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Mechanical excitation of rodlike particles by a vibrating plate
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The experimental realization and investigation of granular gases usually require an initial or permanent
excitation of ensembles of particles, either mechanically or electromagnetically. One typical method is the
energy supply by a vibrating plate or container wall. We study the efficiency of such an excitation of cylindrical
particles by a sinusoidally oscillating wall and characterize the distribution of kinetic energies of excited particles
over their degrees of freedom. The influences of excitation frequency and amplitude are analyzed.
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I. INTRODUCTION

A common method to supply kinetic energy to an ensemble
of particles to study their statistical dynamics is the mechanical
excitation of the individual particles by vibrating container
walls [1–3]. Often, submonolayers of grains are shaken
on a horizontal plate in two-dimensional (2D) or quasi-2D
experiments. In three dimensions, one or more container walls
can be vibrated, or the whole container is shaken. In the
majority of such experiments, spherical particles have been
investigated (see, for example, Refs. [1–19]). Most studies
were performed in vertically shaken containers. Thereby,
the granulate is fluidized, and a granular temperature can
be assigned as a measure of kinetic energy. One finds
interesting phenomena like convective flow [13,14], localized
structures [15], segregation [16], and others. At sufficiently
strong shaking, the grains lose permanent contact with their
neighbors, a so-called “granular gas” state is reached. New
phenomena like clustering [17], directed particle transport
[18], or Leidenfrost-like layering [19] are observed. Under
normal gravity, this requires a substantial level of excitation.

An interesting aspect of granular gases is their dynamics at
low excitation or without external energy supply, as model sys-
tems for stochastic multiparticle dynamics. Such experiments
give insight, e.g., into clustering mechanisms that are the basis
of fundamental structure formation in the universe (see, e.g.,
Ref. [20]). Without energy supply, dissipative collisions of
grains in a granular gas lead to a permanent loss of kinetic en-
ergy, so-called “granular cooling.” This process was analyzed
theoretically by Haff [21] for a homogeneous granular gas of
identical spherical grains with given restitution coefficient.

Some three-dimensional (3D) experiments with granular
gases have been performed in microgravity, where relatively
low excitation strengths are sufficient to maintain stationary
states [5,6,22–29]. In these experiments, observability and
interaction efficiency pose conflicting constraints: The particle
number density must be high enough to achieve sufficiently
frequent collisions among particles before they hit a container
wall. Their mean free paths must be small compared to the con-
tainer size. On the other hand, the observation of the particles
requires a sufficiently low particle density so that the optical
mean free path allows us to observe not only the particles
in a thin region in the front. This problem can be resolved
partially when cylindrical or other elongated grain shapes are
used. With such a particle geometry one can shorten the mean

free path between particle collisions (related to the rod length)
while keeping the optical path length (which equally involves
length and width of the grains) sufficiently long.

In microgravity experiments with rodlike particles, equipar-
tition of the kinetic energy between the translational and ro-
tational degrees of freedom was investigated both experimen-
tally [26–29] and theoretically [30–35]. One of the important
open questions of the study of rods is the relation between
excitation parameters and energy supply to the system. Since
this energy transfer can be traced back to individual collisions
of grains with the vibrating container walls, it can be analyzed
by measuring impact and rebound characteristics of individual
rodlike particles on a vertically vibrated plate. This problem
will be addressed here experimentally.

