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Spatially periodic deformations in planar and twisted flexoelectric nematic layers
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Electric field induced deformations in twisted and untwisted planar layers of nematic liquid crystals possessing
flexoelectric properties were investigated numerically. The spatially periodic deformations, taking the form of
parallel stripes, were found to have smaller free energy than the homogeneous deformations. The structures of
distorted layers as well as the evolution of deformations during changes of bias voltage were recognized. The
role of flexoelectric properties was analyzed. Calculations taking into account the peculiar elastic properties of
the bent-core nematics were also performed. In the untwisted planar layers the stripes were parallel to the initial
director orientation. In the twisted layers, two different kinds of periodic deformation were distinguished. They
had different structures and different directions with respect to the initial director distribution. The results were
consistent with existing experimental data.
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I. INTRODUCTION

Thin layers of nematic liquid crystals confined between
plane-parallel electrodes are fundamental for construction of
displays and other liquid crystal devices [1]. The general
principle of operation of liquid crystal displays consists of
electric field induced deformations of director orientation.
They should be homogeneous, i.e., identical over the whole
area of the electrodes. Such deformations may be considered as
one dimensional since the director orientation in the distorted
layer depends only on the coordinate normal to the layer.

The influence of electric field on director distribution is
related to dielectric anisotropy and to flexoelectricity of the
nematic material [2,3]. Deformations qualitatively similar to
those of a dielectric nature are induced by magnetic field due to
anisotropy of diamagnetic susceptibility [3,4]. In the absence
of external electric or magnetic fields, the director distribution
in the layer results from boundary conditions imposed by
aligning coatings deposited on the surfaces of electrodes.
Orientation of the director adjacent to the electrodes is
determined by unit vectors called anchoring directions or easy
axes [5]. The easy axis indicates the orientation which would
be adopted spontaneously by the director if it would not be
affected by any other interaction. In the so-called twisted
nematic cells, the surface interactions induce planar director
orientation; i.e., the easy axes are parallel to the electrodes
but the easy axis on one electrode makes the angle � = 90◦
with the easy axis on the other. As a result, the director
orientation varies continuously along the normal to the layer;
i.e., the structure is twisted by an angle �φ which depends
on the effectiveness of anchoring and is close to 90°. Such
a homogeneously twisted layer is basic for commonly used
liquid crystal displays [1].

Under suitable circumstances, external electric or magnetic
field induces the two-dimensional deformations in which
director orientation in the distorted layer depends not only
on the coordinate normal to the layer but it also varies along
some direction parallel to the layer. The two-dimensional
deformations are spatially periodic. They can be seen under
a microscope as parallel stripes. From an applicative point
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of view the stripes are undesirable since they destroy the
homogeneous appearance of the area of an excited pixel
of a display. The field induced periodic distortions appear
also as transient patterns before the static homogeneous
deformations arise. The large class of phenomena resulting in
periodic patterns is due to electrohydrodynamic instabilities
(electroconvection) in nematics containing ions [6].

In some cases, the electric field induced periodic de-
formations are caused by flexoelectric torques; nevertheless
they can arise also without the contribution of flexoelec-
tricity. The comprehensive review of the periodic patterns
of various natures is given by Hinov et al. [7]. The role
of flexoelectricity in patterns formation is described in [8].
The structure and properties of periodic patterns were the
subject of many theoretical and numerical studies. The time
dependent flexoelectric instabilities in the presence of an
alternating electric field were studied theoretically by Krekhov
et al. [9]. In particular, the competition of flexodomains with
electrohydrodynamic instabilities was analyzed. Here we are
focused on static deformations occurring in layers with planar
boundary conditions.

