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Anisotropy of electrostatic interaction in free-standing smectic-C∗ films
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The correlation function of the director fluctuations in a free-standing smectic ferroelectric film is calculated
theoretically. In the functional of free energy, the anisotropy of the Coulomb interaction of polarization charges
is taken into account. The results of calculations were used to obtain the angular dependences of scattered
light intensity. It has been shown that for relatively thick films, the anisotropy of the Coulomb interaction of
polarization charges can change significantly the scattered light intensity.
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I. INTRODUCTION

Liquid crystals, known as smectic-C∗ or Sm-C∗ liquid crys-
tals, continue to attract interest, primarily due to their unique
material properties and possible applications in engineering
[1–4]. For this type of liquid crystal, the centers of mass of the
molecules in the equilibrium state are arranged in equidistant
plane-parallel layers. The molecules exhibit an elongated
shape and the angle θ between principal axes of molecules and
normal N to a layer is temperature-dependent. Within each
layer, the molecules form a sort of two-dimensional liquid.
The unit vector director n indicates the average direction of
the long axes of the molecules at a given point. The projection
of the director n on the plane of the smectic layer, normalized
to unity, forms a two-dimensional vector c-director. All of
these properties are characteristic of Sm-C, while Sm-C∗
additionally possesses spontaneous polarization P directed
perpendicular to both the c-director and the normal N. In bulk
Sm-C∗ samples the polarization vector P rotates through a
certain angle while passing from one layer to another. For
various types of Sm-C∗, a complete turn of vector P occurs
through a different number of layers, from a few layers to
thousands of them [2–4].

Thermal spatial fluctuations of spontaneous polarization P
will produce a polarization charge with density ρ = − div P.
Usually the interaction of these polarization charges are ne-
glected, assuming them to be screened by charges of impurities
[1]. The short-range interaction of the screened polarization
charges was described in Ref. [5]. It was shown that the
charges effectively increase the bending elastic modulus in the
two-dimensional systems. It turns out to be consistent with the
experimental data on the texture of islands found in the same
work and with experimental results of Ref. [6] for periodic
stripe patterns in free-standing Sm-C∗ films. The interaction
of impurity ions with the polarization charges was accounted
for in Ref. [7], describing the dynamics of the orientation
field. It was anticipated that this interaction should manifest
itself in experiments on light scattering from free-standing
Sm-C∗ films. In Ref. [8] it was shown that the interaction of
the impurity ions with polarization charges also leads to the
increase of orientational viscosity.

The long-range interaction of unscreened polarization
charges in Sm-C∗ films was studied experimentally and
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theoretically in Refs. [9–12]. It has been found that the con-
tribution of the interaction of polarization charges to the free
energy is clearly visible in the light scattering measurements
performed for thin Sm-C∗ films. A theoretical description
of the interaction of unscreened polarization charges in the
plane Sm-C∗ cell with bookshelf geometry was proposed
in Ref. [13]. For the free-standing smectic-C∗ films the
inhomogeneity of the director fluctuations in the volume of
the film was taken into account in Ref. [14].

Usually, the anisotropy of the permittivity tensor is ignored
when describing the contribution of the interaction of polar-
ization charges to the free energy of the ferroelectric smectics.
However, there remains a significant difference between the
principal values of the dielectric permittivity tensor [15,16].
So the question arises whether this difference manifests itself
in optical experiments performed in not very thin films. The
theoretical description of c-director fluctuations was obtained
in Ref. [17], accounting for the anisotropy of the Coulomb
interaction between polarization charges. It was shown that for
a bulk Sm-C∗ pattern this anisotropy can change the scattered
light intensity by about 10% .

In this article the correlation function of c-director fluctu-
ations is calculated for the free-standing Sm-C∗ film of finite
thickness, taking account of the anisotropy of the Coulomb
interaction of polarization charges. The obtained correlation
function is used for calculation of the angular dependences for
the scattered light intensity.

