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Discontinuous change of shear modulus for frictional jammed granular materials
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The shear modulus of jammed frictional granular materials with harmonic repulsive interaction under an
oscillatory shear is numerically investigated. It is confirmed that the storage modulus, the real part of the shear
modulus, for frictional grains with sufficiently small strain amplitude γ0 discontinuously emerges at the jamming
transition point. The storage modulus for small γ0 differs from that of frictionless grains even in the zero friction
limit, whereas they are almost identical with each other for sufficiently large γ0, where the transition becomes
continuous. The stress-strain curve exhibits a hysteresis loop even for a small strain, which connects a linear
region for sufficiently small strain to another linear region for larger strain. We propose a scaling law to interpolate
between the states of small and large γ0.
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I. INTRODUCTION

When the packing fraction φ exceeds a critical value
φc, amorphous materials consisting of repulsive particles
such as granular materials, colloidal suspensions, foams, and
emulsions turn into jammed solids which have rigidity. Such
a transition, known as the jamming transition, has been the
subject of extensive studies over the last two decades [1,2]. For
frictionless grains, the pressure increases continuously from
φc, while the coordination number Z exhibits a discontinuous
transition at φc in the hard core limit [3,4].

An assembly of frictionless grains under a simple shear
exhibits a rheological continuous transition: the viscosity
diverges as φ approaches φc from below, while the yield
stress increases continuously above φc [5–27]. The jamming
transition is also characterized by the appearance of rigidity
under an oscillatory strain above φc. For sufficiently small
strain, the elastic modulus of frictionless grains is independent
of the strain and the critical exponents for the jamming
transition depend on the type of the local interaction [3,4,28].
We call this regime the linear response regime. For large strain,
recent studies [29–34] have revealed that the real part of the
shear modulus, the storage modulus G, of frictionless particles
decreases with increasing strain as a result of nonlinear
response because of slip avalanches [35,36]. The present
authors have proposed a scaling law of G to interpolate
between the linear and the nonlinear responses [30]. Note that
the storage modulus as the ratio of the stress to the strain can
be used even in the nonlinear response regime.

Most previous studies, however, assume that grains are
frictionless, though it is impossible to remove contact friction
in experiments of dry granular particles and the friction causes
drastic changes in rheology such as a discontinuous shear
thickening with a hysteresis loop near φc [37–52]. Somfai
et al. [53] numerically investigated the elastic moduli of a
frictional system with the aid of the density of state and found
that G/B with the bulk modulus B in the linear response
regime is proportional to �Z, the excess coordination number
relative to the isostatic value. They also found that �Z
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discontinuously appears at φc for frictional grains [53]. This
suggests that frictional grains with the harmonic repulsive
interaction exhibit a discontinuous change of G at φc even
in the frictionless limit contrast to a continuous change for
frictionless grains [3,4,28].

The difference of the linear elasticity between the fric-
tionless limit and the frictionless case casts doubt on the
expectation that the scaling laws for the elasticity of frictionless
grains can be confirmed in experiments of grains with
sufficiently small friction coefficient. The accessible shear
strain in the experiment [29], however, is too large and does
not correspond to the previous theoretical studies [3,4,30].
Also, little is known on the nonlinear elasticity of jammed
frictional grains. To clarify the effects of the contact friction
on the linear and the nonlinear elasticities, we numerically
investigate the shear modulus of two-dimensional frictional
granular materials near the jamming point under an oscillatory
shear.

The organization of this paper is as follows. In Sec. II, we
explain our setup and model. Section III deals with effects of
the friction on the storage modulus. In Sec. IV, we present a
scaling law for the storage modulus of frictional grains. We
discuss and conclude our results in Sec. V. In Appendix A, we
exhibit the dependence of the complex shear modulus on the
angular frequency ω. In Appendix B, we discuss the critical
condition of the appearance of the second plateau of the storage
modulus. Appendix C deals with the stress-strain curves for
various γ0. We explain the method to determine the transition
point depending on the friction coefficient μ in Appendix D. In
Appendix E, we present the method to estimate the exponents
for the scaling law.

