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Effect of impurities on chirality conversion by grinding
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We study the effect of chiral impurities on Viedma ripening using a simple reaction model. The exponential
amplification of the enantiomeric excess (EE) is greatly accelerated by a smaller growth rate of solids with
monomers caused by the chiral impurities. From the analysis of the model, it is found that the time evolution of
the EE is essentially described by a second-order differential equation. The effect of chiral impurities is that the
unstable fixed point is shifted from the racemic point, which leads to the linear amplification behavior observed
experimentally. The analysis also shows a possibility of an oscillatory decay of the EE.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking of sodium chlorate
(NaClO3) crystallization was found by Kondepudi et al. [1–3].
NaClO3 crystals were made from a supersaturated solution
with stirring, and almost all crystals grown from the solution
in each experiment has the same chirality, which is completely
random. The cause of this phenomenon is attributed to
secondary nucleation [2–8]. A large nucleus is broken into
pieces by stirring, and generated small nuclei which work as
crystal seeds in the solution. In 2005, Viedma demonstrated
the complete chiral resolution of NaClO3 crystals (which is
called Viedma ripening) in which secondary nucleation is
irrelevant [9]. Chiral crystals of both chirality are put in a
saturated solution with glass beads and the solution is stirred.
Crystals are ground by the glass beads, and the enantiomeric
excess (EE) is amplified exponentially with time. At the end,
all crystals have the same chirality, that is, the other type of
crystals initially present disappear. The minority type crystals
are converted to the majority type.

After the discovery of Viedma ripening, similar phenomena
have been found for various organic molecules [10,11]. By
stirring a solution with crystals and glass beads, a small initial
EE of solids in a solution can be amplified and enantiopure
crystals are obtained. Making enantiopure crystals is important
in chemical engineering, and finding the mechanism is
interesting from the viewpoint of physics and chemistry. It is
arguable what kind of kinetic growth processes are important.
To explain Viedma ripening, several theoretical models have
been proposed such as cluster incorporation [12–24], surface
reaction [25], and mutual inhibition [26,27]. These models,
which are based on an autocatalytic reaction and a recycling
process [3,28], can reproduce the exponential amplification of
EE observed in experiment.

Noorduin et al. [29] reported a complete chiral resolution of
amino acid crystals by Viedma ripening with chiral additives.
They pointed out that the chirality of prevailing crystals is
the opposite to that of the additive. Steendam et al. [24] have
also performed a similar experiment and observed a linear
amplification of the EE with chiral additives. Using a rate
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equation model with the cluster incorporation mechanism [14],
the linear amplification of the EE is reproduced by a change
of the reaction rate due to chiral additives [24]. However, it is
difficult to connect their conclusion to the case without chiral
impurities because their assumption that the masses of crystals
change linearly in time during the EE amplification cannot be
applied.

In this paper, we study in detail the effect of chiral impurities
on the EE amplification using a simple rate equation model
similar to that of Ref. [24]. Our purpose is to specify (i) which
kinetic process is important on the EE amplification, and (ii)
what causes the change from the exponential amplification to
the linear amplification by adding chiral impurities. In Sec. II,
our rate equation model is introduced. From numerical results,
we obtain the apparent linear amplification of the EE in certain
cases and specify the key process of the EE amplification in
Sec. III. We will show that the unstable fixed point of the
exponential amplification of the EE in a phase space is shifted
from the racemic state when chiral impurities suppress the
reaction rate. This is the origin of the linear amplification. We
summarized our results in Sec. IV.

II. RATE EQUATION ANALYSIS

In the grinding experiments [9–11], crystals are ground by
stirring a solution with glass beads. The simple reaction model
can reproduce the behavior of the exponential amplification of
the EE [12]. The system is uniform and the size distribution
of crystals does not seem to be crucial. Steendam et al. [24]
have shown the effect of chiral impurities experimentally and
theoretically for an organic system. Using a six-component
system (two chiral molecules, two chiral clusters, and two
chiral solids) based on the simple reaction model [14],
they studied the effect of impurities. If the reaction rates
between monomers and solids, and those between monomers
and clusters for one chiral species are suppressed by chiral
impurities, the linear amplification of the EE appears.