II. DISTORTION FREE ENERGY

We consider a free-standing film of the ferroelectric Sm-C∗,
in a constant external electric field E directed parallel to the
film surface. We assume that the helix of the director n rotation
is unwound and that the temperature is fixed. In this case the
director tilt angle θ remains a constant value. The external field
is assumed to be sufficiently weak so that only the linear term
of the interaction between the field E and the spontaneous
polarization P in the expression for the free energy can be
taken into account. In this case the distortion free energy can
be presented in the form

F = FFr + FP + FC. (2.1)

Here FFr is the elastic part of the free energy of the film.
For the unwound Sm-C∗ it can be presented in the following
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form:

FFr = 1

2

∫
dr[K11(div n)2 + K22(n · rot n)2

+K33(n × rot n)2]. (2.2)

Here Kii , i = 1,2,3, are Frank elastic constants. The term
FP in Eq. (2.1) arises from the interaction of spontaneous
polarization P with the external electric field:

FP = −
∫

dr(P · E). (2.3)

The last term in Eq. (2.1) describes the Coulomb interaction
between the polarization charges that arise with the charge
density ρ = − div P due to thermal spatial fluctuations of
spontaneous polarization. As we know, the impurity ions are
present in all films and they can screen the polarization charges.
As was shown in Refs. [12,18], the diffusion times associated
with ionic motions are by a factor of 1000 longer than the
relaxation time of the c-director fluctuations for the wave
numbers corresponding to the light scattering experiments.
Therefore, ions of impurities do not have time to screen the
polarization charges arising from rapid fluctuations of the
c-director and in what follows we neglect the screening. Taking
into account the anisotropy of the permittivity tensor ε̂ in
Sm-C∗, we can write the Coulomb interaction term in the
form [17]

FC = 1

2

∫
dr

∫
dr′ div P(r) div′ P(r′)√

det ε̂ε−1
ik (r − r′)i(r − r′)k

, (2.4)

where ε−1
ik is the permittivity tensor inverse.

Here we consider the free-standing film of thickness L. In
the equilibrium state the film consists of planar smectic layers,
with the director oriented perpendicular to the external field
E. In what follows we neglect deviations of the smectic layers
from the given flat state, as it is usually assumed [5,8–12].
Actually, we are interested in director fluctuations that are
mainly associated with the free rotation of the director n around
the normal to the smectic layer.

The calculations are performed in the Cartesian coordinate
system shown in Fig. 1. The film occupies the region
−L/2 � z � L/2 with smectic layers parallel to the xy

plane. The y axis is directed along the external field E. The
polarization vector P can be expressed via the c-director and
the normal N: P = P [N × c], where P is the spontaneous
polarization.

Taking into account the anisotropy of the Coulomb
interaction of polarization charges, we parametrize the
permittivity tensor using its principal values ε1, ε2,
and ε3:

εik = ε1δik + (ε3 − ε1)n0in0k + (ε2 − ε1)p0ip0k, (2.5)

where

n0 = (sin θ,0, cos θ ),

c0 = (1,0,0),

p0 = [N × c0] = (0,1,0). (2.6)

FIG. 1. Vectors P, n, and c in Sm-C∗ film.

In the equilibrium ϕ = 0, though due to thermal fluctuations
ϕ �= 0 and thus for the vectors P, n, and c, we have

P = P (− sin ϕ, cos ϕ,0),

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),

c = (cos ϕ, sin ϕ,0). (2.7)

Assuming angular fluctuations ϕ to be small, we obtain, for
vectors P, n, and c,

P ≈ P

(
−ϕ,1 − ϕ2

2
,0

)
,

n ≈
[(

1 − ϕ2

2

)
sin θ,ϕ sin θ, cos θ

]
,

c ≈
(

1 − ϕ2

2
,ϕ,0

)
.

(2.8)

We can see that in the considered approximation only one
value, namely, the angle ϕ, fluctuates independently. Thus the
contribution of the c-director fluctuations to the free energy
takes the form, up to the second-order terms,

δF = 1

2

∫
dr

[
B1

(
∂ϕ

∂x

)2

+ B2

(
∂ϕ

∂y

)2

+ B3

(
∂ϕ

∂z

)2

+2B13

(
∂ϕ

∂x

)(
∂ϕ

∂z

)
+ PEϕ2

+P 2
∫

dr′
∂ϕ(r′)
∂x ′

∂ϕ(r)
∂x√

det ε̂(ε̂−1)ik(r − r′)i(r − r′)k

]
. (2.9)