II. SETUP OF SIMULATION

Let us consider a two-dimensional assembly of N frictional
granular particles. They interact with each other through the
Cundall-Strack model with an identical mass density ρ in a
square periodic box of linear size L [54]. The position, the
velocity, and the angular velocity of the grain i are respectively
denoted by r i , vi , and ωi ẑ, where we have introduced the unit
vector ẑ parallel to the z axis (perpendicular to the considering
plane). To avoid crystallization, we use a bidisperse system
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which includes an equal number of grains of diameters d0 and
d0/1.4, respectively.

The contact force Fij between grain i and grain j consists
of the normal part F(n)

ij and the tangential part F(t)
ij as Fij =

F(n)
ij + F(t)

ij . The normal contact force F(n)
ij is given by

F(n)
ij = F(n,el)

ij + F(n,vis)
ij , (1)

where

F(n,el)
ij = k(n)(dij − |r ij |)�(dij − |r ij |)nij , (2)

F(n,vis)
ij = −η(n)v

(n)
ij �(dij − |r ij |)nij , (3)

with the normal spring constant k(n) and the normal viscous
constant η(n). Here, r ij , nij , v(n)

ij , and dij are respectively given

by r ij = r i − rj , nij = r ij /|r ij |, v
(n)
ij = (vi − vj ) · nij , and

dij = (di + dj )/2 with the diameter di of grain i. In Eqs. (2)
and (3), we have introduced the Heaviside step function �(x)
defined by �(x) = 1 for x � 0 and �(x) = 0 otherwise.

Similarly, the tangential friction force F(t)
ij is given by

F(t)
ij = min

(
F̃

(t)
ij ,μ

∣∣F(n,el)
ij

∣∣)sign
(
F̃

(t)
ij

)
t ij , (4)

where min(a,b) selects the smaller one between a and b,
sign(x) is 1 for x > 0 and −1 for x < 0, and F̃

(t)
ij is given

by

F̃
(t)
ij = k(t)δ

(t)
ij − η(t)v

(t)
ij (5)

with t ij = (−rij,y/|r ij |,rij,x/|r ij |). Here, k(t), η(t), and μ are
the tangential spring constant, the tangential viscous constant,
and the friction coefficient, respectively. The tangential ve-
locity v

(t)
ij and the tangential displacement δ

(t)
ij are respectively

given by

v
(t)
ij = (vi − vj ) · t ij − (diωi + djωj )/2, (6)

δ
(t)
ij =

∫
stick

dt v
(t)
ij , (7)

where “stick” on the integral implies that the integral is only
performed when the condition |F̃ (t)

ij | < μ|F(n,el)
ij | is satisfied.

Equations (4)–(7) indicate that the tangential contact force F(t)
ij

in quasistatic motion is constrained by the Coulomb criterion:
|F(t)

ij | = k(t)δ
(t)
ij in the “stick region” for |δ(t)

ij | < μ|F(n)
ij |/k(t),

while |F(t)
ij | remains μ|F(n)

ij | in the “slip region” for |δ(t)
ij | �

μ|F(n)
ij |/k(t). Additionally, we have introduced the torque Ti

on grain i as

Ti = −
∑

j

di

2
F(t)

ij · t ij . (8)

In this model, we apply an oscillatory shear along the y

direction under the Lees-Edwards boundary condition [55].
The Sllod equations of motion are used to stabilize the uniform

sheared state as

d r i

dt
= pi

mi

+ γ̇ (t)ri,y x̂, (9)

d pi

dt
=

∑
j �=i

Fij − γ̇ (t)pi,y x̂, (10)

Ii

dωi

dt
= Ti, (11)

where we have introduced the time dependent shear rate γ̇ (t),
the peculiar momentum pi defined by Eq. (9), the unit vector
parallel to the x direction, x̂, the mass mi = πρd2

i /4, and the
moment of inertia, Ii = mid

2
i /8.