In this paper, the effect of chiral impurities on the EE
amplification is studied again using a simplified rate equation
model based on Ref. [24]. Since Steendam et al. found that
the behavior of the EE amplification is not sensitive to the
racemization rate of molecules when the racemization rate is
fast enough, we take the limit of fast racemization. Our model
has masses of the five components: achiral molecules Z in a
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FIG. 1. Schematic view of the reaction processes of (a) type I impurities and (b) type II impurities.

solution, a pair of chiral clusters Xc and Yc, and a pair of chiral
solids Xs and Ys. The system also corresponds to the inorganic
system such as NaClO3.

Two types of chiral impurities are considered. The first type
changes the equilibrium balance of each component (type I),
and the second one does not change the equilibrium balance
but the growth and dissolution rates (type II). In the first
case, the enantiopure state can be achieved without the cluster
reaction [30]. The special case of the second type is studied
in Ref. [24]. Here, we study the simple reaction model in
more detail to find the kinetic process crucial to the chirality
conversion.

We describe the system with the relative ratio of masses:
z, xc, yc, xs, and ys. They are the normalized masses of the
monomers Z, the chiral clusters Xc,Yc, and the chiral solids
Xs,Ys, respectively. The total mass is conserved: z + xc +
yc + xs + ys = 1. The monomers and the chiral clusters are
the growth units in our system as shown in Figs. 1(a) and 1(b).
Here, we introduce two types of impurities to the simple
reaction model, whose reactions are summarized in Table I.
Type I impurities make the growth rate of Y crystals smaller
with reduction factors αI, βI, and γI:

ż = −(k1cz − λ1c)xc − (αIk1cz − λ1c)yc

− (k1sz − λ1s)xs − (βIk1sz − λ1s)ys, (1)

ẋc = (k1cz − λ1c)xc − (kcsxc − λcs)xs, (2)

ẏc = (αIk1cz − λ1c)yc − (γIkcsyc − λcs)ys, (3)

TABLE I. All reactions in Fig. 1.

Type I Type II

Z + Xc

λ1c
↼−−−−−−⇁

k1c

Xc Z + Xc

λ1c
↼−−−−−−⇁

k1c

Xc

Z + Yc

λ1c
↼−−−−−−⇁

αk1c

Yc Z + Yc

αλ1c
↼−−−−−−⇁

αk1c

Yc

Z + Xs

λ1s
↼−−−−−−⇁

k1s

Xs Z + Xs

λ1s
↼−−−−−−⇁

k1s

Xs

Z + Ys

λ1s
↼−−−−−−⇁

βk1s

Ys Z + Ys

βλ1s
↼−−−−−−⇁

βk1s

Ys

Xc + Xs

λcs
↼−−−−−−⇁

kcs
Xs Xc + Xs

λcs
↼−−−−−−⇁

kcs
Xs

Yc + Ys

λcs
↼−−−−−−⇁

γkcs
Xs Yc + Ys

γ λcs
↼−−−−−−⇁

γkcs
Ys

ẋs = (k1sz − λ1s)xs + (kcsxc − λcs)xs, (4)

ẏs = (βIk1sz − λ1s)ys + (γIkcsyc − λcs)ys. (5)

Type II impurities make the growth and dissolution rates of Y
crystals smaller with the same ratio αII, βII, and γII:

ż = −(k1cz − λ1c)xc − αII(k1cz − λ1c)yc

− (k1sz − λ1s)xs − βII(k1sz − λ1s)ys, (6)

ẋc = (k1cz − λ1c)xc − (kcsxc − λcs)xs, (7)

ẏc = αII(k1cz − λ1c)yc − γII(kcsyc − λcs)ys, (8)

ẋs = (k1sz − λ1s)xs + (kcsxc − λcs)xs, (9)

ẏs = βII(k1sz − λ1s)ys + γII(kcsyc − λcs)ys. (10)

The terms with k1c and k1s represent the growth of chiral
clusters and chiral solids with monomers. The terms with
kcs represent the growth of chiral solids with chiral clusters.
The terms with λ1c and λ1s represent decay of chiral clusters
and chiral solids by detachment of monomers. The terms
with λcs represent decay of chiral solids by detachment of
chiral clusters. The coefficients α, β, and γ represent the
reduction ratios of the related rates by the chiral impurities.
When αII = βII and γII = 1, the system is the same as the fast
racemization limit of Ref. [24]. The values of parameters we
use in the numerical calculation are k1c = 0.1, k1s = kcs = 1,
λ1c = 0.05, λ1s = λcs = 0.1 [31]. The initial values of the
relative masses are z = 0.1, xc = yc = 0.05, xs = 0.44, and
ys = 0.36.