Impact and rebound of spheres on vibrating plates have
been studied in numerous publications (e.g., Refs. [36–38]).
The standard experiment is the observation of jumping spheres
on a horizontal sinusoidally oscillating plate under normal
gravity. Such objects can be described in good approximation
by one single degree of freedom. Rotations can practically
be neglected, and lateral motion can be completely separated
from the relevant dynamics in a vertical direction. This
allows to reduce the equations of motion to a single one-
dimensional differential equation. Nevertheless, the behavior
of this nonautonomous system is complex enough. Excitation
parameters as well as the restitution coefficient determine
different dynamic regimes, from regular periodic jumps to
period doubling and chaotic motion. There are only few studies
of nonspherical particles in this context. In particular, a few
experiments and theoretical work on dumbbell-shaped dimer
particles [39,40], trimers [41,42], and springs [43] have been
published, mainly directed to the analysis of the dynamic
regimes and lateral migration of the objects. A pioneering
experimental and theoretical work devoted specifically to
cylindrical (more exactly, spherocylindrical) particles bounc-
ing on a vibrating plate was published by Wright et al.
[44]. This study revealed important differences between the
bouncing statistics of spherical particles and cylinders, and it
demonstrated the complexity of the dynamics. In particular,
the coupling of rotational and translational motions leads to
stochastic dynamics for almost all values of the excitation
parameters. Quasiperiodic orbits were identified only at very
low excitation amplitudes. The kinetic energy distribution
was analyzed. Statistics of the times between impacts were
evaluated as well as details like flipping processes about the
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FIG. 1. The figure sketches the setup with the vibrating plate,
a mirror, and two cameras with observation axes along x and y,
respectively, and it defines the coordinate system used. Two vertical
white-coated aluminium side walls and two ITO-coated acrylic glass
side walls prevented the particle from leaving the plate. These walls
are not shown.

particle short axes. Comparison with numerical simulations
demonstrated the successful applicability of MD simulations.
Irrespective of a rich collection of quantitative data, this
study did not discuss the parameters that are interesting in
the context of granular gas driving, i.e., quantitative relations
between rotational and translational degrees of freedom and
the dependence of the efficiency of excitation on driving
parameters.

Wright et al. used steel rods with diameters from 1 to
3.2 mm, lengths from 6 to 24 mm and aspect ratios between
≈2 and 20. They observed the particles with one fast camera,
which poses some restrictions on the evaluation of trajectories.
In particular, rotational motions can be identified only in a 2D
projection. The present study extends the observation by a
second camera for stereoscopic analysis, so that the full 3D
trajectories and rotations become accessible.

II. EXPERIMENT

The setup is sketched in Fig. 1. A white-coated quadratic
aluminium ground plate (80 mm × 80 mm, 3 mm thick)
was actuated by a voice coil. The cameras (GoPro Hero 3+
Black Edition) were able to record images at frame rates of
240 fps (848 × 480 pixel). The spatial resolution is better
than 0.2 mm/pixel. A slight disadvantage of the cameras is
that they record images line-by-line, so that very fast rods
may appear slightly curved in the images. This artifact is
negligible with respect to the uncertainties of the 3D image
reconstruction procedure. From the two perspective views, the
positions and orientations of particles were reconstructed using
a Matlab Camera Calibration Toolbox (Caltech). The vertical
oscillations zp(t) = A sin 2πf t of the bottom plate were
driven with frequencies f in the range between 15 and 40 Hz,
amplitudes A were chosen between 1 and 5 mm. Characteristic
excitation parameters are the maximum plate velocity vmax =
2πf A and the maximum plate acceleration �max = (2πf )2A.
Excitation sequences with desired amplitudes and frequencies
were generated with a computer program, and parameters were
confirmed by evaluation of the recorded videos.

The particles are insulated wires with outer diameters of
1.3 mm and lengths of 7.5 and 15 mm. Rod ends are cut
flat. The choice of material was motivated by its earlier
successful usage in microgravity experiments [26–29]. There
is no principal difference to any noncomposite (e.g., all-metal)
rodlike particles. The advantage of the nonmetallic insulating
layer was the uniform reflectivity and absence of metallic
optical reflexes, which are problematic for the automatic
particle detection. The metal core seems to help prevent
electrostatic charging (see below). The longer particles with
aspect ratio 11.5 have a mass of 56 mg, and a moment of inertia
for rotation about the short axes, I⊥ = 1.06 × 10−9 kg/m2.
The moment of inertia for rotation about the long axis is
two orders of magnitude smaller. For the shorter rods with
aspect ratio 5.7, m = 28 mg and I⊥ ≈ 0.135 × 10−9 kg/m2.
A restitution coefficient ε ≈ 0.54 of the 15 mm particles has
been determined earlier from drop experiments [26].

