U0) · ∇f = −aVy

∂f

∂Vx

+ (V + U0) · ∇f,

(39)

where the derivative ∇f is taken now at constant V. In this
case, the Boltzmann equation (7) reads

∂tf − aVy

∂f

∂Vx

+ (V + U0) · ∇f − γ
∂

∂V
· Vf = J [v|f,f ].

(40)

The corresponding macroscopic balance equations associated
with this disturbed USF state follows from the general
equations (10)–(13) when one takes into account that U =
U0 + δU. The result is

∂tn + U0 · ∇n = −∇ · (nδU), (41)

∂tδU + a · δU + (U0 + δU) · ∇δU = −γ δU − (mn)−1∇ · P,

(42)

d

2
n∂tT + d

2
n(U0 + δU) · ∇T + aPxy + ∇ · q + P:∇δU

= −d

2
p(2γ + ζ ), (43)

where the pressure tensor P, the heat flux q, and the cooling
rate ζ are defined by Eqs. (12)–(14), respectively, with the
replacement V → c.

Since we are interested here in states close to the USF state,
it is assumed that the deviations from the USF state are small,
and hence, the spatial gradients of n, δU, and T are small. In
this case, Eq. (40) can be solved by means of a generalization
of the conventional Chapman-Enskog method [23], where the
velocity distribution function is expanded around a local shear
flow reference state in terms the small spatial gradients of
the hydrodynamic fields relative to those of USF. This type
of Chapman-Enskog-like expansion has been carried out for
elastic gases to obtain the set of shear-rate-dependent transport
coefficients [16,39] in a thermostatted shear flow problem, and
it has also been employed in the context of dry granular gases
[19,20,38].

The Chapman-Enskog method assumes the existence of a
normal solution in which all space and time dependence of the
distribution function occurs through a functional dependence
of the hydrodynamic fields

A(r,t) ≡ {n(r,t),δU(r,t),T (r,t)}. (44)

This solution expresses the fact that the space dependence
of the shear flow is absorbed in V, and the remaining space

and time dependence is through a functional dependence on
the fields A(r,t). As in the conventional Chapman-Enskog
method, this functional dependence can be made local by an
expansion of f in powers of spatial gradients:

f (r,V,t) = f (0)(A(r,t),V) + f (1)(A(r,t),V) + · · · , (45)

where the reference zeroth-order distribution function corre-
sponds to the USF distribution function but taking into account
the local dependence of the density and temperature and
the change V → V − δU(r,t). The successive approximations
f (k) are of order k in the gradients of n, T , and δU but retain
all the orders in the shear rate a. This is the main feature
of this expansion. In addition, as in previous works [40],
since the friction coefficient γ does not induce any flux in
the system, it is assumed then to be at least of zeroth order in
the gradients. In this paper, only the first-order approximation
will be considered.

The expansion (45) yields the corresponding expansion for
the fluxes and the cooling rate when one substitutes (45) into
their definitions (12)–(14):

P = P(0) + P(1) + · · · , q = q(0) + q(1) + · · · , (46)

ζ = ζ (0) + ζ (1) + · · · . (47)

Finally, as in the usual Chapman-Enskog method, the time
derivative is also expanded as

∂t = ∂
(0)
t + ∂

(1)
t + ∂

(2)
t + · · · , (48)

where the action of each operator ∂
(k)
t is obtained from

the hydrodynamic equations (41)–(43). These results pro-
vide the basis for generating the Chapman-Enskog solution
to the inelastic Boltzmann equation (40).

A. Zeroth-order approximation

Substituting the expansions (45)–(48) into Eq. (40), the
kinetic equation for f (0) is given by

∂
(0)
t f (0) − aVy

∂

∂Vx

f (0) − γ
∂

∂V
· Vf (0) = J [V|f (0),f (0].

(49)

To lowest order in the expansion the conservation laws are

∂
(0)
t n = 0, ∂

(0)
t T = −

(
2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
, (50)

∂
(0)
t δUi = −aij δUj − γ δUi. (51)

As discussed in previous works [19,20,38], for given values
of a, γ , and α, the steady state condition (21) establishes a
mapping between the density and temperature so that every
density corresponds to one and only one temperature. Since the
density n(r,t) and temperature T (r,t) are specified separately
in the local USF state, the viscous heating only partially
compensates for the collisional cooling and friction viscous
dissipation, and so ∂

(0)
t T 	= 0. Consequently, the zeroth-order

distribution f (0) depends on time through its dependence on
the temperature and the (dimensionless) parameters a∗, γ ∗, and
α must be considered as independent parameters for general
infinitesimal perturbations around the USF state. The fact
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that the temperature must be considered as a time-dependent parameter has been already accounted for in previous perturbation
solutions around driven nonsteady states [41,42].

Since f (0) is a normal solution, then

∂
(0)
t f (0) = ∂f (0)

∂n
∂

(0)
t n + ∂f (0)

∂T
∂

(0)
t T + ∂f (0)

∂δUi

∂
(0)
t δUi

= −
(

2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
∂f (0)

∂T
− (aij δUj + γ δUi)

∂f (0)

∂δUi

= −
(

2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
∂f (0)

∂T
+ (aij δUj + γ δUi)

∂f (0)

∂ci

. (52)

Upon deriving the last step in Eq. (52) use has been made of the fact that f (0) depends on δU only through the peculiar velocity
c. Substituting Eq. (52) into Eq. (49) yields the following kinetic equation for f (0):

−
(

2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
∂f (0)

∂T
− acy

∂f (0)

∂cx

− γ
∂

∂c
· cf (0) = J [V|f (0),f (0]. (53)

The zeroth-order solution leads to q(0) = 0 by symmetry. The closed set of equations defining the zeroth-order pressure tensor
P(0) can be obtained from Eq. (53) by taking into account Eq. (28). The result is

−
(

2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
∂P

(0)
ij

∂T
+ aikP

(0)
jk + ajkP

(0)
ik + 2γP

(0)
ij = −ν

[
β
(
P

(0)
ij − pδij

) + ζ ∗
0 P

(0)
ij

]
, (54)

where ζ ∗
0 ≡ ζ (0)/ν is defined by Eq. (30).

The steady-state solution of Eq. (54) is given by Eqs. (32)–
(34). However, for nonsteady conditions, in general Eqs. (54)
must be solved numerically to get the dependence of the
zeroth-order pressure tensor P

(0)
ij (T ) on temperature. In the

hydrodynamic regime, it is expected that P
(0)
ij adopts the form

P
(0)
ij = pP ∗

ij (γ ∗,a∗), (55)

where the temperature dependence of the (dimensionless)
pressure tensor P ∗

ij is through its dependence on γ ∗ and a∗.
Since γ ∗ ∝ T −1/2 and a∗ ∝ T −1/2, then

T ∂T P
(0)
ij = P

(0)
ij − 1

2
p

(
γ ∗ ∂P ∗

ij

∂γ ∗ + a∗ ∂P ∗
ij

∂a∗

)
. (56)

As we will show below, to determine the generalized transport
coefficients in the steady state, one needs to know the
derivatives ∂γ ∗P ∗

ij and ∂a∗P ∗
ij in this state. These derivatives

are evaluated in Appendix A. In what follows, P
(0)
ij (T ) will be

considered as a known function of T .
The shear-rate dependence of the derivatives of the (re-

duced) pressure tensor with respect to a∗ and γ ∗ in the
steady state are illustrated in Fig. 3 for a three-dimensional
suspension with elastic collisions (α = 1). Although we could
not analytically prove the identity ∂a∗P ∗

xy = ∂γ ∗P ∗
xy , numerical

results systematically show this result. Since the magnitude of
these derivatives is not in general quite small, it appears that
their influence on transport cannot be in principle neglected.