III. RESULTS AND INTERPRETATION

Figure 2 shows the time change of the EE of solids
φs defined by φs = (xs − ys)/(xs + ys) for the initial EE
φs(0) = 0.1. With type I impurities, the amplification of the
EE is accelerated in all cases we tried as shown in Fig. 2(a).
When the growth rate between monomers and clusters is
reduced, the effect of the reduction parameter α on the EE
amplification is rather small (green). When the growth rate
between monomers and solids (blue) or that between clusters
and solids (magenta) is reduced, clear acceleration is visible.
In particular, in the case of the reduction of the growth rate
between monomers and solids, the linear amplification is seen.
With type II impurities, when the rate between monomers and
clusters or that between clusters and solids is suppressed [green
or magenta in Fig. 2(b)], the EE becomes negative, and the
initial minority crystals Ys dominate. When the rate between
monomers and solids is suppressed, the amplification of the
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FIG. 2. Time dependence of φs with (a) type I impurities for
(αI,βI,γI) = (0.9,1,1) (green dashed), (1,0.9,1) (blue dotted), and
(1,1,0.9) (magenta dash-dotted), and (b) type II impurities for
(αII,βII,γII) = (0.25,1,1) (green dashed), (1,0.25,1) (blue dotted),
and (1,1,0.25) (magenta dash-dotted). The red solid line in both
figures shows the EE without impurities.

EE is accelerated and the linear amplification is seen (blue).
The effect of type I impurities is simple, and that of type II
impurities seems to have some complexity.

We study the time development of the EE as seen in Fig. 2
in detail. Without grinding, a stable steady state with xs =
ys �= 0 is interpreted as the stable racemic state where the
EE is 0. From previous studies such as Refs. [12,28], in the
time development the system starting from near the racemic
state achieves a homochiral state under grinding. The grinding

makes the racemic state unstable and the exponential ampli-
fication appears when the system escapes from the racemic
state to the homochiral state. The racemic state is the unstable
fixed point (zu,xu

c ,yu
c ,xu

s ,yu
s ) of Eqs. (1)–(5) or (6)–(10) in

the case without chiral impurities. With impurities, the time
development of the EE of clusters, φc = (xc − yc)/(xc + yc),
and that of solids φs for type I impurities are obtained from
Eqs. (1)–(5) as

φ̇c = −kcs

2
(xs + ys)

(
1 − φ2

c

)
φs + λcs

xs + ys

xc + yc
(φs − φc)

+ 1 − αI

2
k1cz

(
1 − φ2

c

)

− 1 − γI

2

kcs

2
(xs + ys)

(
1 − φ2

c

)
(1 − φs), (11)

φ̇s = kcs

2
(xc + yc)φc

(
1 − φ2

s

) + 1 − βI

2
k1sz

(
1 − φ2

s

)

+ 1 − γI

2

kcs

2
(xc + yc)(1 − φc)

(
1 − φ2

s

)
. (12)

And that for type II impurities are obtained from Eqs. (6)–(10)
as

φ̇c = − kcs

2
(xs + ys)

(
1 − φ2

c

)
φs + λcs

xs + ys

xc + yc
(φs − φc) + 1 − αII

2
(k1cz − λ1c)

(
1 − φ2

c

)

− 1 − γII

2

{
kcs

2
(xs + ys)

(
1 − φ2

c

)
(1 − φs) + λcs

xs + ys

xc + yc
(1 + φc)(1 − φs)

}
, (13)

φ̇s =kcs

2
(xc + yc)φc

(
1 − φ2

s

) + 1 − βII

2
(k1sz − λ1s)

(
1 − φ2

s

) + 1 − γII

2

{
kcs

2
(xc + yc)(1 − φc)

(
1 − φ2

s

) − λcs
(
1 − φ2

s

)}
. (14)

Various previous numerical studies [12,14,18,26,28] suggest
that total mass of clusters xc + yc and that of solids xs + ys

stay constant during the amplification of the EE, and we may
assume that the total masses are constant. After the linear
approximation in φc and φs for Eqs. (11) and (12), we obtain the
second derivative of φc on time using φ̇s. The time development
of φc and that of φs with type I impurities are written as