During the experiments, we did not find noticeable electro-
static effects that influenced the wires. The trajectories were
not prone to “aging” caused by static charges on the particles.
In similar experiments performed for test purposes with glass
rods of similar sizes, electrostatic charging proved to be a
considerable problem.

An additional experimental test was performed with copper
cylinders (1 mm diameter, 15 mm length, 105 mg mass, I⊥ =
1.98 × 10−9 kg/m2), where we checked whether the results
obtained for the structured wire pieces can be generalized to
homogeneous rods.

For each set of parameters, we have recorded 30 000
frames (125 s) of the trajectories. The evaluation of these
trajectories revealed that the centers of mass performed exact
parabolas within the experimental resolution during the jumps.
The rotation proved to be constant between two subsequent
collisions with the ground plate, the center-of-mass velocities
at impact, v0, were related precisely to the jump height h0

by h0 = v2
0/(2g). The sum Ez of kinetic energy of vertical

motion and potential energy relative to the mean plate height
is constant during each jump; it suffices to measure the jump
height to determine this quantity. There is no exchange of en-
ergies between the three components, horizontal motion (Exy),
vertical motion (Ez), and rotational motion (Erot), during
individual jumps. We further note that we did not try to resolve
rotations of the rods about their long axis. This degree of
freedom is not excited directly by the vibrating plate technique.
We assume that it is equally inactive as the translational hori-
zontal motions, which are not excited directly either. Another
consequence of the rotational symmetry of the rods is that
we cannot distinguish between the two degrees of freedom of
rotations about the two short axes; we observe only their sum.

III. RESULTS

A. Energy distribution

We are not interested here in the analysis of regularity of
the particle motion, which has been described by Wright et al.
[44]. Periodic motions, as they are often found for spherical
grains, are practically absent in the rod experiments. Moreover,
they would play no role in zero gravity investigations, since
the particle leaves the plate without return unless it collides
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FIG. 2. Exemplary positions and rotational velocities of a 15 mm
jumping rod at 30 Hz excitation. The sign of the rotations is not
considered in this plot. Rotation rates are constant within each jump,
except in the seventh full jump in this image, where the particle
collided with the side wall, causing a drop of the rotation rate. In case
of such very rare events, the respective jumps were excluded from
data evaluation.

with other particles. Thus it suffices to analyze the statistics of
energy and momentum transfers during individual collisions,
in dependence on excitation parameters. A typical detail of
a jump sequence (288 frames =̂ 1.2 s) is depicted in Fig. 2.
The parabolas describe the positions of the centers of mass;
therefore they do not end at the plate positions but depend on
the impact angle. It is obvious that often double impacts occur,
i.e., the rod first contacts the plate with one end, then with the
opposite end, before the next jump. This process is identified as
the main reason for the lower excitation of rotational degrees
of freedom as compared to the kinetic energy of translational
motion normal to the plate, as discussed later (cf. Fig. 8). We
did not evaluate the sign of the angular frequency ω here, which
is irrelevant for the rotational energies. In practice, rotation
changes sign between most jumps. The azimuthal angle is not
conserved.

Figure 3 shows a typical distribution of the energy Ez

(total potential energy and kinetic energy of the vertical
motion) for a selected set of excitation parameters. The mean
energy is Ez = 15 μJ. The high-energy tail is exponential
as expected [44]. At low energies, a typical maximum
is found near 2Ez/3. An empirical distribution function
p(Ẽz) = Ẽ2

z /(2E3
0) exp(−Ẽz/E0) with E0 = 5μJ is shown for

comparison. This function reproduces some typical features of
the distributions, but it does not have a theoretical background
nor does it fit in detail. Qualitatively similar observations, in
particular the high-frequency characteristics, were reported by
Wright et al. [44].