Deformations of planar nontwisted layers depend on the
elastic properties of nematics. For typical ratios of elastic con-
stants, r = k22/k11, which usually adopt values between 0.4
and 0.7, the field induced deformations are one dimensional.
However, if r < rc ≈ 0.303, the periodic distortions arise prior
to the homogeneous deformations and are visible as stripes
called periodic splay twist (PST) patterns. Such patterns,
induced by magnetic field, were observed experimentally
in some liquid crystal polymer possessing sufficiently large
elastic anisotropy [10]. Various cases of deformations occur-
ring under the action of electric and/or magnetic fields and
with various boundary conditions were analyzed theoretically
[11–19]. In the layers with twisted director distribution, the
patterns called “Y mode” develop, provided that the twist angle
� is sufficiently small [20]. They are similar to the PST stripes.
If the layer is twisted by sufficiently high angle �, usually
higher than 90°, the periodic deformations called “X mode”
arise [20–24]. In order to avoid them in the super-twisted
nematic displays (in which � reaches, for instance, 240°),
sufficiently large surface tilt angles between easy axes and
electrodes are applied [25–27].
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The rather restrictive condition r < rc for the existence
of PST deformations does not need to be satisfied if the
nematic exhibits sufficiently strong flexoelectric properties.
In such case, the periodic deformations arise in materials with
typical values of r . They were observed by Vistin in planar
untwisted layers and are called Vistin domains or longitudinal
domains [28–32]. They appear at threshold voltages lower
than the voltages for homogeneous deformations [33–39].
Flexoelectricity influences the director distribution; therefore
the Vistin domains differ from the PST stripes. Flexoelectric
properties also favor arising of the periodic deformations in
twisted layers [40] in which they could not exist in the absence
of flexoelectricity.

The present paper is devoted to numerical investigations of
the periodic deformations induced in homogeneous planar and
twisted layers containing a nematic liquid crystal possessing
flexoelectric properties. They are interesting because flexo-
electricity can become an essential feature of nematic mixtures
containing mesogenic substances composed of bent-core
molecules which exhibit giant flexoelectric properties [41,42].
Our aim was to recognize the structure of distorted layers
and evolution of deformations during changes of bias voltage.
The results show that the periodically deformed structures
are related with lower free energy than the one-dimensional
deformations; therefore they should be expected if the nematic
mixture possesses sufficiently strong flexoelectric properties.

In Sec. II the parameters of the system under investiga-
tion are specified and the method of calculations is briefly
described. The results are presented in Sec. III. Section IV
contains a brief account of the results and a discussion.

II. ASSUMPTIONS AND METHOD

The nematic layers of thickness d confined between two
electrodes parallel to the xy plane of the Cartesian coordinate
system positioned at z = ±d/2 were considered. The two-
dimensional deformations of director distributions were taken
into account. We assumed that all the physical quantities and
variables describing the two-dimensional structures depended
on two coordinates, y and z, and were constant along the x

axis; i.e., the stripes were parallel to the x axis. The director
distribution n(y,z) was determined by means of the polar
angle θ (y,z) measured between n and the xy plane and by the
azimuthal angle φ(y,z) between the x axis and the projection
of n on the xy plane. The voltages U applied between the
electrodes did not exceed values at which electroconvection
could be expected in real experiments. The lower electrode
was earthed. Boundary conditions were given by the polar
and azimuthal angles θs1, θs2, φs1, and φs2 which determined
orientation of the easy axes e1 and e2 on the lower and

upper electrode, respectively. The surface tilt angles θs1 =
θs2 = 0◦ were imposed. The twist angle � = φs2 − φs1 = 90◦
ensured the right-hand twist in the twisted layers, whereas
� = 0◦ corresponded to the untwisted planar layers. The
anisotropic surface anchoring was assumed. The anisotropy
was manifested by the difference between polar and azimuthal
anchoring strengths. The anchoring energy was expressed
by the formula proposed in [43,44] [see Eq. (1) below].
The anchoring strength parameters were constant in all the
computations: Wθ1 = Wθ2 = 10−4 J m−2 and Wφ1 = Wφ2 =
10−5J m−2. The thickness of the layers, d = 5 μm, was also
constant. Several sets of the elastic constants k11,k22,k33 were
used corresponding to calamitic nematics and to mixtures of
calamitic with bent-core compounds [45]. The saddle-splay
elastic constant k24 was assumed to be zero. The flexoelectric
coefficient e33 was varied between zero and 50 pC/m whereas
e11 = 0 was assumed, which reflected approximately the
properties of nematics composed of bent-core molecules. The
dielectric anisotropy �ε = 2 was adopted in all cases in order
to simulate a mixture containing the bent-core nematics which
exhibit small positive or negative values [45]. An additional
advantage was that such small dielectric anisotropy weakly
influenced the effects of a flexoelectric nature which were our
main interest. The presence of ions was neglected; i.e., the
nematic was treated as a perfect insulator.