φ̈c + λ′φ̇c + (1 − γ̃I)k
′′{(1 − γ̃I)k

′ − λ′}

×
(

φc + β̃Ik1sz + γ̃Ik
′′

(1 − γ̃I)k′′

)
= 0, (15)

φ̇s = (1 − γ̃I)k
′′φc + β̃Ik1sz + γ̃Ik

′′, (16)

where

k′ = kcs

2
(xs + ys), (17)

λ′ = λcs
xs + ys

xc + yc
, (18)

k′′ = kcs

2
(xc + yc), (19)

β̃I = 1 − βI

2
, (20)

γ̃I = 1 − γI

2
. (21)

And with type II impurities,

φ̈c + (1 − γ̃II)λ
′φ̇c + (1 − γ̃II)

2k′′{k′ − λ′}

×
(

φc + β̃II(k1sz − λ1s) + γ̃II(k′′ − λcs)

(1 − γ̃II)k′′

)
= 0, (22)

φ̇s = (1 − γ̃II)k
′′φc + β̃II(k1sz − λ1s) + γ̃II(k

′′ − λcs), (23)

where

β̃II = 1 − βII

2
, (24)

γ̃II = 1 − γII

2
. (25)

We note that β̃ and γ̃ represent the degree of the asymmetry,
that is, β̃ = 0 when β = 1 and β̃ = 1/2 when β = 0.

In both cases, the change of φc is written in terms of an
exponential function with a constant: (φc − φu

c ) ∼ eωt , where
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FIG. 3. Projection of mass flow with (a) (αI,βI,γI) = (1,0.9,1) in
Eqs. (1)–(5) and (b) (αII,βII,γII) = (1,0.25,1) in Eqs. (6)–(10). Red
lines show the trajectory of the system. The black circle represents the
unstable fixed point (xu

s ,y
u
s ). The green broken line, black solid line,

and green dotted line represent xs = ys, xs + ys = 1, and xs + ys =
xu

s + yu
s , respectively. The black diamond represents the starting point

in the case of Figs. 2(a) and 2(b), respectively.

ω [Eqs. (26) and (27)] and φu
c [Eqs. (28) and (29)] are the

amplification rate and the unstable fixed point. Since the time
development of φs is obtained from the first derivative of
φc [Eqs. (16) and (23)], φs is also an exponential function
with the same amplification rate ω. This result suggests that
the EE amplification is exponential even with impurities. The
exponential amplification rates are

ω±
I = −λ′ ±

√
λ′2 − 4(1 − γ̃I)k′′{(1 − γ̃I)k′ − λ′}

2
, (26)

ω±
II = 1 − γ̃II

2

(
−λ′ ±

√
λ′2 − 4k′′(k′ − λ′)

)
. (27)

The fast relaxation with the rate ω− < 0 represents the
relaxation in the case of (φc − φu

c )(φs − φu
s ) < 0 where φu

c and
φu

s represent the EE of clusters and that of solids at the unstable
fixed point, respectively. The slow relaxation rate ω+ relating
to (φc − φu

c )(φs − φu
s ) > 0 is important for the amplification

of the EE. In order to clarify the meanings of the obtained
amplification rate ω+, some trajectories of the mass flow of
solids with type I and type II impurities are shown in Figs. 3(a)
and 3(b), respectively. The black circle shows the unstable state
(xu

s ,y
u
s ). The green broken line represents xs = ys (φs = 0).

One feature of the flow is that the system approaches the
line xs + ys = xu

s + yu
s from most initial conditions. When the

system reaches the line xs + ys = xu
s + yu

s , the system escapes
from the unstable fixed point along the line to the stable fixed
point (xs = 0 or ys = 0). The relaxation rate ω+ corresponds
to the escape rate from the unstable fixed point. This feature is
also observed in the case of the blue dotted line in Figs. 2(a)
and 2(b), whose initial condition is shown by the diamond in
Figs. 3(a) and 3(b).