B. First-order approximation

The first-order approximation is worked out in Appendix B.
Only the final results are given here. The velocity distribution

function f (1) is

f (1) = Xn · ∇n + XT · ∇T + Xu:∇δu, (57)

FIG. 3. Shear-rate dependence of the derivatives of the pressure
tensor with respect to a∗ and γ ∗ in the steady state for d = 3 and
α = 1. The lines (a), (b), and (c) correspond to ∂a∗P ∗

xy = ∂γ ∗P ∗
xy ,

∂a∗P ∗
yy , and ∂γ ∗P ∗

yy , respectively.
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where the vectors Xn and XT and the tensor Xu are the solutions of the following set of coupled linear integral equations:

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T Xn,i − acy

∂Xn,i

∂cx

− γ
∂

∂c
· (cXn,i) + LXn,i + T

n

[
2a

dp
(1 − n∂n)P (0)

xy − ζ (0)

]
XT,i = Yn,i , (58)

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T XT,i +

[
2a

dn

(
∂T P (0)

xy

) + 2γ + 3

2
ζ (0)

]
XT,i − acy

∂XT,i

∂cx

− γ
∂

∂c
· (cXT,i) + LXT,i = YT,i, (59)

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T Xu,k� − acy

∂Xu,k�

∂cx

− γ
∂

∂c
· (cXu,k�) + LXu,k� − aδkyXu,x� − γXu,k� − ζu,k�T ∂T f (0) = Yu,k�,

(60)

where Yn(c), YT (c), and Yu(c) are defined by Eqs. (B8)–(B10),
respectively, and ζu,k� is defined by Eq. (B11). An approximate
expression of ζu,k� is given by Eq. (B12). In addition, L is the
linearized Boltzmann collision operator around the USF state:

LX ≡ −(J [f (0),X] + J [X,f (0)]). (61)

Note that, due to the presence of P (1)
xy in Eq. (B4), the unknown

coefficients ηxyk� appear in the quantity Yu,k� of Eq. (60). In
the particular case of γ ∗ = 0, Eqs. (58)–(60) are consistent
with the results derived in Ref. [20] for dry granular gases.

With the distribution f (1) determined by Eq. (57), the first-
order corrections to the fluxes are given by

P
(1)
ij = −ηijk�

∂δUk

∂r�

, (62)

q
(1)
i = −κij

∂T

∂rj

− μij

∂n

∂rj

, (63)

where

ηijk� = −
∫

dc mcicjXu,k�(c), (64)

κij = −
∫

dc
m

2
c2ciXT,j (c), (65)

μij = −
∫

dc
m

2
c2ciXn,j (c). (66)

Upon writing Eqs. (62)–(66) use has been made of the
symmetry properties of Xn,i , XT,i , and Xu,ij .

In the absence of a gas phase (γ ∗ = 0), for a∗ = 0 and
α = 1, the conventional Navier-Stokes constitutive equations
for ordinary gases are reobtained:

ηijk� → η0

(
δikδj� + δjkδi� − 2

d
δij δk�

)
, (67)

κij → κ0δij , μij → 0. (68)

Here η0 = p/ν and κ0 = d(d + 2)η0/2(d − 1)m are the ex-
pressions of the shear viscosity and thermal conductivity
coefficients, respectively, of an ordinary gas of disks (d = 2)
or hard (d = 3) spheres [23]. In the absence of shear rate,
the expressions of the Navier-Stokes coefficients of a granular
suspension have been recently derived in Ref. [40].

In general, the set of generalized transport coefficients
ηijk�, κij , and μij are nonlinear functions of the coefficient

of restitution α, the reduced shear rate a∗, and the reduced
friction coefficient γ ∗. The anisotropy induced in the system
by the shear flow gives rise to new transport coefficients,
reflecting broken symmetry. Since P

(1)
ij is a symmetric and

traceless tensor, then the viscosity tensor ηijk� is symmetric
and traceless in ij :

ηijk� = ηjik� 	= ηij�k, ηxxk� + ηyyk� + ηzzk� + · · · = 0.

(69)
The heat flux is expressed in terms of a thermal conductivity
tensor κij and a Dufour-like tensor μij . While the diagonal
elements of both tensors can be interpreted as generalizations
of the Navier-Stokes transport coefficients, the off-diagonal
elements κxy , κyx , μxy , and μyx are generalizations of Burnett
coefficients that, for small shear rates, are proportional to a∗.
In addition, because of symmetry reasons, the off-diagonal
elements xz, zx, yz, and zy of the tensors κij and μij are
identically zero. This is consistent with Eqs. (58) and (59).
The above behavior implies that if the thermal gradient is
parallel to the z axis (∇T ‖ ẑ), then q(1) ‖ ẑ, while if ∇T ⊥ ẑ,
then q(1) ⊥ ẑ. Similarly, many of the elements of the viscosity
tensor ηijk� are zero. For instance, if the only nonzero velocity
gradient is ∂δUx/∂z, then P

(1)
ij = P (1)

xz (δixδjz + δjxδiz).

C. Steady state conditions

As in the case of dry granular gases (γ ∗ = 0), the evaluation
of the transport coefficients ηijk�, κij and μij for general
unsteady conditions is quite intricate. This is due essentially
to the fact that the temperature dependence of the velocity
moments of the distribution f (0) must be numerically deter-
mined. Thus, since we want to get analytical expressions for
those coefficients, the present study is limited to steady-state
conditions. This means that the relation (21) is considered at
the end of the calculations. In this state, the (scaled) shear
rate a∗ is coupled to the (reduced) friction coefficient γ ∗ and
the coefficient of restitution α so that, only two of the three
parameters are independent. Here, as alluded to in Sec. II, a∗
and α are chosen as the independent (input) parameters of the
problem. This allows us to independently assess the influence
of shearing and inelasticity on momentum and heat transport.
This contrasts with the analysis of dry granular gases [20]
where both a∗ and α are considered as dependent parameters
in the steady state.

Since the relation (21) holds in the steady state, the first
term on the left-hand side of the integral equations (58)–(60)
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vanishes. In this case, these equations become

− acy

∂Xn,i

∂cx

− γ
∂

∂c
· (

cXn,i

) + LXn,i + T

n

[
2a

dp
(1 − n∂n)P (0)

xy − ζ (0)

]
XT,i = Yn,i , (70)[

2a

dn
(∂T P (0)

xy ) + 2γ + 3

2
ζ (0)

]
XT,i − acy

∂XT,i

∂cx

− γ
∂

∂c
· (cXT,i) + LXT,i = YT,i, (71)

− acy

∂Xu,k�

∂cx

− γ
∂

∂c
· (cXu,k�) + LXu,k� − aδkyXu,x� − γXu,k� − ζu,k�T ∂T f (0) = Yu,k�. (72)

In Eqs. (70)–(72) it is understood that all the quantities are
evaluated in the steady state. Moreover, the dependence of P

(0)
ij

on the temperature T is given by Eq. (56), and the dependence
of P

(0)
ij on the density can be written as

n∂nP
(0)
ij = P

(0)
ij − p

(
γ ∗ ∂P ∗

ij

∂γ ∗ + a∗ ∂P ∗
ij

∂a∗

)
. (73)

V. RESULTS FROM A BGK-LIKE KINETIC MODEL

Needless to say, the explicit form of the generalized
transport coefficients ηijk�, κij , and μij requires that we solve
the integral equations (70)–(72). Apart from the mathematical
difficulties embodied in the Boltzmann collision operator L,
it is quite apparent that the fourth-degree velocity moments of
the zeroth-order distribution f (0) are also needed to determine
the heat flux transport coefficients μij and κij . Although
these moments could in principle be determined from Grad’s
moment method by including them in the trial distribution
(25), their evaluation would be an intricate task.