The equilibrium structures of the director field inside the
layer were determined by minimization of the free energy per
unit area of the layer. For this purpose, we used the method
which was successfully applied in earlier works [19,22,27].
A single stripe was considered during the computations. It
was described by the director orientation angles θ and φ, the
width λ and the angle ψ which the stripe made with the average
direction of the easy axes e = (e1 + e2)/|e1 + e2|. The periodic
boundary conditions along the y axis were imposed. The
discrete angles θij and φij describing the director distribution
over the cross section of the stripe as well as the electric
potential Vij were defined in the sites of the M×N regular
lattice where M = N = 256. The indices i = 1 · · · M and
j = 1 · · · N determined the position along the y and z axes,
respectively. The coordinates y = 0 and y = λ corresponded
to i = 1 and i = M whereas z = −d/2 and z = d/2 were
labeled by j = 1 and j = N . The planes determined by
i = const and j = const divided the cross section of the stripe
into (M − 1) × (N − 1) rectangular cells. The values θij ,φij ,
and Vij taken from the corners of each cell gave the average
angles as well as the spatial derivatives of the angles and of
the potential. They were used to calculate the total free energy
counted per unit length of the stripe in the x direction. Then
it was divided by λ in order to obtain the total free energy per
unit area of the layer according to the formula

F = 1

2λ

∫ λ

0

(∫ d/2

−d/2
{k11(∇n)2 + k22[n · (∇ × n)]2 + k33[n × (∇ × n)]2 − 2(k22 + k24)∇[n · (∇n) + n × ∇ × n]

− 2[e11n · ∇n − e33n × (∇ × n)] · E − ε0ε⊥E2 − ε0�ε(n · E)2}dz

)
dy+ 1

2λ

∫ λ

0
{[Wϕ1cos2(θ1 − θs1) + Wθ1sin2(θ1 − θs1)]

× [1 − (n1 · e1)2]}dy + 1

2λ

∫ λ

0
{[Wϕ2cos2(θ2 − θs2) + Wθ2sin2(θ2 − θs2)][1 − (n2 · e2)2]}dy, (1)
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where n1,n2 denote the directors adjacent to the lower and upper plate, respectively, whereas θ1 and θ2 are their polar orientation
angles. This energy was minimized with respect to all the angles θij and φij , spatial period λ, and the angle ψ . Initially, the
values θij = 0 and φij = (π/2)(j − 1)/(N − 1), where i = 1 · · · M and j = 1 · · · N , were introduced (according to the uniform
twisted initial director orientation imposed by the easy axes). The initial distribution of the electric potential corresponding to
uniform electric field was assumed, Vij = U (j − 1)/(N − 1). The initial value of the angle ψ was determined by the easy axes
whereas λ = d was adopted. The final set of the variables θij ,φij ,λ, and ψ , which approximated the real equilibrium director
distribution, was calculated in the course of an iteration process. During the computations, the values of θij ,φij ,λ, and ψ were
varied successively by small intervals. The free energy per unit area of the layer was calculated after each change. If the new
energy was lower than the previous one, the changed value of the variable was accepted and the corresponding interval was
increased by a factor of about 1.5. In the opposite case, the variable remained unchanged and the interval was decreased to about
0.8 of its previous value. When the new values of angles in all sites of the lattice as well as the new values of λ and ψ were found,
the electric potential distribution V(y,z) in the layer was calculated. For this purpose the Poisson equation

ε0

[
∂V

∂y

(
∂εyy

∂y
+ ∂εyz

∂z

)
+ ∂V

∂z

(
∂εyz

∂y
+ ∂εzz

∂z

)
+ εyy

∂2V

∂y2
+ 2εyz

∂2V

∂y∂z
+ εzz

∂2V

∂z2

]
− e11

(
∂ny

∂y
+ ∂nz

∂z

)2

− e11ny

(
∂2ny

∂y2
+ ∂2nz

∂y∂z

)
− e11nz

(
∂2ny

∂y∂z
+ ∂2nz

∂z2

)
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(
∂nz

∂y
rx + nz

∂rx

∂y
− ∂nx

∂y
rz − nx

∂rz

∂y

)