As an initial state, the disks are randomly placed in the
system with the initial packing fraction φI = 0.75. After
relaxing the system to a mechanical equilibrium state, we
compress the system without shear in small steps until the
packing fraction reaches a given value φ. In each step, we
change the linear system size and the position of grain i as

L(ns+1) = L(ns )

√
φ(ns )

φ(ns+1)
, (12)

r (ns+1)
i = r (ns )

i

√
φ(ns )

φ(ns+1)
, (13)

and relax the grains to the mechanical equilibrium state. Here,
L(ns ), r (ns )

i , and φ(ns ) denote the system size, the position of the
grains i, and the packing fraction at the ns th step, respectively.
The increment of the packing fraction in the compression
process is denoted by �φ ≡ φ(ns+1) − φ(ns ). Here, we regard
the state for T < Tth as the mechanical equilibrium state,
where we have introduced the kinetic temperature T ≡∑

i | pi |2/(2miN ) and a threshold Tth. It should be noted that
the origin of the coordinate axes is located at the center of the
system.

The system is subjected to an oscillatory shear with the
shear strain γ (t) = γ0{1 − cos(ωt)}, where γ0 and ω are the
strain amplitude and the angular frequency, respectively. Then,
we measure the storage modulus defined by [56]

G(γ0,μ,φ) = −ω

π

∫ 2π/ω

0
dtσ (t) cos(ωt)/γ0 (14)

with the shear stress given by

σ (t) = − 1

L2

N∑
i

∑
j>i

rij,x(t)Fij,y(t)

− 1

L2

N∑
i

pi,x(t)pi,y(t)

mi

. (15)

Note that the loss modulus exhibits only a linear dependence
on ω and its φ dependence is relatively small. We also point
out that G is almost independent of ω when the time period of
the oscillatory shear is sufficiently larger than the relaxation
time of the configuration of the grains. We, thus, focus on the
dependence of G only on γ0, μ, and φ for sufficiently small ω.
The detailed ω dependence of the storage and the loss moduli
are shown in Appendix A.
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FIG. 1. The storage modulus G against γ0 for μ = 10−2, 10−3,
10−4, 10−5, and 0 at φ = 0.87.

Let us summarize a set of parameters used in our simulation.
We use k(t) = k(n) and η(n) = η(t) =

√
m0k(n), where m0 is the

mass of a grain with diameter d0. This set of parameters
corresponds to the constant restitution coefficient e = 0.043.
We adopt the leapfrog algorithm with the time step �t =
0.05τ , where τ is the characteristic time of the stiffness,
i.e., τ =

√
m0/k(n). The number N of grains is 4000. We

have checked that the shear modulus is independent of N

for N � 4000. We fix the parameters Tth = 10−8(k(n)d2
0 ),

�φ = 10−4, and ω = 10−4τ−1. We have confirmed that our
results in the main text are insensitive to Tth, �φ, and ω if they
are sufficiently small.

III. STORAGE MODULUS FOR A GIVEN
PACKING FRACTION

To begin with, we study the dependence of the storage
modulus on the friction coefficient μ. In Fig. 1, we plot G

against γ0 for various μ at φ = 0.87. For each μ, G is almost
independent of γ0 in the linear response regime, while G

decreases with γ0 in the nonlinear response regime. In the
linear response regime, G for μ > 0 is almost independent
of μ but differs from that for μ = 0 [53]. In the nonlinear
response regime, the storage moduli for μ = 0 and μ > 0 are
almost identical to each other. It is noteworthy that the range
of the linear response becomes narrower as μ decreases, and
G for μ = 10−5 and 10−4 have second plateaus. As is shown
in Appendix B, there is no second plateau for relatively large
μ (see the details of the critical condition in Appendix B). We
confirm that storage moduli for various φ depend on the order
of the limits:

lim
μ→+0

lim
γ0→+0

G(γ0,μ,φ) �= lim
γ0→+0

G(γ0,μ = 0,φ). (16)