Here

B1 = K22 sin2 θ cos2 θ + K33 sin4 θ,

B2 = K11 sin2 θ,

B3 = K22 sin4 θ + K33 sin2 θ cos2 θ,

B13 = sin2 θ cos θ (K33 − K22). (2.10)

Now we discuss the approximations used in Eqs. (2.8) and
(2.9). As it was predicted theoretically in Ref. [19] and shown
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experimentally in Refs. [20,21], the angular ϕ fluctuations
can be large in thin films. Thus the free energy described
by Eq. (2.9) is not valid for very thin films. In accord with
Refs. [19–21], we estimate the c-director fluctuations in the
framework of the one-constant approximation K11 = K22 =
K33 = K:

〈ϕ2〉 ≈ kBT

πKL
ln

d

a
. (2.11)

Here kB is the Boltzmann constant, T is the temperature, d is
the linear size of the film, and a is a spatial parameter of the
order of the length of the molecule. Performing estimations,
we use the typical set of parameters kBT = 4 × 10−21 J,
K = 10−11 N, d = 1 mm, and a = 3 nm. Thus we obtain, from
Eq. (2.11),

〈ϕ2〉 ≈ 0.75 for L = 2 nm,

〈ϕ2〉 ≈ 0.075 for L = 20 nm,

〈ϕ2〉 ≈ 0.0015 for L = 1 μm. (2.12)

Terms of fourth order ϕ4 are omitted in Eq. (2.9); therefore,
this expression cannot be applied for very thin films.

On the other hand, very thin films are effectively uniform in
the z direction. This supposition is correct if the film thickness
is much smaller than the correlation length along the layer nor-
mal. Thus it is important to obtain the dependence of the corre-
lation function of the angle ϕ fluctuations on the distance in the
z direction. We can estimate this dependence in the bulk sample
in the framework of the one-constant approximation. If we
neglect the Coulomb interaction for simplicity we can obtain
the fluctuating part of the free energy in the following form:

δF = 1

2

∫
dr[B(∇ϕ)2 + PEϕ2]. (2.13)

In this case correlation function is well known [22]:

〈ϕ(r)ϕ(r′)〉 = kBT

4πBr
exp

(
−

√
PE

B
r

)
, (2.14)

where r = |r − r′| and B = K sin2 θ . It is necessary to
note that this expression cannot be used in the case r = 0
because Eq. (2.13) is valid for long-range fluctuations only.
If the distance along the layer normal is much larger than
the width of layer Eq. (2.14) can be used to estimate the
dependence of the correlation function 〈ϕ(r⊥,z)ϕ(r⊥,z′)〉 on
|z − z′|. In estimations we use the same set of parameters as
before and E = 10 V/cm, P = 20 stC/cm2 = 6.67 nC/cm2,
and θ = 15◦. Thus we obtain, from Eq. (2.14),

〈ϕ(r⊥,z)ϕ(r⊥,z′)〉 ≈ 0.024 for |z − z′| = 20 nm,
(2.15)

〈ϕ(r⊥,z)ϕ(r⊥,z′)〉 ≈ 0.000 35 for |z − z′| = 1 μm.

Comparing the estimations (2.15) and (2.12), we conclude
that in relatively thick films fluctuations of orientation can
significantly change along the layer normal. Therefore, we
will consider the anisotropic three-dimensional Coulomb
interaction of polarization charges. In what follows we will
perform numerical calculations for films with thicknesses
L = 20 nm and L = 1 μm.

We assume that the size of the film in the plane of the
smectic layers is much larger than the film thickness L. In
this case it is convenient to use a Fourier two-dimensional
representation for coordinates (x,y):

ϕq⊥ (z) =
∫

dr⊥e−iq⊥·r⊥ϕ(r⊥,z),

ϕ(r⊥,z) = 1

(2π )2

∫
dq⊥eiq⊥·r⊥ϕq⊥(z). (2.16)

Integrating by parts the terms with coefficients B3 and B13 in
Eq. (2.9) we obtain

δF = 1

2(2π )2

∫
dq⊥

[∫ L/2

−L/2
dz ϕ∗

q⊥(z)

(
B1q

2
x + B2q

2
y + PE − B3

∂2

∂z2
− 2B13iqx

∂

∂z

)
ϕq⊥ (z)

+ 2πP 2q2
x

ε̄Q(q⊥)

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′e[iAqx (z−z′)−Q(q⊥)|z−z′ |]ϕ∗

q⊥(z′)ϕq⊥(z) +
(

B3ϕ
∗
q⊥ (z)

∂ϕq⊥(z)

∂z
+ 2B13iqxϕq⊥(z)ϕ∗

q⊥(z)

)∣∣∣∣
L/2

−L/2

]
.