A possible alternative could be the use of the so-called
inelastic Maxwell models [43–45], i.e., models for which the
collision rate is independent of the relative velocity of the two
colliding particles. The use of these models allows us to obtain
the velocity moments of the Boltzmann collision operator
without the explicit knowledge of the velocity distribution
function. This was the route followed in Ref. [38] to determine
the shear-rate-dependent transport coefficients in a dry granu-
lar sheared gas. However, apart from the difficulties associated
with the evaluation of the fourth-degree moments and their
derivatives, the results obtained for inelastic Maxwell models
[38] show significant discrepancies from those obtained for
inelastic hard spheres [20].

Therefore, as in the previous study carried out for dry
granular gases [20], a model kinetic equation of the Boltzmann
equation is considered to achieve explicit results. As for elastic
collisions, the idea is to replace the true Boltzmann collision
operator with a simpler, more tractable operator that retains the
most relevant physical properties of the Boltzmann operator.
Here we consider a kinetic model [46] based on the well-known
Bhatnagar-Gross-Krook (BGK) [16] for ordinary gases where
the operator J [f,f ] is [47]

J [f,f ] → −βν(f − fM) + ζ

2

∂

∂c
· (cf ). (74)

Here ν is the effective collision frequency defined by Eq. (29),
fM(c) is the Maxwellian distribution (26), β is given by
Eq. (31), and ζ is the cooling rate. It is easy to see that
the BGK model yields the same expressions for the pressure

tensor in the steady USF state than those derived from Grad’s
method [Eqs. (32)–(34)]. Moreover, the fourth-degree velocity
moments obtained from the BGK model compare quite well
with Monte Carlo simulations [15,48] of the Boltzmann
equation. This confirms again the reliability of kinetic models
to evaluate the velocity moments of the true Boltzmann
equation [16].

In the perturbed USF problem, Eqs. (70)–(72) still apply
with the replacements

LX → νβX − ζ (0)

2

∂

∂c
· (cX), (75)

in the case of Xn,i and XT,i and

LXij → νβXij − ζ (0)

2

∂

∂c
· (cXij ) − ζu,ij

2

∂

∂c
· (cf (0)), (76)

in the case of Xu,ij . In the above equations, ζ (0) is the zeroth-
order approximation to ζ which is given by Eq. (30). With the
changes (75) and (76) all the generalized transport coefficients
can be easily evaluated from Eqs. (70)–(72). Details of these
calculations are given in Appendix C.

VI. SHEAR-RATE DEPENDENCE OF THE GENERALIZED
TRANSPORT COEFFICIENTS

The general results derived in the previous sections clearly
show that the dependence of the generalized transport co-
efficients on both a∗ and α is quite complex. Since the
main goal of the present paper is to assess the shear-rate
dependence of ηijk�, κij , and μij for given values of α, we
illustrate here this dependence for some relevant elements of
the above tensors by two different values of α: α = 1 (ordinary
suspensions) and α = 0.8 (granular suspensions). Moreover, a
three-dimensional system (d = 3) is considered in all the plots
and hence, a∗

th � 0.512 for α = 0.8.
To analyze the shear-rate dependence of the transport

coefficients, it is convenient first to introduce the dimen-
sionless coefficients η∗

ijk� ≡ ηijk�/η0, κ∗
ij ≡ κij /κ0, and μ∗

ij ≡
nμij /T κ0. Here η0 = p/ν and κ0 = ((d + 2)/2)nT/(mν)
are the elastic values of the shear viscosity and thermal
conductivity coefficients, respectively, for a dilute gas given
by the BGK kinetic model.

A. Viscosity tensor

The (reduced) elements of the viscosity tensor η∗
ijk�

are determined by solving the set of algebraic equations
(D21). There are in principle two classes of terms [49].
Class I is made of those coefficients η∗

ijk� with (k,�) =
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FIG. 4. Shear-rate dependence of the (reduced) generalized trans-
port coefficients η∗

xzxz (a) and η∗
yzzx (b) for a three-dimensional (d = 3)

granular suspension with two different values of the coefficient of
restitution α: α = 1 (solid lines) and α = 0.8 (dashed lines).

{(xx),(xy),(yx),(yy),(zz)}. The complementary class II is
constituted by coefficients with (k,�) = {(xz),(yz),(zx),(zy)}.
Of course, class II (as well as the elements η∗

ijzz of class I) is
meaningless in the two-dimensional case (d = 2).

A careful analysis of the set of algebraic equations shows
that the coefficients of the form η∗

xzk� and η∗
yzk� vanish in class

I. In addition, the coefficients of the form η∗
xxk� of class II

include the first-order contribution to the cooling rate ζu,ij .
However, they obey a set of homogeneous algebraic equations
whose solution is the trivial one for arbitrary values of a∗. A
similar behavior is expected for the coefficients of the form
η∗

xyk�, η∗
yyk�, and η∗

zzk�. Thus, one can conclude that all the
above elements of class II vanish.

The remaining elements of class II are independent of the
derivatives ∂a∗P ∗

ij and ∂γ ∗P ∗
ij . Some of them are given by

η∗
xzxz = η∗

yzyz = ηyzzy = 1 + 2χ

1 − γ̃ + 2χ
η∗, η∗

yzxz = 0, (77)

ηyzzx = 1 + 2χ

1 − γ̃ + 2χ

P ∗
xy

P ∗
yy

η∗, (78)

where the nonzero elements of the pressure tensor P ∗
yy and

P ∗
xy are defined by Eqs. (32) and (33), respectively, and the

nonlinear shear viscosity η∗ is defined by Eq. (38). The
expressions of the remaining elements of class II can be
obtained from Eqs. (D18) and (D21). Their forms are very
long and will be omitted here. Figure 4 shows the dependence
of two elements of class I (η∗

xzxz and η∗
yzzx) for α = 1 and

0.8. These two coefficients measure the presence of nonzero
values of Pxz and Pyz due to perturbations of the form ∂δUx/∂z

and ∂δUz/∂x, respectively. It is quite apparent that, at a given
value of α, the largest impact of the shear rate on momentum
transport occurs on Pxz. We also observe that η∗

xzxz exhibits

FIG. 5. Shear-rate dependence of the (reduced) generalized trans-
port coefficients η∗

yyxy (a), η∗
xyxy (b), and η∗

xxxy (c) for a three-
dimensional (d = 3) granular suspension with two different values
of the coefficient of restitution α: α = 1 (solid lines) and α = 0.8
(dashed lines).

a shear-thinning effect more pronounced than that of the
nonlinear shear viscosity η∗, as expected from Eq. (77). In
addition, the influence of collisional dissipation is very tiny in
both generalized transport coefficients.

Finally, the expressions for the nonzero elements of class
I contain the derivatives ∂a∗P ∗

ij and ∂γ ∗P ∗
ij . Those expressions

are much more involved than those of class II. In order
to illustrate their shear-rate dependence, we consider here
the set of coefficients {η∗

xxxy,η
∗
xyxy,η

∗
yyxy,η

∗
zzxy}. Note that

η∗
xxxy = −(η∗

yyxy + η∗
zzxy). In addition, the algebraic equations

defining those coefficients show that η∗
yyxy = η∗

zzxy . This result
is a consequence of the linear version of Grad’s moment
method that yields P ∗

yy = P ∗
zz. As said before, recent Monte

Carlo simulations of granular suspensions [15] have shown
that the second normal stress difference is different from zero
although its value is very small. The shear-rate dependence of
the elements η∗

ijxy is plotted in Fig. 5. The coefficients η∗
xyxy

and η∗
yyxy measure the deviations of Pxy and Pyy , respectively,

from their unperturbed USF values due to perturbations of
the form ∂δUx/∂y. While the coefficient η∗

xyxy decreases in
general with a∗ (except for high shear rates), the coefficient
η∗

yyxy exhibits clearly a nonmonotonic shear-rate dependence
regardless the value of the coefficient of restitution. It is also
interesting to note that η∗

xxxy is always negative.