Warr et al. [37] analyzed rebound velocities of jumping
spherical beads, and even though their behavior is expected to
differ qualitatively from the jumping rods, one may compare
the proposed distribution density for rebound velocities v:

p(v) = v2β/〈�2〉 exp

[
(ε − 1)v2

〈�2〉
]
, (1)

with two parameters given as � = (1 + ε)2v2
max/2 and

β = (1 + ε)v2
max/2. For the distribution of energies this

FIG. 3. Typical distribution of energies Ez of a jumping 15 mm
rod excited at frequency f = 30 Hz, amplitude A = 2.89 mm (vmax =
0.545 m/s). The average energy is 15 μJ. The high-energy tail has an
exponential decay [44].

yields

p(Ez) ∝ E
(1−ε)

2(1+ε)
z exp

[
4(ε − 1)Ez

(1 + ε)2mv2
max

]
. (2)

The low-energy part of this distribution, determined essentially
by the exponent of the energy prefactor, is clearly different
from our results for rods. The exponential high-energy tail is
qualitatively similar, but the exponent is larger by a factor 4 in
the rod experiments.

Figure 4 maps energies of subsequent jumps. It evidences
correlations between subsequent jump heights (higher energy
jumps are more likely followed by higher energy jumps),
but few correlations of the rotation energies of subsequent
jumps. The correlation coefficient of Ez(n) and Ez(n + 1) of
successive jumps n and n + 1 is 0.197. The rotation energies
of subsequent jumps are much weaker correlated, with a
coefficient 0.06.

B. Efficiency of excitation

The total energies for different excitation parameter sets
are shown in Figs. 5 and 6. First, we present separately the
dependence of the total average energy on the frequency f

for fixed amplitude (a) and on the amplitude A for fixed
frequency (b). Two regions are excluded from experimental
access: When the maximum plate acceleration �max is lower
than the gravitational acceleration in our experiment (vertical
dotted lines), a rod lying on the plate will never lift from
it. Practically, the excitation threshold is close to that value
[44]. Another lower bound is given by the kinetic energy of
a rod at rest on the vibrating plate. If the rod moves with
the plate without jumps, it has an averaged “zero kinetic
energy” estimated as E0 = mv2

max/4. This E0 roughly marks
a lower boundary to measurable energies. For the long rods,
that boundary is sketched in the figures by dotted parabolas. 1

Solid symbols represent the longer 15 mm rods, open symbols

1In microgravity, these thresholds do not exist.
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FIG. 4. Correlations of energies Ez (a) and Erot (b) between
successive jumps. The vertical velocities show correlations while
the rotations are in good approximation uncorrelated.

the shorter 7.5 mm rods. The ratio of total mean energies at
the same excitation parameters should ideally be 2, the mass
ratio. In practice, it is lower by about 8%–10%. The excitation
of longer rods is obviously somewhat less efficient.

In Fig. 5(a), the total mean energy is plotted as a function
of f . Since measurements for different f were not at exactly
the same amplitudes A, we performed a linear interpolation
between the two closest amplitude data points of a given
frequency. The E(f ) dependencies [Fig. 5(a)] for constant
A can be fitted with linear functions. Even though satisfactory
offset-free fits can be found (yet we see no reasonable
argument for that), the best linear fits have slight offset.
The slopes dE/df depend upon the amplitudes: 0.55 μJs
for A = 2.5 mm and 0.44 μJs for A = 2.0 mm (solid lines).
Offsets are 4.1 and 5.4 Hz, respectively. A slight nonlinearity
may be present, but the experimental accuracy is not sufficient
for a precise determination of the functional dependence. Best
fits with functions E(f ) ∝ f γ yield exponents γ of 1.22
and 1.28, respectively, but these fits are not very robust.
A square dependence as predicted in several publications
for spherical particles (e.g., Refs. [37,38]) can definitely be
excluded. In contrast, the amplitude dependencies [Fig. 5(b)]
are clearly nonlinear; linear fits would not intersect the abscissa
at the origin. A reasonable fit is obtained with functions

FIG. 5. Selected frequency dependencies at fixed amplitudes A =
2 mm and A = 2.5 mm (a) and amplitude dependencies at fixed
frequency f = 30 Hz (b) for the two types of rods. The frequency
characteristics can be assumed nearly linear, whereas the amplitude
dependence is clearly nonlinear. The ratio of total energies E of long
(solid symbols) and short (open symbols) rods is slightly smaller
than their mass ratio, i.e., the efficiency of excitation is slightly better
for the short pieces. Dashes mark ranges that are not accessible by
experiment (see text).