(2.17)

Here

A = ε3 − ε1

ε̄
sin θ cos θ,

Q(q⊥) =
√

ε1ε3

ε̄2
q2

x + ε2

ε̄
q2

y ,

ε̄ = ε1 sin2 θ + ε3 cos2 θ. (2.18)

The first term in the second line in Eq. (2.17) describes the input
of the Coulomb interaction of polarization charges, which is
derived in the Appendix.

III. CORRELATION FUNCTION

The fluctuations of the c-director are shown to be com-
pletely determined by the fluctuations of the angle ϕ, within
the approximations considered. Thus we determine the angular
correlation function

gq⊥(z,z′) =
∫

dr⊥e−iq⊥·r⊥〈ϕ(r⊥,z)ϕ(0,z′)〉, (3.1)

where the angular brackets denote statistical averaging. In
order to calculate the correlation function gq⊥(z,z′) it is
convenient to represent the distortion free energy (2.17) in
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a quadratic form

δF = 1
2 (ϕ,M̂ϕ), (3.2)

or, explicitly,

δF = 1

2(2π )2

∫
dq⊥

∫ L/2

−L/2
dz ϕ∗

q⊥ (z)
∫ L/2

−L/2
dz′

{
δ(z − z′)

(
B1q

2
x + B2q

2
y + PE − B3

∂2

∂z2
− 2B13iqx

∂

∂z

)

+ 2πP 2q2
x

ε̄Q(q⊥)
exp

(
iAqx(z − z′) − Q(q⊥)|z − z′|

)
+ 4δ(z − z′)

[
δ

(
z′ − L

2

)
− δ

(
z′ + L

2

)](
B3

∂

∂z′ + 2B13iqx

)}
ϕq⊥(z′).

(3.3)

Here the expression in large curly brackets is the kernel of the operator M̂ . The correlation function gq⊥(z,z′) is the kernel of the
inverse operator M̂−1 multiplied by kBT . So the correlation function should obey the equation

M̂g = kBT δ(z − z′), (3.4)

or in explicit form(
B1q

2
x + B2q

2
y + PE − B3

∂2

∂z2
− 2B13iqx

∂

∂z

)
gq⊥(z,z′) + 2πP 2q2

x

ε̄Q(q⊥)

∫ L/2

−L/2
dz′′e[iAqx (z−z′′)−Q(q⊥)|z−z′′ |]gq⊥(z′′,z′)

+ 4

[
δ

(
z − L

2

)
− δ

(
z + L

2

)](
B3

∂

∂z
+ 2B13iqx

)
gq⊥(z,z′) = kBT δ(z − z′). (3.5)

The solution of this equation can be obtained in a way similar to that used in Refs. [13,14]. We divide the search for a solution of
Eq. (3.5) into several stages. In the first stage we replace this integro-differential equation by a set of differential equations with
boundary conditions. For this purpose we introduce the following auxiliary function:

vq⊥ (z,z′) = Q(q⊥)
∫ L/2

−L/2
dz′′e[iAqx (z−z′′)−Q(q⊥)|z−z′′ |]gq⊥(z′′,z′). (3.6)

Thus, instead of Eq. (3.5), we are to solve the following system of differential equations:(
−∂2

z − 2b13iqx∂z + b1q
2
x + b2q

2
y + PE

B3

)
gq⊥(z,z′) + 2π

B3ε̄

(
Pqx

Q(q⊥)

)2

vq⊥ (z,z′) = kBT

B3
δ(z − z′),

[
∂2
z − 2iAqx∂z − Q2(q⊥) − A2q2

x

]
vq⊥ (z,z) + 2Q2(q⊥)gq⊥(z,z) = 0. (3.7)

Here we used the notation

∂z = ∂

∂z
, ∂2

z = ∂2

∂z2
, b1 = B1

B3
, b2 = B2

B3
, b13 = B13

B3
. (3.8)

Inside the film −L/2 < z < L/2 the first of Eqs. (3.7) coincides with Eq. (3.5) and the second is obtained by differentiating the
auxiliary function (3.6).