Before the interpretation of the linear approximation anal-
ysis, we mention an intuitive understanding from the effective
mass flow during the EE amplification shown in Fig. 4, which
is obtained from a numerical calculation of our model. As
chiral solids are ground by glass beads, a large mass flow
from the solids to the clusters is realized by a large decay
rate λcs and accumulated clusters release a large amount of
monomers. The supersaturated monomers solidify, that is, the

FIG. 4. Effective mass flow during Viedma ripening.

large mass flow from the monomers to the solids is realized. For
type I impurities, small αI and γI lead to the fast dissolution of
minority crystals Ys and small βI prevents the crystallization
of the solid Ys from monomers Z (see Fig. 1). All type I
impurities work as a reduction factor of the Ys production and
the majority crystals Xs prevail. For type II impurities, when
αII and γII are smaller than unity, solids Ys become difficult
to decay and they prevail. When βII is smaller than unity,
solids Ys become difficult to grow even in supersaturation and
solids Xs grow faster. The suppression of the growth rate with
monomers, represented by the parameter βII, is important for
the dominance of the majority of the crystals.

Based on the intuitive understanding of the mass flow,
we discuss the effect of the reduction parameters on the
amplification of the EE. Although the unstable fixed point
depends on the reduction parameters, we assume that the
effect of reduction parameters is not significant to the masses
xu

c + yu
c and xu

s + yu
s , which seems valid in the cases we

studied. From Eqs. (26) and (27), the EE amplification rate
depends only on γI or γII in the viewpoint of the impurity
effect. The reduction parameters γI and γII lead to the small
amplification rate. It is also important to know how chiral
impurities change the sign of φu

s since the state φs(t = ∞)
is related with the sign of φs(0) − φu

s , where φs(0) ≈ 0 is
the initial EE. We discuss φs(∞) using φu

c because φs(t) is
proportional to [φc(0) − φu

c ]eω+t when the time change of φc(t)
is written as [φc(0) − φu

c ]eω+t [see Eqs. (16) and (23)].
From Eq. (15), the unstable fixed point of clusters φu

c for
type I impurities is obtained as

φu
c = − β̃Ik1sz + γ̃Ik

′′

(1 − γ̃I)k′′ . (28)

Since βI and γI are positive, φu
c becomes negative, and the

final state is predicted as φs(∞) = 1 when the initial state is
the racemic state [φs(0) ≈ 0]. The effect of αI on φu

c is not
trivial. From Eq. (11), αI < 1 increases φ̇c at the racemic state
and leads to φu

s < 0.
From Eq. (22), the unstable fixed point of clusters for

type II is

φu
c = − β̃II(k1sz − λ1s) + γ̃II(k′′ − λcs)

(1 − γ̃II)k′′ . (29)

The reduction parameter βII leads to the negative sign of φu
c

since the effective mass flow from monomers to the solids is
positive (k1sz − λ1s > 0) during the amplification of the EE.
γII leads to the positive sign of φu

c because of a large λcs.
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FIG. 5. Time change of the EE from φs = −0.64 [red (black)
solid line] and from the racemic state φs = 0 [green (gray) solid line].
The green (gray) broken line shows the green (gray) solid line shifted
to t + 300. Magenta (gray) dash-dotted line shows the estimated line
from Eq. (30). The parameters are the same in the case of Fig. 2(b)
(type II) and the unstable fixed point is φu

s = −0.66.

The effect of αII on φu
c is not trivial as in the case of the

type I impurities. From Eq. (13), αII < 1 leads to the negative
sign of φ̇c at the racemic state since the mass flow from the
monomers to the clusters is negative (k1cz − λ1c < 0) during
the EE amplification and φu

s > 0 is probably realized.
The above interpretations are consistent with the numerical

result shown in Fig. 2. With the parameters in Fig. 2, the
values of φu

c with βI and γI are predicted as −0.07 and −0.05,
respectively. As the amplification rate with γI becomes smaller
than that with βI [see Eqs. (26) and (27)], the saturation time,
when φs is achieved to unity, with γI is larger than that with
βI. The reduction parameter βII produces a similar effect as
βI. αII and γII lead to the opposite sign of φs compared to the
case with αI and γI. The difference of the impurity effect on
type I and type II comes from the different direct effect of the
impurities, i.e., the reduction of the growth rate or that of the
mass flow between components.

We now consider the linear amplification of the EE observed
experimentally in Ref. [24].