The dependence of G on μ and γ0 in Fig. 1 can be explained
from the stress-strain curves shown in Fig. 2, where we plot
the intrinsic shear stress σ (γ ) − σ (0) against the shear strain
γ for various μ at γ0 = 10−6 and φ = 0.87. For each μ,
σ (γ ) − σ (0) is proportional to γ for sufficiently small γ .
The proportionality constant for μ > 0 is independent of μ

but is larger than that for μ = 0 as in Eq. (16). The range

FIG. 2. The intrinsic shear stress σ (γ ) − σ (0) against γ with
μ = 10−4, 10−5, 10−6, and 0 for γ0 = 10−6 and φ = 0.87.

of the linear response becomes narrower as μ decreases, and
the stress-strain curve at μ = 10−6 exhibits a hysteresis loop
which connects the first linear region for sufficiently small
γ with the second linear region. The gradient for the second
linear region is identical to that of the frictionless grains, which
results in the second plateau shown in Fig. 1. This behavior has
its origin in the change of the tangential friction from the stick
region to the slip region. The γ0 dependence of the stress-strain
curve is shown in Appendix C.

IV. SCALING LAW

Next, we examine how the storage modulus depends on
φ. In Figs. 3 and 4, we plot G against φ for various γ0 at
μ = 10−2 and μ = 10−5, respectively. For the smallest strain
amplitude of each μ, G exhibits a discontinuous transition at
φc � 0.84. As γ0 increases, the discontinuity at φc decreases
and the transition becomes asymptotically continuous, where
G is approximately proportional to φ − φc. It should be noted
that G for μ = 10−5 is insensitive to γ0 between γ0 � 10−5

and 10−4, corresponding to the second plateau shown in Fig. 1.

FIG. 3. The storage modulus G against φ for γ0 = 10−6, 10−5,
10−4, and 10−3 at μ = 10−2.
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FIG. 4. The storage modulus G against φ for γ0 = 10−8, 10−7,
10−6, 10−5, 10−4, 10−3, 10−2, and 10−1 at μ = 10−5.

Here, we propose a scaling law for the storage modulus
near the transition point:

G(γ0,μ,φ) = G(lin)(μ,φ)F
(

γ0

μb1{φ − φc(μ)}b2

)
, (17)

where F(x) is the scaling function satisfying

lim
x→0

F(x) = 1, lim
x→∞F(x) ∼ x−c (18)

with exponents b1, b2, and c, and we have introduced

G(lin)(μ,φ) ≡ lim
γ0→+0

G(γ0,μ,φ). (19)

In Eq. (17), we have used the jamming point φc(μ) depending
on μ, which is determined by the method explained in
Appendix D. Figure 5 confirms the validity of the scaling
plot [Eq. (17)], where we have determined G(lin)(μ,φ) by the
extrapolation of the limit γ0 → +0 using the data for γ0 �
10−7. The critical exponents used in Eq. (17) are estimated as

b1 = 1.00 ± 0.02, b2 = 0.90 ± 0.02, c = 1.13 ± 0.02,

(20)
which are determined by the method explained in Appendix E.
It should be noted that the scaling law cannot be applied to the
region of the second plateau in Fig. 1.

FIG. 5. Scaling plot of Eq. (17) of G. Each symbol in the
legend is characterized by (γ0,μ), but each one has the data for
φ − φc = 0.0001, 0.0002, 0.0005, 0.001, 0.01, and 0.03. The solid
line represents scaling function (E1) in Appendix E.

FIG. 6. The storage modulus G0(μ) for μ > 0 at φc in the linear
response region. The smallest value of μ in this plot is 0.01. The open
circle at the origin represents the result for frictionless grains.