Boundary conditions for Eq. (3.7) take the form

∂zgq⊥

(
z = ±L

2
,z′

)
+ 2iqxb13gq⊥

(
z = ±L

2
,z′

)
= 0,

∂zvq⊥

(
z = ±L

2
,z′

)
+ [±Q(q⊥) − iAqx]vq⊥

(
z = ±L

2
,z′

)
= 0. (3.9)

The first boundary condition allows us to remove the δ-function
term from the left-hand side of Eq. (3.5). The second condition
in Eq. (3.9) appears as a result of differentiation of the auxiliary
function (3.6) at the film boundaries.

In the second stage we rewrite the system (3.7) with
boundary conditions (3.9) in a vector form as it was done
in Refs. [13,14]. Introducing a four-dimensional vector

W = [g,v,∂zg,(∂z − 2iAqx)v]t (3.10)

and the vector

D = kBT

B3
(0,0,1,0)t , (3.11)

where t denotes the transposition, we can rewrite the system
(3.7) as

(∂z − Ĥ )W = −Dδ(z − z′). (3.12)

Here the matrix Ĥ is

Ĥ =

⎛
⎜⎝

0 0 1 0
0 h22 0 1

h31 h32 h33 0
h41 h42 0 0

⎞
⎟⎠, (3.13)
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with the matrix elements

h22 = 2iAqx, h31 = b1q
2
x + b2q

2
y + PE

B3
,

h32 = 2π

B3ε̄

(
Pqx

Q(q⊥)

)2

, h33 = −2ib13qx,

h41 = −2Q2(q⊥), h42 = Q2(q⊥) + A2q2
x . (3.14)

The boundary conditions (3.9) are rewritten as

	̂σ W
(

z = σ
L

2
,z′

)
= 0, (3.15)

where σ = ± corresponds to z = ±L/2 and

	̂σ =
(

2iqxb13 0 1 0
0 σQ(q⊥) + iAqx 0 1

)
. (3.16)

In the third stage we solve Eq. (3.12) with boundary
conditions (3.16). Obviously, the linearly independent vectors

w(σ )
1 = (−1,0,2ib13qx,0)t ,

w(σ )
2 = [0, − 1,0,σQ(q⊥) + iAqx]t (3.17)

satisfy these boundary conditions. Now the solution of
Eq. (3.12) with the boundary conditions (3.16) can be written
as follows:

Wq⊥(z,z′) =
{

W(+)
q⊥ (z,z′) for z > z′

W(−)
q⊥ (z,z′) for z < z′,

(3.18)

where

W(σ )
q⊥ (z,z′) = e[z−σ (L/2)]Ĥ

[
w(σ )

1 C
(σ )
1 (z′) + w(σ )

2 C
(σ )
2 (z′)

]
.

(3.19)

In order to find the unknown functions C
(σ )
1 (z′) and C

(σ )
2 (z′)

we insert Eq. (3.19) into Eq. (3.12) and integrate over z the
resulting equation in the infinitely small region: [z′ − ε,z′ +
ε], ε → +0. As a result we obtain the linear algebraic equation
for functions C

(σ )
1 (z′) and C

(σ )
2 (z′):

C
(+)
1 (z′)w(+)

1 + C
(+)
2 (z′)w(+)

2 − C
(−)
1 (z′)eLĤ w(−)

1

−C
(−)
2 (z′)eLĤ w(−)

2 = −e[(L/2)−z′]Ĥ D. (3.20)

Suggesting that the determinant of the system is nonzero
det Ŝ �= 0, where the matrix Ŝ is composed of the vectors
w(+)

1 , w(+)
2 , −eLĤ w(−)

1 , and −eLĤ w(−)
2 , i.e.,

Ŝ = (w(+)
1 , w(+)

2 , − eLĤ w(−)
1 , − eLĤ w(−)

2 ), (3.21)

we obtain ⎛
⎜⎜⎜⎜⎝

C
(+)
1 (z′)

C
(+)
2 (z′)

C
(−)
1 (z′)

C
(−)
2 (z′)

⎞
⎟⎟⎟⎟⎠ = −Ŝ−1e[(L/2)−z′]Ĥ D. (3.22)

Substituting Eq. (3.22) into (3.18) and (3.19), we obtain the
vector Wq⊥ (z,z′); its first component presents the correlation
function gq⊥(z,z′). The obtained correlation function permits
us to calculate the angular dependence of the light scattering
intensity.