B. Thermal conductivity and Dufour-like tensors

The evaluation of the heat flux transport coefficients �ij ≡
{κ∗

ij ,μ
∗
ij } is much more involved than that of the shear viscosity

tensor η∗
ijk�. As Eqs. (D16) and (D17) show, in the steady

state the set of transport coefficients �ij also depends on the
derivatives of the fourth-degree moments of the USF with
respect to γ ∗ and a∗. The evaluation of these derivatives is
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FIG. 6. Shear-rate dependence of the (reduced) diagonal element
κ∗

zz of the thermal conductivity tensor for a three-dimensional (d = 3)
granular suspension with two different values of the coefficient of
restitution α: α = 1 (solid line) and α = 0.8 (dashed line).

in general a quite tedious task that can be accomplished by
following the steps devised in the Appendix A [50].

As mentioned before, we have �xz = �zx = �yz = �zy =
0 according to the linear shear flow (19). Therefore, there
are five nonzero elements of the (scaled) tensors �ij : the
three diagonal (�xx , �yy , and �zz) and the two off-diagonal
elements (�xy and �yx). The algebraic equations (D19) and
(D20) also show that the anisotropy induced by the shear flow
yields the properties �xx 	= �yy 	= �zz and �xy 	= �yx .

To illustrate the shear-rate dependence of the coefficients
�ij , we consider here the elements �zz ≡ {κ∗

zz,μ
∗
zz} and

�xy ≡ {κ∗
xy,μ

∗
xy}. The first set of coefficients measures the heat

flux along the direction orthogonal to the shearing plane. The
second set of coefficients provides information on cross-effects
in the thermal conduction since κ∗

xy and μ∗
xy measure the

transport of energy parallel to the flow direction due to a
thermal gradient along the velocity gradient. Figures 6–9 show
the generalized coefficients κ∗

yy , μ∗
yy , κ∗

xy , and μ∗
xy versus

a∗ for α = 1 and 0.8. We observe first that the deviations
of these coefficients with respect to their equilibrium values
is significant, regardless of the collisional dissipation. This
means that the impact of shear flow on heat transport is in
general significant in a region of shear rates where shear
thinning is quite important (see Fig. 2). Regarding the diagonal
element κ∗

yy , it is quite apparent from Fig. 6 that this coefficient
decreases with a∗ in the region of shear rates considered. A
similar behavior is found in Fig. 7 for μ∗

zz when the collisions
are inelastic (α 	= 1). On the other hand, for elastic collisions,
μ∗

zz first increases with a∗ for small shear rates, and then it
decreases with the shear rate. In any case, for elastic collisions,
the magnitude of μ∗

zz is much smaller than that of κ∗
zz. Thus,

for practical purposes, one can neglect the contribution to the
heat flux coming from the term proportional to the density
gradient when the collisions are elastic. In accordance with

FIG. 7. Shear-rate dependence of the (reduced) diagonal element
μ∗

zz of the Dufour-like tensor for a three-dimensional (d = 3) granular
suspension with two different values of the coefficient of restitution
α: α = 1 (solid line) and α = 0.8 (dashed line).

the above results, we conclude that in general the shear flow
inhibits the transport of energy along the direction orthogonal
to the velocity gradient (vorticity direction). With respect to
the influence of α on both generalized coefficients, it appears
that the effect of inelasticity is more important in the case of
μ∗

zz than in the case of κ∗
zz.

FIG. 8. Shear-rate dependence of the (reduced) off-diagonal
element −κ∗

xy of the thermal conductivity tensor for a three-
dimensional (d = 3) granular suspension with two different values of
the coefficient of restitution α: α = 1 (solid line) and α = 0.8 (dashed
line).
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FIG. 9. Shear-rate dependence of the (reduced) off-diagonal
element −μ∗

xy of the Dufour-like tensor for a three-dimensional
(d = 3) granular suspension with two different values of the coef-
ficient of restitution α: α = 1 (solid line) and α = 0.8 (dashed line).

The absolute values of the off-diagonal elements κ∗
xy and

μ∗
xy are plotted in Figs. 8 and 9, respectively. As said before,

these coefficients measure cross effects in the energy transport.
This cross coupling does not appear in the linear regime since
the first-order contribution to the heat flux q(1)

x is at least of
Burnett order (i.e., proportional to a∗∂xT ). It is quite apparent
that the element κxy is negative and its magnitude presents a
nonmonotonic dependence with a∗ since it increases first with
the shear rate (in the region of small shear rates), reaches
a maximum and then decreases with increasing a∗. This
behavior is much more evident in the case of elastic collisions.
Regarding the coefficient μ∗

xy , we observe that it is always
negative for granular suspensions (α 	= 1) and its magnitude
is very small for elastic collisions. Recall that the coefficient
μ∗

ij vanishes when α = 1 for vanishing shear rates. As in the
case of the diagonal elements, the effect of inelasticity on heat
transport is more noticeable for μ∗

xy than for κ∗
xy .

Finally, it is important to remark that the qualitative
shear-rate dependence of κ∗

zz and κ∗
xy obtained here for elastic

collisions (ordinary fluids) agrees with the one observed
years ago by Daivis and Evans [25] in molecular dynamics
simulations of a thermostatted shear-flow state.

VII. CONCLUDING REMARKS

The influence of gas phase on the transport properties of
solid particles under USF has been studied in this paper. In
the low-density regime, a viscous drag force term for the
interstitial fluid has been incorporated into the Boltzmann
kinetic equation to account for the effect of the former on
the dynamics of grains. The physical situation is such that the
granular suspension is in a state that deviates from the USF by
small spatial gradients. Since the system is subjected to a strong

shear flow and is not restricted to nearly elastic spheres, the cor-
responding transport coefficients characterizing momentum
and heat transport are nonlinear functions of both the shear rate
and the coefficient of restitution. The explicit determination
of the above coefficients has been the main objective of the
present contribution. The search for such expressions has been
prompted by previous results [19,20] obtained for dry granular
gases (i.e., in the absence of the viscous drag force). Here, the
problem is revisited by considering the effect of the gas phase
on transport properties.

Assuming that the USF state is slightly perturbed, the
Boltzmann equation (7) has been solved by means of a
Chapman-Enskog-like expansion. The new feature of this
expansion is that the (local) shear flow distribution is employed
as the reference state instead of the usual (local) equilibrium
distribution [23] or the (local) homogeneous cooling state
[51,52]. As already noted in previous works [19,20,41,42],
since the zeroth-order derivative ∂

(0)
t T is in general different

from zero, the reference base state is not stationary. This
fact introduces technical difficulties in the implementation
of the perturbation scheme. Thus, in order to get explicit
results, the steady-state condition (21) is considered at the end
of the calculations. In this state, the (reduced) shear rate a∗
and the coefficient of restitution α are coupled to the (scaled)
friction coefficient γ ∗, so that the former two are the relevant
parameters of the problem.