+ e33

(
∂nx

∂z
ry + nx

∂ry

∂z
− ∂ny

∂z
rx − ny

∂rx

∂z

)
= 0 (2)

was resolved, where rx = ∂nz/∂y − ∂ny/∂z, ry = ∂nx/∂z,
rz = −∂nx/∂y; ni and εij are components of the director and
of the dielectric permittivity tensor. The boundary conditions
V (−d/2) = 0 and V (d/2) = U were imposed where U > 0.
As a result, the values of potential in the sites of the lattice, Vij ,
were obtained. In this way a single cycle of computations was
finished and resulted in the new set of variables suitable for the
next cycle. The cycles were repeated until further reduction in
the total free energy could be neglected. As a result, a state of
minimum energy was obtained.

We estimate the numerical errors in the director orientation
angles to be less than 5° and in the threshold voltages to be
less than 0.1 V.

III. RESULTS

A. Untwisted planar layers

Spatially periodic deformations in untwisted planar layers
arise without the contribution of flexoelectricity (for instance,
under the action of magnetic field [10]) provided that the ratio
r = k22/k11 is smaller than rc = 0.303, which is rather rare.
They are known as the PST stripes. The periodic structure of
them can be characterized by the first Fourier components of
the functions describing the dependencies of θ and φ on y

and z:

θ (y,z) ∝ cos(πz/d) sin(2πy/λ),

φ(y,z) ∝ cos(2πz/d) cos(2πy/λ). (3)

If the nematic material possesses flexoelectric properties
then the electric field applied to the layer induces periodic
deformations also in the case of typical relations between
elastic constants, i.e., if r > rc. They take the form of Vistin
domains [28]. Symmetry of their internal structure differs
from the PST symmetry expressed by Eq. (3) because of the
complex action of surface and bulk flexoelectric torques. Our
calculations showed that if the flexoelectric properties were

sufficiently strong, the corresponding functions were

θ (y,z) ∝ cos(πz/d) sin(2πy/λ),

φ(y,z) ∝ cos(πz/d) cos(2πy/λ), (4)

instead of (3) [39]. In order to illustrate the transition from (3)
to (4) we performed simulations assuming r = 0.2 and using
several values of e33. The results showing evolution from PST
stripes to Vistin domains are presented symbolically in Fig. 1.

They show that the change of symmetry was realized
continuously when the flexoelectric properties were gradually
enhanced. This effect reveals the relationship between Vistin
domains and PST patterns.

In the following, we report results of computations per-
formed for some model liquid crystalline material char-
acterized by elastic constant ratios typical for calamitic
nematics: k11 = 10 pN,k22 = 5 pN,k33 = 15 pN. Initial homo-
geneous director distribution was determined by θ (y,z) = 0
and φ(y,z) = 0. Under the action of external electric field, the
periodic deformations arose continuously with finite initial
spatial period if the threshold voltage U1 was exceeded. They
can be recognized as longitudinal Vistin domains [28]. Energy
per unit area of the periodically deformed layer was lower
than the energy of homogeneous deformation which would
arise under the same circumstances. In Fig. 2 the structure of

FIG. 1. Schematic distributions of signs of φ(y,z) in the cross
sections of stripes illustrating the influence of flexoelectricity on the
structure of deformed layers. Dark and bright regions correspond to
negative and positive angles φ, respectively. r = 0.2. Values of e33

(in pC/m) are given.
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FIG. 2. Director field in the cross section of a single stripe arising
in planar layer; e33 = 20 pC/m; U = 3 V.

a single stripe at a moderate voltage is illustrated by means
of cylinders symbolizing the directors, oriented according to
calculated values of θij and φij . Four parts can be distinguished
in the stripe according to the symmetry determined by Eq. (4).
They differ in signs of the angles θ and φ: θ > 0 and φ < 0;
θ > 0 and φ > 0; θ < 0 and φ > 0; θ < 0 and φ < 0.

The deformations grew with increasing voltage. This
process is illustrated in Fig. 3 by means of the quantity � which
plays the role of amplitude of the function θ (y,0), defined as
� = (θmax − θmin)/2 where θmax and θmin are the maximum
and minimum values of θ (y,0), respectively. Development of
deformations is illustrated in Fig. 4 by means of the width of
the stripes plotted as a function of voltage.