IV. LIGHT SCATTERING

Now we analyze the effect of the Coulomb interaction
anisotropy upon the light scattering from the free-standing
Sm-C∗ film. In this system the scattering is caused by the
permittivity tensor fluctuations and consequently is due to the
fluctuations of the c-director. So in lowest approximation with
respect to the angle ϕ we can write

δε̃αβ =
[
ε̃

(
∂nα

∂ϕ
nβ + nα

∂nβ

∂ϕ

)
ϕ=0

+ δε̃

(
∂pα

∂ϕ
pβ + pα

∂pβ

∂ϕ

)
ϕ=0

]
ϕ. (4.1)

Here we used the notation ε̃αβ (instead of εαβ) as long as ε̃αβ is
the permittivity tensor at the optical frequency. In contrast, in
the description of the Coulomb interaction of the polarization
charges we must use the low-frequency permittivity tensor,
because the characteristic time of the c-director fluctuations is
much larger than the period of light oscillations. In Eq. (4.1)
we used also ε̃ = ε̃3 − ε̃1 and δε̃ = ε̃2 − ε̃1.

To understand how the anisotropy of the Coulomb inter-
action contributes to the light scattering measurements, we
perform calculations within the first Born approximation,
neglecting therewith the difference between ordinary and
extraordinary beams. In this case the scattered intensity I can
be presented as follows [23–25]:

I = VI0k
4

(4πR)2
e(s)
α e

(s)
β Wανβμ(qsc)e(i)

ν e(i)
μ . (4.2)

Here V is the scattering volume, I0 is the intensity of the
incident beam, k is the wave number of incident radiation, R

is the distance between the scattering volume and the point
of observation, e(i) and e(s) are the unit polarization vectors of
incident and scattered waves, respectively, and qsc = ks − ki

is the scattering vector. Vectors ki and ks are the wave vectors
of the incident and the scattered beams, respectively, and
Wανβμ(qsc) is the Fourier image of the permittivity correlation
function at the optical frequency, i.e.,

Wανβμ(qsc) = 1

L

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′e−iqz(z−z′)

×
∫

dr⊥e−iq⊥·r⊥〈δε̃αν(r⊥,z)δε̃βμ(0,z′)〉, (4.3)

where the transversal and longitudinal components of the
scattering vector are introduced explicitly qsc = (q⊥,qz).
Combining Eqs. (4.1)–(4.3) with Eq. (3.1), we obtain

I ∼
{

e(s)
α

[
ε̃

(
∂nα

∂ϕ
nβ + nα

∂nβ

∂ϕ

)
ϕ=0

+ δε̃

(
∂pα

∂ϕ
pβ + pα

∂pβ

∂ϕ

)
ϕ=0

]
e

(i)
β

}2

Gqsc , (4.4)

where

Gqsc = 1

L

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′e−iqz(z−z′)gq⊥(z,z′). (4.5)
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FIG. 2. Geometry of the light scattering experiment. The external
electric field E is directed along the y axis.

In the numerical calculations we put the incident beam
being normal to the film surface, ki = (0,0,k)t , with the
polarization e(i) = (1,0,0)t . The polarization of the scattered
beam can be written as e(s) = (− sin ϕs, cos ϕs,0)t and the
wave vector as ks = (k sin θs cos ϕs,k sin θs sin ϕs,k cos θs)t ,
where θs and ϕs are the polar and azimuthal angles of the
scattered radiation, as shown in Fig. 2.