To first order of the expansion, the momentum and heat
fluxes are given by Eqs. (62) and (63), respectively, where the
generalized transport coefficients ηijk�, κij , and μij are defined
in terms of the solutions of the set of coupled integral equations
(70)–(72). However, since the solution of the above integral
equations is in general quite a complex problem, the BGK-like
kinetic model (74) has been employed to obtain the explicit
shear-rate dependence of the above set of transport coefficients.
Although the kinetic model (74) can be considered as a crude
representation of the true Boltzmann equation, it gives the
same results for the rheological properties as those derived
from the Boltzmann equation by means of Grad’s moment
method. Given that those theoretical predictions compare quite
well with Monte Carlo simulations [15], it is expected that
the results provided by the kinetic model are accurate even
for conditions of practical interest, such as strong dissipation
and/or large shear rates.

As expected, there are many new transport coefficients in
comparison to the case of states close to equilibrium (for
ordinary gases) or states near the homogeneous cooling state
(for dry granular gases). Here, for the sake of illustration,
the shear-rate dependence of some relevant elements of the
viscosity tensor, the thermal conductivity tensor, and the
Dufour-like tensor have been studied. More specifically, Figs. 4
and 5 show the (reduced) elements η∗

xzxz, η∗
yzzx , and η∗

ijxy ,
respectively, Figs. 6 and 7 show the diagonal elements κ∗

zz

and μ∗
zz, respectively, and Figs. 8 and 9 show the off-diagonal

elements κ∗
xy and μ∗

xy , respectively. It is apparent that in general
the deviation of these coefficients from their equilibrium values
(i.e., for a∗ = 0 and α = 1) is quite significant. In addition, the
influence of collisional dissipation on transport is much more
significant for the heat flux transport coefficients than for the
coefficients associated with the pressure tensor.
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FIG. 10. Shear-rate dependence of the (reduced) element κ̂zz ≡
κ∗

zz − μ∗
zz for a three-dimensional (d = 3) ordinary fluid (α = 1). The

solid line corresponds to the results obtained here, the dashed line
refers to the results derived from the Boltzmann equation in Ref. [27]
for Maxwell molecules, and the dash-dotted line corresponds to the
results obtained in Ref. [26] from the BGK equation for Maxwell
molecules.

As said in the Introduction, for ordinary fluids (α = 1), the
thermal conductivity tensor of a thermostatted shear-flow state
was determined years ago from the BGK [26] and Boltzmann
[27] kinetic equations. The physical situation corresponds to a
perturbed steady USF state with δU = 0, p = nT ≡ const and
∇T 	= 0. Under these conditions, one needs to add an external
field that exactly compensates for the increase or decrease
of momentum due to the term ∇ · P [16]. The addition of
this external field affects the value of the thermal conductivity
tensor, and hence, the situation studied in Refs. [26,27] slightly
differs from the one analyzed in the present paper. On the
other hand, in order to make a comparison with these previous
results [26,27], one considers particular perturbations such
that ∇p = 0 and so, ∇ ln n = −∇ ln T . Therefore, the heat
flux (63) obeys the generalized Fourier’s law

q
(1)
i = −κ0κ̃ij ∂jT , κ̃ij = κ∗

ij − μ∗
ij . (79)

Figure 10 shows the transport coefficient κ̃zz ≡ κ∗
zz − μ∗

zz

versus a∗ for α = 1. We observe that the previous predictions
made for thermostatted shear flow states from the BGK [26]
and Boltzmann [27] equations compare qualitatively well with
the results obtained here for arbitrary perturbations. However,
at a more quantitative level, it seems that the impact of shear
flow on energy transport is more significant in the situation
analyzed in this paper than those studied in Refs. [26,27].

In the case of dry granular gases (γ ∗ = 0 but α 	= 1),
Saha and Alam [28] have determined the heat flux of a two-
dimensional granular gas under USF. The results were obtained
by solving the Boltzmann equation by means of a perturbation
expansion around an anisotropic Gaussian distribution. This

FIG. 11. Plot of the (reduced) elements κ∗
yy (a) and −κ∗

xy (b) as
a function of the coefficient of restitution α for a two-dimensional
dry granular gas (γ ∗ = 0). The solid and dashed lines are the results
derived in this paper and in Ref. [28], respectively.

distribution was employed years ago by Jenkins and Richman
[53] to obtain the rheological properties of USF via Grad’s
moment method. The corresponding constitutive relation for
the heat flux derived in Ref. [28] can be written as

q
(1)
i = −κij ∂jT − �ij∂j�ij , (80)

where �ij is the deviatoric or traceless part of the pressure
tensor defined by Eq. (27). In Eq. (80), κij is identified
as the thermal conductivity tensor and �ij is a tensor
quantifying the contribution to the heat flux coming from
the gradient of the deviatoric stress �ij . As expected, the
tensors κij and �ij are nonlinear functions of the coefficient
of restitution α. It appears first that Eq. (80) disagrees with
the constitutive relation (63) derived here for the heat flux.
On the other hand, in an attempt to make a comparison
with the theoretical results obtained in Ref. [28] for the
thermal conductivity tensor, Fig. 11 shows the dependence
of the (reduced) coefficients κ∗

yy and κ∗
xy on α for a dry

two-dimensional granular gas. Notice that, in order to get
analytical expressions, the theoretical results of Ref. [28]
plotted in Fig. 11 were derived by considering terms up to
super-Burnett order (i.e., third order in the shear rate). We
observe that the α dependence of the diagonal element κ∗

yy

is qualitatively different from the one predicted in Ref. [28]
since while in the latter theory κ∗

yy decreases with increasing
inelasticity, the opposite happens here. Although a more
qualitative agreement is found for the magnitude of κ∗

xy , both
theoretical results exhibit significant quantitative discrepancies
for strong inelasticity. The differences between both theories
at the level of the thermal conductivity tensor κij could be
in part due to the different form of the constitutive relation
for the heat flux derived in Ref. [28]. In addition, while the
results obtained in the latter work were obtained by solving the
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Boltzmann equation up to super-Burnett order, the theoretical
predictions made in the present paper are based on an exact
solution of the BGK-like kinetic model. It would be convenient
to perform computer simulations for κij to check the reliability
of the above theories for strong inelasticities.

The explicit results reported in this paper can be useful
for studying different problems First, as done in Ref. [20], an
important application is to perform an stability analysis of the
hydrodynamic equations with respect to the USF state. This
analysis will allow us to identify the conditions for stability in
terms of both the shear rate and the coefficient of restitution.
Another interesting and challenging problem is to extend the
present results by considering the general Langevin-like model
proposed in Ref. [12]. This will allow us to provide additional
refinements of the predictions obtained here so that, a closer
comparison with direct numerical simulations of granular
suspensions could be performed. Finally, it would be also
relevant to extend the analysis made here for a monodisperse
granular suspension to the intriguing and important subject
of polydisperse suspensions. A good starting point for this
achievement could be the suspension model introduced in

Ref. [54]. Work along the above lines will be carried out in the
near future.
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APPENDIX A: DERIVATIVES OF THE ZEROTH-ORDER
VELOCITY MOMENTS WITH RESPECT

TO γ ∗ AND a∗ IN THE STEADY STATE

The derivatives of the zeroth-order velocity moments with
respect to γ ∗ and a∗ in the steady state are determined in
this appendix. We start with the pressure tensor P

(0)
ij , whose

elements obey Eq. (53). In dimensionless form, Eq. (53) is
given by

−
(

2

d
a∗P ∗

xy + 2γ ∗ + ζ ∗
0

)[
P ∗

ij − 1

2
(γ ∗P ∗

ij,γ + a∗P ∗
ij,a)