If the flexoelectric parameter was relatively small (e.g.,
if e33 = 10 pC/m) then the stripes slightly narrowed with
increasing voltage. At sufficiently large voltage, two halves
of the stripe could be distinguished. In each of them, the
deformation represented by the angle θ dominated, whereas
the twist deformation described by the angle φ was weak
and limited to narrow regions on the boundaries between
the halves. As a result, the director distributions in each half
became similar to the distributions occurring in homogeneous
deformations. Finally, the spatial period diverged rapidly to
infinity when some critical voltage U2 was reached, which
means that the homogeneous deformation spread over the
whole area of the layer and replaced the periodic patterns. In
the case of strong flexoelectricity (e.g., if e33 = 50 pC/m) the
stripes narrowed steadily with increasing voltage which agrees

FIG. 3. Amplitude � of deformations arising in planar layers as a
function of bias voltage U. Solid lines: periodic patterns; dashed lines:
homogeneous deformations. Values of e33 (in pC/m) are indicated at
the curves.

FIG. 4. Spatial period λ of deformations arising in planar layers
as a function of bias voltage U. Values of e33 (in pC/m) are indicated
at the curves.

with experimental data presented in [46]. The corresponding
wave number q = 2π/λ was a linearly increasing function
of voltage. No transition to one-dimensional deformation was
observed up to U = 10 V. (Higher voltages were not taken
into account because we expect that in a real experiment they
would induce electrohydrodynamic instabilities.)

B. Twisted layers of typical calamitic nematics

In the following, the periodic patterns in the twisted nematic
layers characterized by the angle � = 90◦ are described. The
elastic constants and other parameters of nematics were the
same as in the homogeneous planar case. The actual twist
angles of the director field, �φ(y) = φ(y,d/2) − φ(y,−d/2),
were slightly smaller than � because of finite azimuthal
anchoring strength.

In all the cases, deformations arose at some threshold
voltage U1 with amplitude � starting from zero (Fig. 5).
They had the form of stripes with finite width which were
directed at some acute angle ψ with respect to the unit vector

FIG. 5. Amplitude � of deformations arising in twisted layers as a
function of bias voltage U. Thick lines: type 1 patterns; thin lines: type
2 patterns; dashed lines: homogeneous deformations. Dashed vertical
lines indicate rapid changes of the type of deformations. Dotted line
denotes the energetically unfavorable deformation of type 2. Values
of e33 (in pC/m) are indicated at the curves.
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FIG. 6. Direction of stripes arising in twisted layers determined
by the angle ψ as a function of bias voltage U. Thick lines: type 1
patterns; thin line at ψ = 45◦ corresponds to the type 2 patterns for
e33 = 20 and 50 pC/m. Dashed lines indicate rapid change of the type
of deformations at U = U3. Values of e33 (in pC/m) are indicated at
the curves.

e (Fig. 6). We use the name “type 1” patterns for them. They
can be identified as the domains observed by Umanski et al.
[40]. The threshold as well as the width of the initial stripes
decreased when the flexoelectric properties became stronger
(Fig. 7). The exemplary structure of the stripe is shown in
Fig. 8. The escaped disclination of strength 1 is created in
the vicinity of the negative electrode where θ = 0 and φ = 0
simultaneously.

In the case of weak flexoelectricity, e.g., when e33 =
10 pC/m or e33 = 15 pC/m, the angle ψ was nearly constant
(Fig. 6). The deformations evolved in a way similar to
the untwisted case (Fig. 5). Two halves were formed as a
result of increasing voltage. The director distributions in each
half tended to the distributions occurring in one-dimensional
deformations. The stripes of type 1 existed up to some critical
voltages U2 above which their width became infinite, as shown
in Fig. 7, and the homogeneous deformations appeared.

FIG. 7. Spatial period λ of deformations arising in twisted layers
as a function of bias voltage U. Thick lines: type 1; thin lines:
type 2. Dashed vertical lines indicate rapid change of the type
of deformations at U = U3. Dotted line denotes the energetically
unfavorable deformation of type 2. Values of e33 (in pC/m) are
indicated at the curves.