For such a geometry the light scattering intensity can be
written as

I ∼ (ε̃ sin2 θ − δε̃)2 cos2 ϕsGqsc . (4.6)

It should be noted that the angular dependence of scattering
intensity is completely determined by the last two factors in
Eq. (4.6), while the first factor is determined by the material
constants, i.e.,

I ∼ cos2 ϕsGqsc . (4.7)

The obtained results are shown in Figs. 3 and 4.
The calculations are carried out with the following set
of parameters: kBT = 4 × 10−21 J, E = 10 V/cm = 3.34 ×
10−2 stV/cm, k = 105 cm−1, K11 = 0.7 × 10−11 N, K22 =
0.43 × 10−11 N, and K33 = 1.7 × 10−11 N. We take relatively
small values of spontaneous polarization. In Fig. 3 the plots
are derived for the films with different combinations of
the principal values of the permittivity tensor, but with the
same average value of permittivity equal to 5. The angular
dependence of light scattering intensity in the plane of the
normal N and equilibrium c-director is shown in Figs. 3(a)
and 3(b). In the experimental geometry shown in Fig. 2,
the light scattering intensity is strongly dependent on the
orientation of the plane of scattering. In particular, in the plane
perpendicular to the c-director the scattered intensity will be
zero for all θs > 0. This is a consequence of the presence of
the polarization factor cos2 ϕs in Eq. (4.7). In Fig. 4 the curves
are obtained for a relatively thick film with L = 1 μm and
θs = 10◦.

The most interesting results can be obtained in thick films
in the case ε2 > ε1ε3/ε̄, as in Ref. [15]. The function Q(q⊥)
can be rewritten as

Q = k sin θs

ε̄

√
ε1ε3 + (ε2ε̄ − ε1ε3) sin2 ϕs. (4.8)

FIG. 3. Light scattering from free-standing films of various
thicknesses for the geometry shown in Fig. 2. (a) and (b) Light
scattering intensity against the polar angle θs in the xz plane. For
the two upper curves P = 15 stC/cm2 = 5 nC/cm2 and for the two
bottom curves P = 20 stC/cm2 = 6.67 nC/cm2. The solid black
lines correspond to ε1 = ε2 = ε3 = 5; the dashed red lines are for
the biaxial system with ε1 = 3, ε2 = 7, and ε3 = 5 and for the biaxial
system with ε1 = 5, ε2 = 7, and ε3 = 3. (c) and (d) Dependence of
the scattered light intensity on the azimuth angle ϕs for the fixed polar
angle θs = 10◦; P = 15 stC/cm2 = 5 nC/cm2 for three upper curves
and P = 20 stC/cm2 = 6.67 nC/cm2 for three bottom curves. The
solid black lines correspond to ε1 = ε2 = ε3 = 5; the dashed red lines
are for the biaxial system with ε1 = 3, ε2 = 7, and ε3 = 5; and the
dotted blue lines are for the biaxial system with ε1 = 5, ε2 = 7, and
ε3 = 3.

At a constant value of the angle θs an increase in the angle
ϕs from zero leads to an increase of the function Q. In
this case, the correlation function Gqsc also increases. At the
same time, the geometric multiplier cos2 ϕs in Eq. (4.7) is
decreasing. Thus, in the case ε2 > ε1ε3/ε̄ the dependence of
the scattered light intensity on the angle ϕs is nonmonotonic
on the interval 0 � ϕs � π/2. Explicitly, these dependences
are shown in Figs. 3(d), 4(c), and 4(d). In the case ε2 � ε1ε3/ε̄