]
+ a∗

ikP
∗
kj + a∗

jkP
∗
ki + 2γ ∗P ∗

ij = βδij − (β + ζ ∗
0 )P ∗

ij , (A1)

where

P ∗
ij,γ ≡ ∂P ∗

ij

∂γ ∗ , P ∗
ij,a ≡ ∂P ∗

ij

∂a∗ , (A2)

and upon deriving Eq. (A1) use has been made of the relation (56). Let us consider the elements P ∗
yy = P ∗

zz and P ∗
xy . From

Eq. (A1), one gets

−
(

2

d
a∗P ∗

xy + 2γ ∗ + ζ ∗
0

)[
P ∗

yy − 1

2
(γ ∗P ∗

yy,γ + a∗P ∗
yy,a)

]
+ 2γ ∗P ∗

yy = β − (β + ζ ∗
0 )P ∗

yy, (A3)

−
(

2

d
a∗P ∗

xy + 2γ ∗ + ζ ∗
0

)[
P ∗

xy − 1

2
(γ ∗P ∗

xy,γ + a∗P ∗
xy,a)

]
+ a∗P ∗

yy + 2γ ∗P ∗
xy = −(β + ζ ∗

0 )P ∗
xy. (A4)

The goal here is to evaluate the derivatives P ∗
yy,γ , P ∗

yy,a , P ∗
xy,γ and P ∗

xy,a at the steady state. This state is defined by the condition
(21). To get these derivatives, we differentiate first Eqs. (A3) and (A4) with respect to a∗ and take then the steady-state limit. The
result is

− 2

d

(
P ∗

xy + a∗P ∗
xy,a

)[
P ∗

yy − 1

2
(γ ∗P ∗

yy,γ + a∗P ∗
yy,a)

]
+ 2γ ∗P ∗

yy,a = −(β + ζ ∗
0 )P ∗

yy,a, (A5)

− 2

d
(P ∗

xy + a∗P ∗
xy,a)

[
P ∗

xy − 1

2
(γ ∗P ∗

xy,γ + a∗P ∗
xy,a)

]
+ P ∗

yy + a∗P ∗
yy,a + 2γ ∗P ∗

xy,a = −(β + ζ ∗
0 )P ∗

xy,a, (A6)

where here it is understood that all the terms are evaluated at the steady state. To close the problem, we differentiate then Eqs. (A3)
and (A4) with respect to γ ∗ and take the steady-state limit with the result

− 2

d
(d + a∗P ∗

xy,γ )

[
P ∗

yy − 1

2
(γ ∗P ∗

yy,γ + a∗P ∗
yy,a)

]
+ 2(P ∗

yy + γ ∗P ∗
yy,γ ) = −(β + ζ ∗

0 )P ∗
yy,γ , (A7)

− 2

d
(d + a∗P ∗

xy,γ )

[
P ∗

xy − 1

2
(γ ∗P ∗

xy,γ + a∗P ∗
xy,a)

]
+ a∗P ∗

yy,γ + 2(P ∗
xy + γ ∗P ∗

xy,γ ) = −(β + ζ ∗
0 )P ∗

xy,γ . (A8)

The set of nonlinear algebraic equations (A5)–(A8) can be numerically solved for given values of a∗ and α. In the dry limit case
(γ ∗ = 0), the solution to Eqs. (A5) and (A6) can be written as

P ∗
yy,a = 4P ∗

yy

a∗P ∗
xy,a + P ∗

xy

2dβ + dζ ∗
0 + 2a∗2P ∗

xy,a

, (A9)
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where P ∗
xy,a is the real root of the cubic equation

2a∗4P ∗3
xy,a+4da∗2(ζ ∗

0 +β)P ∗2
xy,a+

d2

2
(7ζ ∗

0 +14ζ ∗
0 β+4β2)P ∗

xy,a + d2β(ζ ∗
0 + β)−2

(
2β2 − 2ζ ∗2

0 − βζ ∗
0

) = 0. (A10)

Equations (A9) and (A10) agree with previous results [19,20] derived for a dry granular gas of inelastic hard
spheres.

The corresponding derivatives of the fourth-degree velocity moments of the distribution f (0) with respect to γ ∗ and a∗ in the
steady state are also needed to determine the generalized coefficients κij and μij associated with the first-order contribution to
the heat flux. To evaluate these derivatives, the BGK kinetic model (74) is considered. The velocity moments of the distribution
f (0) are defined as

M
(0)
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z f (0)(c). (A11)

These moments verify the equation

−
(

2

d
ãP ∗

xy + 2γ̃ + ζ̃0

)
T ∂T M

(0)
k1,k2,k3

+ ãk1Mk1−1,k2+1,k3 + (1 + kξ̃ )Mk1,k2,k3 = Nk1,k2,k3 , (A12)

where k ≡ k1 + k2 + k3, ã ≡ a∗/β, ζ̃0 ≡ ζ ∗
0 /β, γ̃ ≡ γ ∗/β, ξ̃ = γ̃ + ζ̃0/2, and Nk1,k2,k3 are the velocity moments of fM. In the

steady state, ξ̃ = χ where χ is given by Eq. (35). As in the case of the pressure tensor, the derivative T ∂T M
(0)
k1,k2,k3

can be written
as

T ∂T M
(0)
k1,k2,k3

= T ∂T n

(
2T

m

)k/2

M∗
k1,k2,k3

(γ ∗,a∗) = 1

2
n

(
2T

m

)k/2(
kM∗

k1,k2,k3
− γ ∗M∗

k1,k2,k3,γ
− a∗M∗

k1,k2,k3,a

)
, (A13)

where we have introduced the shorthand notation

M∗
k1,k2,k3,γ

≡ ∂γ ∗M∗
k1,k2,k3

, (A14)

M∗
k1,k2,k3,a

≡ ∂a∗M∗
k1,k2,k3

. (A15)

In dimensionless form, Eq. (A12) reads

−
(

2

d
ãP ∗

xy + 2γ̃ + ζ̃0

)
1

2

(
kM∗

k1,k2,k3
− γ ∗M∗

k1,k2,k3,γ
− a∗M∗

k1,k2,k3,a

) + k1ãM∗
k1−1,k2+1,k3

+ (
1 + kξ̃

)
M∗

k1,k2,k3
− N∗

k1,k2,k3
= 0,

(A16)

where M∗
k1,k2,k3

≡ n−1(m/2T )k/2Mk1,k2,k3 , and

N∗
k1,k2,k3

= π−3/2�

(
k1 + 1

2

)(
k2 + 1

2

)(
k3 + 1

2

)
(A17)

if k1, k2, and k3 are even, being zero otherwise. Equation (A16) provides the expressions of the reduced moments M∗
k1,k2,k3,s

in
the steady state (e.g., when 2

d
ãP ∗

xy + 2γ̃ + ζ̃0 = 0).
In order to evaluate the derivatives M∗

k1,k2,k3,γ
and M∗

k1,k2,k3,a
in the steady state, we differentiate with respect to γ ∗ and a∗,

respectively, both sides of Eq. (A16) and then take the steady-state condition (21). As an illustration, let us consider the moment
M∗

040 which obeys the equation

−
(

2

d
ãP ∗

xy + 2γ̃ + ζ̃

)(
2 − 1

2
γ ∗∂γ ∗ − 1

2
a∗∂a∗

)
M∗

040 + (1 + 4̃ξ )M∗
040 = 3

4
. (A18)

From Eq. (A18), in the steady state, one gets the identities

−
(

2

d
ãP ∗

xy,γ + 2β−1

)[
2M∗

040 − 1

2

(
γ ∗M∗

040,γ + a∗M∗
040,a

)] + 4β−1M∗
040 + (

1 + 4̃ξ
)
M∗

040,γ ∗ = 0, (A19)