FIG. 8. Director field in the cross section of a single stripe of
type 1 occurring in the twisted layer. The star indicates position of
the escaped disclination line. e33 = 20 pC/m; U = 3 V.

In the case of stronger flexoelectricity, represented by e33 =
20 pC/m or e33 = 50 pC/m, the deformations grew continu-
ously with increasing voltage. Simultaneously, the width of the
stripes decreased monotonically and their direction determined
by the angle ψ varied. At some voltage U3, the structure of
the stripes changed discontinuously due to reorientation of
director distribution which was manifested by jumps of �,
λ, and ψ as functions of voltage. In particular, the angle ψ

adopted the constant value of 45°. In the following, these
domains are called type 2 patterns. Calculations revealed that
the free energy of deformations decreased during transition
from type 1 to type 2 occurring at U3. The structure of this type
is shown in Fig. 9. Two moderately distorted halves bounded by
narrow regions of stronger deformation can be distinguished.
Above U3, the type 2 deformation strengthened. The amplitude
� increased further with increasing voltage. Simultaneously
the stripes narrowed, with linearly increasing wave number.
However, when the voltage was decreased below U3, no return
to the structure of type 1 was observed. The stripes retained
their direction at ψ = 45◦ which gave rise to the occurrence
of some kind of hysteretic behavior. The deformations in the
halves of the stripes weakened; i.e., the director distributions
tended to the undistorted state. However, in the regions near
the boundaries between the halves, the angles θ adopted quite
significant values which gave rise to large amplitudes � shown
in Fig. 5. Simultaneously, the spatial period increased and
diverged to infinity at another critical voltage U4. Just below
U3, the energy of the type 2 deformation was lower than that
of type 1; however, this relation became reversed at some
lower voltage, so the type 2 patterns became energetically
unfavorable. Nevertheless, the type 2 stripes may occur down
to U4 according to the so-called perfect delay principle, which
explains that that the state of a system remains at the local
minimum of a potential as long as that minimum exists [47].

FIG. 9. Director field in the cross section of a single stripe of type
2 occurring in the twisted layer. e33 = 20 pC/m; U = 3 V.
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FIG. 10. Amplitude � of periodic patterns arising in twisted
layers containing mixture A as a function of bias voltage U. Thick
lines: type 1 patterns; thin line: type 2 patterns. Values of e33 (in pC/m)
are indicated at the curves.

The patterns of type 2 were found also if e33 = 15 pC/m
which is illustrated by the dotted curves in Figs. 5 and 6.
However, they had larger energy than type 1 and were not
available when the voltage applied to the undisturbed layer
was increased from zero.

C. Twisted layers of mixtures containing bent-core nematics

Strong flexoelectric properties can be obtained in mix-
tures containing nematic substances composed of bent-core
molecules. In this section, we describe deformations occurring
in the model mixtures of this kind. The bent-core nematics
have peculiar elastic properties manifested by the specific
relation between elastic constants: k11 > k33 > k22. For this
reason we performed exemplary calculations using two sets of
elastic constants: k11 = 8 pN, k22 = 3 pN, k33 = 10 pN and
k11 = 7 pN, k22 = 2 pN, k33 = 7 pN, which simulated two
mixtures of calamitic and bent-core nematics denoted A and
B, respectively.

The results for both mixtures were qualitatively the same
as those found for calamitic nematics. The deformations

FIG. 11. Amplitude � of periodic patterns arising in twisted
layers containing mixture B as a function of bias voltage U. Thick
lines: type 1 patterns, thin line: type 2 patterns. Values of e33 (in pC/m)
are indicated at the curves.

FIG. 12. Spatial period of deformations arising in twisted layers
containing mixtures A and B as a function of bias voltage U. Thick
lines: type 1 patterns; thin lines: type 2 patterns. Values of e33

(in pC/m) are indicated at the curves.

started as the stripes of type 1 and grew with increasing
voltage as shown in Figs. 10 and 11. Simultaneously the
spatial period narrowed while the wave number was a linear
function of voltage (Fig. 12). In the case of e33 = 20 pC/m,
they were transformed into the stripes of type 2 when the
voltage achieved a suitable value. The type 2 patterns were
retained when the voltage was lowered. In the case of stronger
flexoelectricity, e.g., if e33 = 50 pC/m, no transition to the type
2 patterns was detected up to U = 10 V. Figure 13 presents
smooth changes of direction of the type 1 stripes and switching
to type 2 for which ψ = 45◦.