E ∝ A3/2, shown as solid lines (with proportionality factors
3.6 μJ/mm3/2 and 2.0 μJ/mm3/2 for long and short rods,
respectively).

The consequence of these fits should be a master curve
for E ∝ A3/2f as shown in Fig. 6(a). Amplitudes were
chosen between 0.58 and 4.5 mm, frequencies between 15
and 40 Hz. The master graph is reasonably good for all
frequencies except the lowest excitation at 15 Hz, which
deviates systematically. The slope is 0.123 μJ mm−3/2 s. The
deviations of the low-frequency data (15 Hz) at high exci-
tation strengths can be attributed to the substantial vibration
amplitude of ≈ ±4.5 mm. There the voice coil reaches its
limits, and the excitation wave form begins to deviate from
perfect sinusoidal shape. While this graph does not give clues
to the underlying physical details, it provides a satisfactory
prediction of the energy entry into a granular gas of rod-shaped
grains as a function of excitation parameters, and it seems to
exclude some earlier suggestions in literature. For example,
it was reasonably argued from a dimensional analysis [5]
that the kinetic energy in a granular gas of spheres excited
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FIG. 6. Total energies of the 15 mm rods for different excitation
parameters (a) as a function of A3/2f and (b) as a function of the
maximum velocities of the moving plate, vmax. Within experimental
scattering, all data can be fitted with common master graphs (see
text); only the 15 Hz curve in (a) shows some systematic deviation to
less efficient driving, which is mainly a technical problem, see text.
The dotted line in (b) marks the kinetic energy of a rod lying on the
vibrating plate.

by oscillating walls should be proportional to A2f 2. We can
clearly exclude that for our rodlike particles. Other models
consider maximum accelerations �max [38] or the maximum
velocity vmax as appropriate parameters. If one is interested
in finding a good approximation for the dependence of the
average particle energy on the plate velocity, a fairly good
fit is E = 42.5 μJ(s/m)1.4v1.4

max [Fig. 6(b)]. This is, of course,
only within some experimental uncertainties compatible with
the plots of Fig. 5.

C. Distribution of kinetic energy on the rotational
and translational degrees of freedom

An important aspect for the investigation of driven granular
gases is the distribution of kinetic energies among the degrees
of freedom. In equilibrium, an equal distribution would be
expected. In the mechanically driven nonequilibrium granular
gas, deviations were found experimentally in the stationary
state [26,29]. Partially, this can be attributed to the nonequiva-
lent excitation of the degrees of freedom. We demonstrate this
on the basis of the plots in Fig. 7.

FIG. 7. Ratio of the three components and the total mean energy.
The “vertical energy” Ez as the sum of kinetic energy of vertical
motion and the potential energy relative to the mean plate height is
shown in (a); it amounts to about 90% of the total energy. Graph
(b) shows the share of rotational energy, which is of the order of
10%, irrespective of the excitation parameters. The kinetic energy of
translational motions in the horizontal plane (c) is smaller by more
than one order of magnitude, and a systematic decay of its share with
larger excitation strengths is evident. Solid symbols: 15 mm rods;
open symbols: 7.5 mm rods.

The graphs in Fig. 7 show the ratios between the individual
degrees of freedom of the jumping rod. The largest share
of the mean total energy is the vertical component Ez, the
sum of potential energy and motion in vertical direction
(which is constant during each jump). It amounts to 90%
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of the total energy. The rotational energy contributes only
about 10% to the total mean energy. The graphs reveal no
systematic dependence of this ratio, neither on the frequency
f nor on the amplitude A. The shorter rods appear to have
a slightly higher share of rotational energy, but within our
experimental scattering of data of about ±0.04E, there is no
clear systematic trend. Kinetic energies of horizontal motion
are negligibly small. This is expected: the major momentum
transfer to the jumping rods is in the vertical direction; lateral
motion is not directly excited by the plate, it may originate
from coupling to weak vibrational degrees of freedom of the
rods.