Figure 5 shows the time change of the EE with
(αII,βII,γII) = (1,0.25,1) for various initial conditions. Start-
ing from φs = −0.64 [red (black) solid line], which is close
to the unstable fixed point φu

s = −0.66, the exponential
amplification is observed. On the other hand, starting from
the racemic state φs = 0, where the system is far from the
unstable fixed point, the linear amplification is seen [green
(gray) solid line]. The change of the EE is similar to the
part of the exponential amplification (the shifted EE line is
shown by the green broken line in Fig. 5). The apparent linear
amplification rate can be estimated by

ωl = dφs(t)

dt

∣∣∣∣
φs=0

= −ω+φu
s > 0, (30)

which comes from φs(t) − φu
s = [φs(0) − φu

s ] exp(ω+t) with
Eq. (27). As shown in Fig. 5, the estimation by Eq. (30)
[magenta (gray) dash-dotted line] is in reasonable agreement
with the numerical result [green (gray) solid line]. The apparent
linear amplification of the EE from the racemic state suggests

-0.2
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 0
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 0  100  200  300  400  500

E
E

t
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FIG. 6. Time dependence of φc [red (black) square] and φs

[green (gray) triangle] without impurities from the direct numerical
calculation. Parameters are k1c = 0.1, k1s = kcs = 1, λ1c = 0.001,
λ1s = 0.1, λcs = 0.4.

that mathematically the starting point of the exponential
amplification is shifted from the racemic state and hidden.

Finally, we comment on the amplification rate Eqs. (26)
and (27). Firstly, λ′ > k′ is required for the chirality conversion
in the case of type II impurities [Eq. (27)]. In the case of
type I impurities [Eq. (26)], the condition is looser. The EE
amplification is realized by the grinding because the grinding
provides a large λcs ∼ λ′. The reduction of the growth rate
between clusters and solids kcs ∼ k′ also works in the same
sense.

Secondly, we note that the relaxation rate to the unstable
state can have an imaginary part, even without impurities,
when λ′2 − 4k′′(k′ − λ′) < 0. The EE may relax toward the
unstable state with oscillation and it is confirmed by the numer-
ical calculation with the parameters (k1c,k1s,kcs,λ1c,λ1s,λcs) =
(0.1,1,1,0.001,0.1,0.4) as shown in Fig. 6. Starting from the
initial condition φs = 0.1, which is the same as in the case of
Fig. 2, the EE of solids becomes more than 0.4 at t � 50, and a
clear oscillatory relaxation is seen. The EE of clusters φc also
slightly oscillates with a different phase.

IV. SUMMARY

We studied the effect of chiral impurities on the EE
amplification in a grinding system using the rate equation
model. We considered the two types of impurities: type I
changes the equilibrium balance of each component, and
type II changes the growth and dissolution rate with the
same ratio. In our numerical study, we found the following:
Type I impurities that hinder the incorporation processes of
the minority species accelerate the EE amplification. Type II
impurities accelerate the EE amplification when the chiral
impurities suppress the reaction rates between monomers and
solids of the minority. When the type II impurities suppress
the reaction rates between monomers and clusters or between
clusters and solids, the EE changes the sign and the minority
crystals prevail. The effect of impurities depends on how
impurities change the mass flow shown in Fig. 4. When
the impurities (αI and γI) make the minority solids easy to
dissolve or the impurities (βI and βII) make them difficult to
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grow, the EE amplification is accelerated and the minority
crystals diminish faster. When the impurities (αII and γII)
make the minority solids difficult to dissolve, the minority
crystals prevail. From the analysis of the time development
of the EE, we found that the EE is amplified exponentially
with time from the unstable fixed point even when the linear
amplification from the racemic state is seen. Chiral impurities
shift the unstable fixed point of the exponential amplification
from the racemic state.

The case of type II impurities with αII = 0 and βII = γII

corresponds to the reaction model in the previous work [24].
The linear change of components is also observed in our
study and our numerical results are consistent with theirs.
Our conclusion is that the observed linear amplification
in the experiment [24] is interpreted as a part of the

exponential amplification. Even if the EE is amplified linearly
from the racemic state, the exponential amplification will be
seen when the system starts from near the unstable fixed
point.

As a result of the linear analysis of the simple rate equation
model, we found the possibility of the oscillatory relaxation of
the EE. Although this oscillatory relaxation is confirmed using
the direct numerical calculation of the simple rate equation, it
is not certain that the oscillation really occurs since the crystal
size distribution is not taken into account.
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