− 2

d

(
β−1P ∗

xy + ãP ∗
xy,a

)[
2M∗

040 − 1

2

(
γ ∗M∗

040,γ + a∗M∗
040,a

)] + (
1 + 4̃ξ

)
M∗

040,a = 0. (A20)

The solution to the set of linear algebraic equations (A19)
and (A20) gives the derivatives M∗

040,γ and M∗
040,a in terms

of a∗ and α. Proceeding in a similar way, all the derivatives

of the fourth-degree velocity moments with respect to both
a∗ and γ ∗ can be analytically computed in the steady
state.
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APPENDIX B: FIRST-ORDER APPROXIMATION

The kinetic equation for the first-order distribution f (1) is

∂
(0)
t f (1) − aVy

∂f (1)

∂Vx

− γ
∂

∂V
· Vf (1) + Lf (1)

= −[∂ (1)
t + (V + U0) · ∇]f (0). (B1)

The velocity dependence on the right side of Eq. (B1) can be
obtained from the macroscopic balance equations to first order
in the gradients, given by

∂
(1)
t n + U0 · ∇n = −∇ · (nδU), (B2)

∂
(1)
t δU + (U0 + δU) · ∇δU = − 1

ρ
∇ · P(0), (B3)

d

2
n∂

(1)
t T + d

2
n(U0 + δU) · ∇T + aP (1)

xy + P(0):∇δU

= −d

2
pζ (1), (B4)

where ρ = mn is the mass density,

P
(1)
ij =

∫
dc mcicjf

(1)(c), (B5)

and

ζ (1) = 1

dp

∫
dc mc2Lf (1). (B6)

Use of Eqs. (B2)–(B4) in Eq. (B1) yields(
∂

(0)
t − aVy

∂

∂Vx

− γ
∂

∂V
· Vf (1) + L

)
f (1) − ζ (1)T

∂f (0)

∂T

= Yn · ∇n + YT · ∇T + Yu:∇δU, (B7)

where

Yn,i = −∂f (0)

∂n
ci − 1

ρ

∂f (0)

∂cj

∂P
(0)
ij

∂n
, (B8)

YT,i = −∂f (0)

∂T
ci − 1

ρ

∂f (0)

∂cj

∂P
(0)
ij

∂T
, (B9)

Yu,ij = n
∂f (0)

∂n
δij + cj

∂f (0)

∂ci

+ 2

dn

∂f (0)

∂T

(
P

(0)
ij − aηxyij

)
.

(B10)

According to the symmetry properties of f (1), the only
nonzero contribution to ζ (1) comes from the term proportional
to the tensor ∇iδUj . Thus,

ζ (1) = ζu,ji∇iδUj . (B11)

An estimation of ζu,ij has been made in Ref. [20] for a three-
dimensional system (d = 3). The result is

ζu,ij = − 1

15
σ 2

√
π

mT
(1 − α2)�∗

k�ηk�ij , (B12)

where �∗
ij ≡ �ij/nT . Of course, when α = 1, then ζu,ij = 0.

The solution to Eq. (B7) has the form

f (1) = Xn,i(c)∇in + XT,i(c)∇iT + Xu,ji(c)∇iδUj . (B13)

Note that in Eq. (B10) the coefficients ηijk� are defined through
Eq. (64). The coefficients Xn,i , XT,i , and Xu,ij are functions
of the peculiar velocity c and the hydrodynamic fields. In
addition, there are contributions from the time derivative ∂

(0)
t

acting on the temperature and velocity gradients given by

∂
(0)
t ∇iT =

[
2a

dn2
(1 − n∂n)P (0)

xy − ζ (0)T

n

]
∇in −

(
2a

dn
∂T P (0)

xy + 2γ + 3

2
ζ (0)

)
∇iT , (B14)

∂
(0)
t ∇iδUj = −ajk∇iδUk − γ∇iδUj . (B15)

Substituting Eqs. (B12), (B14), and (B15) into Eq. (B7) and identifying coefficients of independent gradients, one finally gets
the set of coupled linear integral equations

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T Xn,i − acy

∂Xn,i

∂cx

− γ
∂

∂c
· cXn,i + LXn,i = Yn,i − T

n

[
2a

dp
(1 − n∂n)P (0)

xy − ζ (0)

]
XT,i, (B16)

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T XT,i − acy

∂

∂cx

XT,i − γ
∂

∂c
· cXT,i −

[
2a

dn

(
∂T P (0)

xy

) + 2γ + 3

2
ζ (0)

]
XT,i + LXT,i = YT,i, (B17)

−
(

2

dp
aP (0)

xy + 2γ + ζ (0)

)
T ∂T Xu,k� − acy

∂

∂cx

Xu,k� − aδkyXu,x� − ζu,k�T ∂T f (0) − γXu,k� − γ
∂

∂c
· cXu,k� + LXu,k� = Yu,k�.

(B18)

Upon writing Eqs. (B16)–(B18), use has been made of the property

∂
(0)
t X = ∂X

∂T
∂

(0)
t T + ∂X

∂δUi

∂
(0)
t δUi = −

(
2

dn
aP (0)

xy + 2T γ + T ζ (0)

)
∂X

∂T
+ (aij δUj + γ δUi)

∂X

∂ci

, (B19)

where in the last step we have taken into account that X depends on δU through c = V − δU.
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APPENDIX C: KINETIC MODEL RESULTS IN THE STEADY USF STATE

In this appendix, the steady state solution to the BGK-like kinetic model (74) in the steady (unperturbed) USF is briefly
analyzed. In this case, δU = 0 and so c = V. In the steady state, fs(V) verifies the kinetic equation

−aVy

∂fs

∂Vx

− γ
∂

∂V
· Vfs = −βν(fs − fM) + ζ (0)

2

∂

∂V
· Vfs, (C1)

where here ζ has been approximated by its Maxwellian approximation ζ (0) given by Eq. (30). Let us introduce the velocity
moments of fs as

Mk1,k2,k3 =
∫

dv V k1
x V k2

y V k3
z fs(V) (C2)

According to the symmetry of the USF distribution fs , the only nonvanishing moments correspond to even values of k1 + k2 and
k3. In this case, after some algebra, one gets

Mk1,k2,k3 = n

(
2T

m

)k/2

M∗
k1,k2,k3

, (C3)

where the reduced moments M∗
k1,k2,k3

are given by

M∗
k1,k2,k3

= π−3/2
k1∑
q=0

q+k1=even

k1!

(k1 − q)!
�

(
k1 − q + 1

2

)
�

(
k2 + q + 1

2

)
�

(
k3 + 1

2

)
(−ã)q

(
1 + kξ̃

)−(1+q)
. (C4)

It is easy to see that the second-degree velocity moments of the BGK model coincide with those obtained from the Boltzmann
equation by using Grad’s method, Eqs. (32)–(34).