IV. DISCUSSION AND SUMMARY

An estimation of the efficiency of the particle excitation
can be made within a simple model when one assumes that
the momentum change during an impact is determined by the
relative velocities of plate and center of mass of the rod, the
restitution coefficient, and the probability that the plate is hit in
a certain phase of the oscillation. For spheres, that estimation
leads to a proportionality between the square of the maximum
vibrating plate velocity vmax and the mean energy. A similar
relation has been suggested on the basis of a dimensional
analysis by Falcon et al. [5].

Another relation suggested for jumping spheres, based on
numerical and experimental data [38], was scaling of the
mean energy with the form E(�max) = α�max + β. These
simulation results cannot easily be compared with our data
since Géminard and Laroche gave only the acceleration data (in
their Fig. 1), but it is not clear whether the oscillation amplitude
or velocity or both were varied. An experimental graph (Fig. 3
in Ref. [38]) provides in fact an amplitude dependence. In our
experiments, the two excitation parameters f and A were var-
ied separately, and we clearly found different characteristics of
E(f ) (nearly linear) and E(A) (clearly nonlinear). Therefore,
a general dependence on the plate acceleration does not exist
for the rods. From our experimental data based on separate
variations of plate frequency and amplitude, we have to
conclude that dependence on plate velocity or acceleration can
only be approximative in the rod experiments. This may reflect
a general difference to jumping spheres, or demand a separate
measurement of the two parameters in sphere experiments.
We note that similar conclusions were drawn, in a different
experiment with granular matter (a vertical shaken column of
spheres), from measurements of a critical acceleration, which
was found to depend on the shaking amplitude [45]. This
indicates that the question regarding the role of the individual
vibration parameters is more general than in the situation
studied here.

An important observation is that the vibrating plate es-
sentially excites the translational degree of motion normal
to the plate, while each of the rotational degrees of freedom
is more weakly excited by at least one order of magnitude.
This explains why we found an excess of translational kinetic
energy in earlier microgravity experiments of a permanently
excited granular gas [26]. There is a simple explanation for
that asymmetry: In principle, the effect of a collision of
one end of the rod at rest with a vibrating plate produces
an excess of rotational energy: If we assume a momentum

FIG. 8. Double impact, image sequence with 240 fps: the rod
first touches the plate with the lower end, momentum (upward) and
angular momentum (backward) are transferred. The center of mass
still moves towards the plate. Then the other end touches the plate, and
again momentum upward is transferred, but the angular momentum is
opposite to the first impact. Green circles mark the rod ends, dashed
circles mark the previous positions. The apparent slight bend of the
rod in the last two images and motion blurring is a camera artifact.

transfer of 
p = 2mvplate [or, in the case of a restitution
coefficient ε < 1, 
p = (1 + ε)mvplate] when a plate with
momentary velocity vplate hits one end, the kinetic energy
becomes Ez = (
p)2/(2m). The angular momentum transfer
is 
J = 
p�/2 sin θ when the rod axis is tilted by θ respective
to the plate normal, the related rotational energy is Erot =
(
J )2/(2I ) with I ≈ �2m/12. The ratio of the energies gained
by a resting rod during a single impact becomes Erot/Ez =
3 sin θ , and on average for isotropically distributed angles θ the
ratio is Erot/Ez = 2. There are several reasons why the impact
on a vibrating plate is much less effective for the excitation of
rotational motions. The most important one is that many jumps
are in fact double collisions: first the rod hits the plate with one
end, where momentum and angular momentum are exchanged.
Then, the center of mass will often continue to move towards
the plate, and the rod impacts with the other end. Thereby,
momentum is exchanged again, almost always additive to the
first collision. The angular momentum transferred to the rod
will almost exclusively oppose that of the first impact. Figure 8
visualizes such a typical event. Thus, the excitation of rotations
is much less efficient than that of the vertical jump velocity.