In Eq. (17), we have assumed that the critical strain γc

characterizing the crossover from the linear to the nonlinear
response regimes is proportional to μb1 (φ − φc)b2 . The expo-
nents b1 and b2 in Eq. (20) may be understood as follows. First,
γc is expected to satisfy γc ∼ δ(t)

c with the critical tangential
displacement δ(t)

c characterizing the change of the tangential
friction F (t) to the slip region. Then, we deduce δ(t)

c ∼ μF (n)

with the average contact force F (n) ∼ (φ − φc) for grains with
the harmonic repulsive interaction [10,11]. Thanks to the
above relations, we obtain γc ∼ μb1 (φ − φc)b2 with b1 = 1
and b2 = 1, which are not far away from the estimated values
in Eq. (20). We, however, do not identify the reason why the
evaluation of b2 deviates a little from the numerical value.

It should be noted that the scaling form of Eq. (17) is
analogous to that for the frictionless case proposed in Ref. [30],
though the μ dependence is not included and c is 1/2 in
the conventional scaling. In addition, a numerical simulation
of frictionless grains in Ref. [34] reveals that the linear
response regime becomes narrower as φ approaches φc, which
is consistent with the behavior described by Eq. (17). The
main difference between Eq. (17) and the previous results is
that Eq. (17) represents the crossover from the stick to the
slip branch, while the previous studies deal with the crossover
from the slip to the avalanche branch.

We have also confirmed that the storage modulus
G(lin)(μ,φ) in the linear response regime exhibits a discon-
tinuous transition at φc. To give further evidence, we plot the
storage modulus at φc defined as

G0(μ) ≡ lim
φ→+φc

G(lin)(μ,φ) (21)

against μ in Fig. 6, where G0(μ) has a maximum value in the
frictionless limit.

The μ dependence of G0(μ) can be explained by the relation
between the storage modulus and the excess coordination num-
ber [53]. Figure 7 plots G0(μ) against the excess coordination
number Z0(μ) − Ziso for various μ, where Z0(μ) and Ziso = 3
are the coordination number at φc and the isostatic value of
the coordination number for two dimensional frictional grains,
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FIG. 7. G0(μ) against Z0(μ) − Ziso for μ = 0.01, 0.05, 0.1, 0.2,
0.3, 0.5, 0.7, and 1.0. The solid line represents Eq. (22).

respectively. As shown in Ref. [53], G0(μ) satisfies

G0(μ) ∝ Z0(μ) − Ziso. (22)

It is known that Z0(μ) continuously decreases with in-
creasing μ from the isostatic value, 4, for frictionless
grains [37,53,57,58]. In fact, Z0(μ) in our model exhibits
identical behavior to that in Ref. [37] as shown in Fig. 8.
It should be noted that Z0(μ) in our system under oscillatory
shear is qualitatively consistent with that of the previous result
under steady shear [37]. These results explain the decrease of
G0(μ) with increasing μ shown in Fig. 6.

We have also found that G(lin)(μ,φ) satisfies

G(lin)(μ,φ) − G0(μ) ∝ {φ − φc(μ)}a, (23)

which is verified in Fig. 9. In the inset of Fig. 9, we plot
the exponent a evaluated by the least squares method against
μ, which is almost independent of μ and estimated as a =
0.52 ± 0.1. It should be noted that the previous numerical
results suggest a = 1/2 [53].

FIG. 8. The coordination number Z0 at the transition point φc

against μ for the present system under oscillatory shear and the
system in Ref. [37] under steady shear.

FIG. 9. G(lin)(μ,φ) − G0(μ) against φ − φc(μ) for μ = 0.01,
0.05, 0.1, 0.5, and 1.0. The solid line represents Eq. (23) with a = 1/2.
Inset: The exponent a evaluated by the least squares method against
μ. The solid line represents a = 1/2.