IV. SUMMARY AND DISCUSSION

Electric field induced deformations in twisted and untwisted
planar layers of nematic liquid crystals possessing flexoelectric
properties were investigated. It was found that the spatially
periodic deformations, taking the form of parallel stripes,
were due to smaller free energy than the homogeneous
deformations. The relations between free energies due to

FIG. 13. Direction of the type 1 stripes of deformations arising in
twisted layers containing mixtures A and B of calamitic and bent-core
nematics as a function of bias voltage U. Thick lines: type 1 patterns;
thin line: type 2 patterns. Dashed vertical lines indicate rapid change
of the type of deformations at U = U3.e33 = 20 pC/m.
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FIG. 14. Schematic presentation of the free energies per unit
area of the layer related to different types of deformations plotted
as functions of voltage. Left part: twisted layers; right part: planar
layers. Dotted lines: undistorted state; dashed lines: one-dimensional
deformation; thin solid line: type 2 patterns; thick lines: type 1 patterns
in twisted case and periodic pattern in planar layer. Voltages U1 · · · U4

correspond to changes of the kind of deformations.

different types of deformations are shown schematically in
Fig. 14.

The structures of the stripes differed from the form of
patterns induced by magnetic field [10,20,22] which is a
consequence of the dominating role of the flexoelectric torques
over the dielectric torques. The periodic deformations seem to
be common if flexoelectricity has significant magnitude.

In the untwisted planar layers the stripes were parallel to
the initial director orientation. At sufficiently high voltage U2

their spatial period increased to infinity; i.e., the stripes were
transformed into the homogeneous deformations. In the case
of strong flexoelectricity, voltage U2 exceeded values at which
the electroconvection could be expected.

In the twisted layers, two different kinds of deformations
were distinguished, called here type 1 and type 2 patterns.
The stripes of type 1 were directed at some acute angle with
respect to the unit vector e. In the case of weak flexoelectricity
they widened to infinity at some critical voltage and were

replaced by homogeneous deformations. In the case of strong
flexoelectricity, the stripes narrowed until some voltage U3

was achieved at which a rapid change to the type 2 patterns
occurred. The stripes of type 2 made the angle 45° with
respect to the unit vector e. This transition was connected with
the reorientation of director distribution which led to lower
energy. It resulted in arising of the subtle equilibrium between
elastic, dielectric, and flexoelectric torques acting in the bulk
and torques due to flexoelectricity and anchoring acting on the
boundary surfaces. The structure developed with increasing
voltage. However, when the voltage decreased below U3, some
kind of hysteretic behavior occurred; i.e., the patterns of type
2 were retained. The type 1 deformation was not restored.
Instead, the deformation of type 2 weakened while its spatial
period diverged to infinity at another critical voltage U4 which
means that the director distribution tended to the undistorted
state.

Additional preliminary computations with anchoring
strengths Wθ1, Wθ2, Wφ1, and Wφ2 enhanced or reduced
by a factor of 2 with respect to our main values showed
that the evolution of the patterns during changes of voltage
was qualitatively the same as illustrated in Figs. 3–7. The
threshold voltages U1 · · · U4 increased when the anchoring
became stronger and decreased when the surface interactions
were weaker.

The stronger the flexoelectric properties were, the wider
was the range of voltages at which the type 1 patterns existed.
It was also wider in the case of mixtures containing bent-
core nematics. The positive values of e33 were used during all
calculations. Additional calculations showed that if e33 < 0
was adopted, then the stripes symmetrical with respect to the
midplane of the layer and oriented at the angle ψ of opposite
sign were obtained. The same effect was obtained if � = −90◦
was adopted or if the sign of voltage was reversed, which agrees
with the experiment reported in [40].

The results concerning the type 1 patterns as well as those
obtained for the planar layers also agree with experimen-
tal observations [28,40,46]. The type 2 patterns should be
searched in layers containing nematics with sufficiently strong
flexoelectricity.
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