APPENDIX D: GENERALIZED TRANSPORT COEFFICIENTS

The results derived from the BGK-like kinetic model (74) considered to determine the generalized transport coefficients ηijk�,
κij , and μij are provided in this appendix. The equations defining the generalized transport coefficients in the BGK model can
be obtained from Eqs. (70)–(72) with the replacements (75) and (76):

−acy

∂Xn,i

∂cx

−
(

γ + ζ (0)

2

)
∂

∂c
· cXn,i + νβXn,i = Yn,i − T

n

[
2a

dp
(1 − n∂n)P (0)

xy − ζ (0)

]
XT,i, (D1)

−acy

∂XT,i

∂cx

−
(

γ + ζ (0)

2

)
∂

∂c
· cXT,i + νβXT,i −

[
2a

dn

(
∂T P (0)

xy

) + 2γ + 3

2
ζ (0)

]
XT,i = YT,i , (D2)

−acy

∂Xu,j�

∂cx

−
(

γ + ζ (0)

2

)
∂

∂c
· cXu,j� + νβXu,j� − aδjyXu,x� − γXu,j� − 1

2
ζu,j�

[
∂

∂c
· (cf (0)) + 2T ∂T f (0)

]
= Yu,j�. (D3)

In order to get the transport coefficients κij , μij , and ηijk�, it is convenient to introduce the general velocity moments

A
(i)
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z Xn,i , (D4)

B
(i)
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z XT,i , (D5)

C
(ij )
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z Xu,ij . (D6)

These moments provide the explicit forms of the generalized transport coefficients of the perturbed USF problem. To determine
them, Eqs. (D1)–(D3) are multiplied by ck1

x ck2
y ck3

z and integrated over velocity. After some algebra, one achieves

ak1A
(i)
k1−1,k2+1,k3

+ (νβ + kξ )A(i)
k1,k2,k3

+ ωnB
(i)
k1,k2,k3

= A(i)
k1,k2,k3

, (D7)

ak1B
(i)
k1−1,k2+1,k3

+ (νβ + kξ + ωT )B(i)
k1,k2,k3

= B(i)
k1,k2,k3

, (D8)

ak1C
(j�)
k1−1,k2+1,k3

+ (νβ − γ + kξ )C(j�)
k1,k2,k3

+ 1
2ζu,j�(k − 2T ∂T )M (0)

k1,k2,k3
− aδjyC

(x�)
k1,k2,k3

= C(j�)
k1,k2,k3

, (D9)
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where M
(0)
k1,k2,k3

are the moments of the zeroth-order distribution function f (0),

ξ = γ + 1

2
ζ (0), (D10)

ωn = T

n

[
2a

d
(γ ∗P ∗

xy,γ + a∗P ∗
xy,a) − ζ (0)

]
, (D11)

ωT = a

d
(γ ∗P ∗

xy,γ + a∗P ∗
xy,a) − 1

2
ζ (0), (D12)

and we have introduced the quantities

A(i)
k1,k2,k3

≡
∫

dc ck1
x ck2

y ck3
z Yn,i , (D13)

B(i)
k1,k2,k3

≡
∫

dc ck1
x ck2

y ck3
z YT,i , (D14)

C(j�)
k1,k2,k3

≡
∫

dc ck1
x ck2

y ck3
z Yu,j�. (D15)

The integrals (D13)–(D15) can be computed with the result

A(�)
k1,k2,k3

= − ∂

∂n
Mk1+δ�x ,k2+δ�y ,k3+δ�z

+ 1

ρ

∂P
(0)
�j

∂n

(
δjxk1Mk1−1,k2,k3 + δjyk2Mk1,k2−1,k3 + δjzk3Mk1,k2,k3−1

)
= −

(
2T

m

) k+1
2

[
(1 − γ ∗∂γ ∗ − a∗∂a∗ )M∗

k1+δ�x ,k2+δ�y ,k3+δ�z
− 1

2
(P ∗

�j − γ ∗P ∗
�j,γ − a∗P ∗

�j,a)

×(
δjxk1M

∗
k1−1,k2,k3

+ δjyk2M
∗
k1,k2−1,k3

+ δjzk3M
∗
k1,k2,k3−1

)]
, (D16)

B(�)
k1,k2,k3

= − ∂

∂T
Mk1+δ�x ,k2+δ�y ,k3+δ�z

+ 1

ρ

∂P
(0)
�j

∂T

(
δjxk1Mk1−1,k2,k3 + δjyk2Mk1,k2−1,k3 + δjzk3Mk1,k2,k3−1

)
= −n

(
2T

m

) k+1
2

[
1

2T
(k + 1 − γ ∗∂γ ∗ − a∗∂a∗ )M∗

k1+δ�x ,k2+δ�y ,k3+δ�z
− 1

2T

(
P ∗

�j − 1

2
γ ∗P ∗

�j,γ − 1

2
a∗P ∗

�j,a

)
× (

δjxk1M
∗
k1−1,k2,k3

+ δjyk2M
∗
k1,k2−1,k3

+ δjzk3M
∗
k1,k2,k3−1

)]
, (D17)

C(j�)
k1,k2,k3

= −δj�

(
1 − n

∂

∂n

)
Mk1,k2,k3 + 2

dn

(
P

(0)
j� − aηxyj�

) ∂

∂T
Mk1,k2,k3 − Mk1,k2,k3

(
δjxδ�xk1 + δjyδ�yk2 + δjzδ�zk3

)
− k1δjx

(
δ�yMk1−1,k2+1,k3 + δ�zMk1−1,k2,k3+1

) − k2δjy

(
δ�xMk1+1,k2−1,k3 + δ�zMk1,k2−1,k3+1

)
− k3δjz

(
δ�xMk1+1,k2,k3−1 + δ�yMk1,k2+1,k3−1

)
= −n

(
2T

m

)k/2[
δj�

(
γ ∗M∗

k1,k2,k3,γ
+ a∗M∗

k1,k2,k3,a

) − 1

dnT

(
P

(0)
j� − aηxyj�

)(
kM∗

k1,k2,k3
− γ ∗M∗

k1,k2,k3,γ
− a∗M∗

k1,k2,k3,a

)
+M∗

k1,k2,k3
(δjxδ�xk1 + δjyδ�yk2 + δjzδ�zk3) + k1δjx

(
δ�yM

∗
k1−1,k2+1,k3

+ δ�zM
∗
k1−1,k2,k3+1

)
+ k2δjy

(
δ�xM

∗
k1+1,k2−1,k3

+ δ�zM
∗
k1,k2−1,k3+1

) + k3δjz

(
δ�xM

∗
k1+1,k2,k3−1 + δ�yM

∗
k1,k2+1,k3−1

)]
. (D18)

Here M∗
k1,k2,k3

are the reduced moments of the distribution f (0) defined by Eq. (C4). They depend on n and T through their
dependence on γ ∗ and a∗. In the steady state, M∗

k1,k2,k3
is given by Eq. (C4) while the derivatives M∗

k1,k2,k3,γ
and M∗

k1,k2,k3,a
can be

obtained by following the procedure described in Appendix A.
The solution to Eqs. (D7)–(D9) can be written as

A
(i)
k1,k2,k3

= (νβ)−1
k1∑

q=0

k1!

(k1 − q)!
(−ã)q(1 + kξ̃ )−(1+q)

(
A(i)

k1−q,k2+q,k3
− ωnB

(i)
k1−q,k2+q,k3

)
, (D19)

B
(i)
k1,k2,k3

= (νβ)−1
k1∑

q=0

k1!

(k1 − q)!
(−ã)q(1 + ω̃T + kξ̃ )−(1+q)B(i)

k1−q,k2+q,k3
, (D20)
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C
(j�)
k1,k2,k3

= (νβ)−1
k1∑

q=0

k1!

(k1 − q)!
(−ã)q(1 − γ̃ + kξ̃ )−(1+q)

×
[
C(j�)

k1−q,k2+q,k3
+ aδjyC

(x�)
k1−q,k2+q,k3

− 1

2
n

(
2T

m

)k/2

ζu,j�

(
γ ∗M∗

k1−q,k2+q,k3,γ
+ a∗M∗

k1−q,k2+q,k3,a

)]
, (D21)

where ω̃T ≡ ωT /(νβ). In Eqs. (D19)–(D21), we recall that in the steady state the parameter ξ̃ = χ is given by Eq. (35), and γ ∗ =
βχ − 1

2ζ ∗
0 . The expressions of the generalized transport coefficients κij , μij , and ηijk� can be obtained from Eqs. (D19)–(D21).
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