An interesting aspect is the comparison with Wright’s
experiments [44] with bouncing rods. However, that study
had a quite complementary focus, thus comparison is possible
only in few details. Wright et al. mention only in brief that the
rotational energy is much weaker than the translational energy,
which is in agreement with our results. In Wright’s study,
the one-dimensional observation prevented a quantitative
evaluation of the rotation data. The authors determined an
excitation threshold for particle flips. This can be compared
with our study by means of a back of the envelope estimate:
The average time needed for a flip (rod performs more than a
half rotation during one jump) is

Tflip ≈ π/ω = π

√
I

2Erot
≈ π�

√
m

24Erot
(3)

with the relevant moment of inertia I ≈ m�2/12, the particle
length �, and mass m. The mean jump time is

tj = 2v0/g

with the mean vertical velocity v0 = √
2Ez/m. Setting the

two times tj and Tflip equal provides us with an estimate of the
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threshold energy for a flip during the jump:

Tflip = π�

√
m

24Erot
= 2

g

√
2Ez

m
, (4)

√
ErotEz = π�mg√

192
. (5)

If we estimate the energies (using the experimental results of
Fig. 7) by (ErotEz)1/2 ≈ (0.1E · 0.9E)1/2 = 0.3E, we find

Eflip ≈ 0.24π�mg = 6.2 μJ

for the 15 mm rods, and about 1.5 μJ for the 7.5 mm rods. This
simple evaluation is in qualitative agreement with Wright’s
results of a more than linear increase of the flip threshold with
the rod length.

Another important question is the comparison of our
results on single particles with the excitation of granular
gases in a closed volume under microgravity conditions.
That situation is more complex, because particle interactions
between subsequent collisions with the plate have to be taken
into account. In principle, the efficiency of excitation is similar,
but one has to keep in mind that our experiment is strictly
correct for isolated grains only. If the grains interact with
each other in the volume, then a higher kinetic energy will
lead to a higher collision rate in the container [21] and to a
higher dissipation rate. This, in turn, will lead to a weaker
dependence of the mean kinetic energy in the ensemble on the
driving parameters. In particular, the ratio of container size and
area of the vibrating wall will be relevant. The results remain
valid, however, when one compares excitation parameters A

and f , which yield the same E in our single-rod experiment.
Finally, we need to discuss the general validity of our

observations for rods with other compositions, in particular for
homogeneous rods. We have tested that with two experiments
performed with homogeneous materials. The experiment
performed with glass rods failed completely, because such rods

charge electrostatically within a few jumps, and they finally
stick to the side walls or bottom plate. Similar electrostatic
charging was already mentioned in Ref. [44]. Furthermore we
performed an additional experiment with copper cylinders,
excited at a frequency of 30 Hz with different vibration
amplitudes A between 1.2 and 2.88 mm. The results are in full
qualitative agreement with those obtained with the wires. The
amplitude dependence of the total energy at fixed frequency
was E ∝ A3/2, clearly nonlinear, with a proportionality factor
of 7.5 μJ/mm3/2. In a loosely related system, a shaken
container with a few dozen steel spheres, Warr et al. [46]
measured the fluidization and the mean energy entry in the
system. They reported rather similar velocity dependencies
as for our single rod, and their scaling exponent was 1.3.
The numerical simulation of a related system by Luding et
al. [47] gave an exponent of 1.5. Even though these results
are not directly comparable with the present experiment, it is
interesting to see that a dependence of the excitation efficiency
on the vibrating plate velocity with an exponent around 1.5
is not unusual. The share of rotational energies compared
to the total kinetic energy ranged from 12% to 15%, with
no systematic trend in the excitation strength dependence.
This is in full accordance with the wire data. Because the
bare copper surface leads to optical reflexes that disturb the
image analysis and accurate particle detection, we did not
perform systematic investigations of the full frequency range.
It suffices to state that the amplitude dependence is the same,
and the larger prefactor originates from the larger mass of
the copper rods and certainly also from a different restitution
coefficient.
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