We have summarized our results by two scaling laws
derived from Eqs. (17) and (23):

lim
γ0→+0

G(γ0,μ,φ) = G0(μ) + A(μ){φ − φc(μ)}a (24)

for the discontinuous transition in the linear response regime
and

lim
φ→+φc

G(γ0,μ,φ) ∝ G0(μ)

(
μb1 (φ − φc(μ))b2

γ0

)c

(25)

for the continuous transition in the nonlinear response regime,
where A(μ) depends only on μ. We note that the scaling
law, Eq. (25), with b2 = 0.90 and c � 1.13 indicates G ∼
(φ − φc)b2c � (φ − φc) in the nonlinear response regime. This
might suggest that the scaling of G is identical to that of the
pressure P [30].

V. DISCUSSION AND CONCLUSION

Let us discuss our results. Tighe predicted that the storage
modulus is independent of ω and the loss modulus is
proportional to ω for a model of emulsions with sufficiently
small ω [59]. This prediction for small ω is consistent with our
results shown in Appendix A, but we have not confirmed the
scaling of the complex shear modulus G∗ ∼ ω1/2 predicted for
intermediate ω.

In this paper, we have proposed the scaling law for the shear
modulus of grains with the harmonic repulsive interaction.
From the analogy of the frictionless case [30], we expect the
exponent b2 = 3/2 for a Heltzian contact model because of
the relation γc ∼ δ(t)

c ∼ μF (n) with F (n) ∼ (φ − φc)3/2. The
confirmation of this conjecture will be the subject of further
study.

There are some studies to focus on the role of percolation in
the jamming [60–63]. In the system exhibiting a conventional
percolation, the critical exponents for the storage modulus
depend on the spatial dimension [64], but the exponents of
the jamming transition are independent of the dimensionality,
at least for frictionless grains [11]. Further careful study
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on the relation between percolation and jamming should be
necessary.

An important finding of this paper is the scaling law (17)
interpolating between the linear and the nonlinear response
regimes for frictional grains. Somfai et al. found that the shear
modulus of frictional grains in the linear response regime
is proportional to the excess coordination number �Z [53].
Based on this result, a recent review paper suggested that
there is no scaling of the mechanical properties as a function
of φ − φc for frictional grains because �Z of the frictional
grains remains finite even at φc [2]. Our scaling plot based on
Eq. (17), however, gives a counter evidence of the existence
of the scaling law. We also note that Ref. [53] has ignored the
change of the tangential contact force to the slip region, but
this effect becomes significant in the vicinity of φc for finite γ0

as can be seen in Eq. (17). To our knowledge, this effect has
not been indicated in previous studies.

In conclusion, we have numerically investigated the fric-
tional granular particles. The storage modulus in the linear
response regime for frictional grains differs from that for
frictionless grains even in the zero friction limit, whereas they
are almost identical in the nonlinear response regime. This
dependence on the tangential friction has been explained from
the stress-strain curve shown in Fig. 2. We have also proposed
a scaling law that interpolates between the discontinuous
transition for infinitesimal strain and the continuous one for
finite strain. This scaling law has been verified through our
simulation.

ACKNOWLEDGMENTS

The authors thank O. Dauchot, H. Yoshino, T. Yamaguchi,
F. van Wijland, T. Kawasaki, K. Saitoh, S. Takada, and K.
Miyazaki for fruitful discussions. This work is partially sup-
ported by the Grant-in-Aid of MEXT for Scientific Research
(Grants No. 16H04025, No. 17H05420, and No. 25800220).
One of the authors (M.O.) appreciates the warm hospitality of
Yukawa Institute for Theoretical Physics at Kyoto University
during his stay there supported by the Programs No. YITP-T-
15-04 and No. YITP-W-15-19.

APPENDIX A: FREQUENCY DEPENDENCE OF
STORAGE AND LOSS MODULI

In this appendix, we show the dependence of the complex
shear modulus G∗ = G + iG′′ on ω in the linear response
regime. In Fig. 10, we show the storage modulus G against ω

for various φ at μ = 1.0 and γ0 = 10−7. As shown in Fig. 10, G
for each φ is almost independent of ω for ωτ < 10−2. Hence,
we have not discussed the ω dependence of G in the main text.

Figure 11 exhibits the loss modulus G′′ against ω for various
φ at μ = 1.0 and γ0 = 10−7. Here, G′′ is given by

G′′ = ω

π

∫ 2π/ω

0
dtσ (t) sin(ωt)/γ0. (A1)

As shown in Fig. 11, G′′ is almost proportional to ω. These
ω dependencies of G and G′′ indicate that the rheological
properties in our model are essentially described by the Kelvin-
Voigt model, which is in agreement with the prediction for
sufficiently small ω in Ref. [59]. This result is reasonable

FIG. 10. The storage modulus G against ω for φ − φc = 0.03,
0.003, and 0.0003 at μ = 1.0 and γ0 = 10−7.

because the Cundall-Strack model relies on the Kelvin-Voigt
model [54]. Moreover, the φ dependence of G′′ is not clearly
visible. Hence, we have investigated only G in the main text.

Although we could not observe the scaling G′′ ∼ ω1/2

proposed in Ref. [59] from our simulation as in Fig. 11,
we still cannot eliminate the possibility that our condition
does not satisfy that for the scaling. Indeed, the condition
for the scaling is written as ωτ > �Z2 where τ =

√
m0/k(n)

and �Z = Z − Ziso, but the largest ωτ is 10−1 in Fig. 11
and �Z ≈ 0.1 for μ = 1.0. Therefore, it is obvious that the
condition for the scaling is not satisfied in our case. In other
words, the scaling might be observed for the model of the large
friction constant in large ωτ regime. This is one of our future
problems.

APPENDIX B: THE SECOND PLATEAU OF G

In this appendix, we discuss the critical condition of
the appearance of the second plateau observed in Fig. 1.
Figure 12 exhibits G against γ0 for various μ at φ = 0.845,
which corresponds to φ − φc ≈ 0.003. Because φ is closer

FIG. 11. The loss modulus G′′ against ω for φ − φc = 0.03,
0.003, and 0.0003 at μ = 1.0 and γ0 = 10−7. The solid line represents
G′′ ∼ ω.
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FIG. 12. The storage modulus G against γ0 for μ = 0.007, 0.004,
0.001, 0.0001, 0.00001, and 0 at φ = 0.845.

to φc, the values of G at the first and the second plateaus is
smaller than those in Fig. 1 for φ = 0.870, which corresponds
to φ − φc ≈ 0.03. The qualitative behavior for φ = 0.845,
however, is similar to that for φ = 0.870.

As shown in Figs. 1 and 12, the second plateau disappears
as μ increases. To discuss the critical friction coefficient μc(φ)
at which the second plateau vanishes, we regard the existence
of the inflection points in Figs. 1 and 12 as the index of the
second plateau. In Fig. 13, we plot

Q(γ0,μ,φ) ≡ d2 ln{G(γ0,μ,φ)/k(n)}
d{ln γ0}2

(B1)

against γ0 for μ = 0.001 and 0.007 at φ = 0.845. Q for
each μ has a peak above γ0 = 10−4. Here, we define the
maximum peak value as Qpeak, and Qpeak > 0 corresponds
to the existence of the inflection points Q = 0: the existence
of the second plateau. Hence, we conclude that the second
plateau exists for μ = 0.001, while it vanishes for μ = 0.007
at φ = 0.845.

In Fig. 14, we show Qpeak against μ for φ = 0.845 and
0.870. As shown in Fig. 14, the transition from Qpeak > 0 to
Qpeak < 0 occurs around μ ≈ 0.004 for φ = 0.845, while Q

is expected to be zero around μ = 0.009 for φ = 0.870. This

FIG. 13. Q against γ0 for μ = 0.001 and 0.007 at φ = 0.845.

FIG. 14. Qpeak against μ for φ = 0.845 and 0.870.

indicates that μc(φ) depends on φ. Further careful study on
μc(φ) with extensive numerical efforts should be necessary
but is out of the scope of this paper.

APPENDIX C: THE STRESS-STRAIN CURVES
FOR VARIOUS γ0

In this appendix, we demonstrate the dependence of the
stress-strain curve on γ0. Figure 15 exhibits the intrinsic shear
stress σ (γ ) − σ (0) against the shear strain γ for various γ0

at μ = 10−6 and φ = 0.87. For γ0 = 10−7, σ (γ ) − σ (0) is
proportional to γ , but the constant of proportionality is larger
than that of frictionless grains indicated by the dotted line.
The reason for the difference in the constant of proportionality
is that the increase of the tangential friction force |F(t)

ij | in the
stick region enlarges σ (γ ) − σ (0) for μ > 0 under sufficiently
small γ . As γ0 increases, the stress-strain curve exhibits a
nonlinear behavior: a hysteresis loop connects the first linear
region for sufficiently small γ with the second linear region
for γ > 10−6, where the gradient of the second linear region
is identical to that of the frictionless grains. The second linear

FIG. 15. The intrinsic shear stress σ (γ ) − σ (0) against γ for γ0 =
3.0 × 10−6, 1.0 × 10−6, and 1.0 × 10−7 at μ = 10−6 and φ = 0.87.
The dotted line indicates σ (γ ) − σ (0) for γ0 = 3.0 × 10−6 at μ = 0
and φ = 0.87.
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FIG. 16. The storage modulus G against φ at μ = 0.01 and γ0 =
10−7. “Sample 1” and “Sample 2” indicate the data obtained from
different initial configurations, respectively.

region originates from the fact that |F(t)
ij | remains constant in

the slip region and does not contribute to enlarge σ (γ ) − σ (0).

APPENDIX D: DETERMINATION OF TRANSITION POINT

In this appendix, we explain the method to determine the
transition point φc(μ). To estimate φc(μ), we first prepare
assemblies with different packing fractions obtained from the
same initial configuration of grains with the friction coefficient
μ. Then, we apply the oscillatory shear to measure G for suffi-
ciently small shear amplitude (γ0 = 10−7) and plot G against
φ as shown in Fig. 16, which plots the data at μ = 0.01 and
γ0 = 10−7 obtained from different initial configurations. The
storage modulus G changes discontinuously around φ = 0.84,
but the critical fraction depends on the initial configuration.
Then, we define φc(μ) for each initial configuration as the
minimum value of φ where G for a given initial configuration
exceeds Gth = 10−3k(n). In Fig. 17, we plot the average of

FIG. 17. The plots of transition points φc against μ.

φc(μ) against μ. φc(μ) decreases with increasing μ, which is
consistent with the previous numerical results [37,58]. Because
the increment �φ of the packing fraction in the compression
process is 10−4, the value of the precision for φc is less than
10−4.

APPENDIX E: METHOD TO DETERMINE
THE EXPONENTS

In this appendix, we explain the method to determine the
exponents in the scaling plot proposed in the main text. Here,
the exponents are determined by the Levenberg-Marquardt
algorithm [65], where we have assumed the functional form
of the scaling function as

F(x) = 1

1 + e
∑Nn

n=0 An(ln x)n
(E1)

with the fitting parameters Nn = 1, A0 = −1.13 ± 0.22, and
A1 = 1.13 ± 0.02. We have checked the numerical estimation
of b1 and b2 with Nn � 2, but An for n � 2 are almost zero,
implying that the exponent c in Eq. (4) of the main text is
approximately equal to c ≈ A1 = 1.13.
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