the dependence of the scattered light intensity on the angle
ϕs is monotonic for 0 � ϕs � π/2. As we can see from
Figs. 4(a) and 4(b), the angular dependences of the correlation
function Gqsc in the system with ε1 = ε3 = 3 and ε2 = 7
are very similar to the dependences in the system with
ε1 = ε2 = 3 and ε3 = 7; however, according to Eq. (4.7), there
is “competition” between the geometric multiplier cos2 ϕs and
the correlation function Gqsc . It turns out that multiplying by
a geometric factor cos2 ϕs allows obvious small differences
of the correlation functions, shown in Figs. 4(a) and 4(b).
Thus we can see that the angular dependences of the light
scattering intensity in the systems with ε1 = ε3 = 3 and ε2 = 7
and with ε1 = ε2 = 3 and ε3 = 7 are quite different, as shown
in Figs. 4(c) and 4(d). For films with the same average
permittivity, the light intensity may differ by about 20% at the
same angle of scattering. Also, we can see that when P → 0
the correlation function Gqsc and the scattered intensity become
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FIG. 4. (a) and (b) Angular dependence of the Fourier image of
the c-director fluctuation correlation function Gqsc for various values
of spontaneous polarization and (a) ε1 = ε3 = 3 and ε2 = 7 and (b)
ε1 = ε2 = 3 and ε3 = 7. The solid black lines 1, 2, 3, 4, 5, and 6
correspond to P = 15, 5, 3, 2, 1, and 0 stC/cm2, respectively. The
dotted red lines show the geometrical factor ∼cos2 ϕs in Eq. (4.7).
(c) and (d) Angular dependence of the light scattering intensity for
various values of spontaneous polarization. The solid black lines and
dashed red lines 1, 2, 3, 4, 5, and 6 correspond to P = 15, 7, 5, 2, 1,
and 0 stC/cm2, respectively. The solid black lines correspond to ε1 =
ε3 = 3 and ε2 = 7. The dashed red lines correspond to ε1 = ε2 = 3
and ε3 = 7.

independent of the anisotropy of the Coulomb interaction
of polarization charges. The increase in magnitude of the
spontaneous polarization leads to a decrease of the correlation
function Gqsc and the intensity of scattered light. We can
say that the system becomes more rigid with increasing
spontaneous polarization. In addition, the anisotropy of the
Coulomb interaction between polarization charges should lead
to additional anisotropy in light scattering, as shown in Figs. 3
and 4. The obtained results are consistent with those found
earlier for bulk samples in Ref. [17].

V. SUMMARY

The polarization charges in ferroelectric smectic liquid
crystals have attracted the attention of researchers for more
than a decade. This interest is caused by the fact that the
polarization charges appear mainly due to spatial fluctuations
of spontaneous polarization P. In turn these charges can
interact with each other and with impurity particles. This
interaction affects primarily the orientation of the director
fluctuations. So the influence of polarization charges can be
seen in experiments of light scattering from Sm-C∗ films. In
this study we analyzed theoretically the role of the Coulomb
interaction anisotropy in free-standing Sm-C∗ films. For a film
of finite thickness, the calculations were performed, taking
into account the inhomogeneity of the director fluctuations
throughout the film’s volume. Deriving the correlation function
of the thermal c-director fluctuations, we have calculated the
angular dependences of the scattered light intensity. We have

shown that the dependence of the scattered light intensity on
the azimuth angle becomes nonmonotonic in relatively thick
films, in the presence of the Coulomb interaction anisotropy.
We think such a dependence could be observed experimentally.
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APPENDIX: CALCULATION OF THE COULOMB TERM

The last line in Eq. (2.9) is the contribution of the Coulomb
interaction of polarization charges to the free energy:

FC = P 2

2

∫
dr

∫
dr′

∂ϕ(r′)
∂x ′

∂ϕ(r)
∂x√

det ε̂(ε̂−1)ik(r − r′)i(r − r′)k
. (A1)

Introducing the notation

f (r⊥,z) = f (r) = 1√
det ε̂(ε̂−1)ik(r)i(r)k

(A2)

and performing a Fourier transform in the x-y plane, we have

FC = P 2

2

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′

∫
dq⊥

(2π )2
q2

xf−q⊥ (z − z′)

×ϕq⊥(z)ϕ∗
q⊥(z′). (A3)

To calculate the function f−q⊥ (z − z′) we can use the result
obtained in [17] in infinite three-dimensional space

f−q = 4πε̄

ε1ε3q2
x + ε2ε̄q2

y + [qx(ε3 − ε1) sin θ cos θ + qzε̄]2
.

(A4)

If we replace qz by −qz in the function f−q⊥,−qz
given by

Eq. (A4) we get the function f−q⊥,qz
, which allows us to find

f−q⊥ (z) via

f−q⊥ (z) =
∫ +∞

−∞

dqz

2π
eiqzzf−q⊥,qz

. (A5)

The function f−q⊥,qz
has two poles at

qz = Aqx ± iQ(q⊥), (A6)

where A and Q(q⊥) are given in Eq. (2.18). Hence the integral
in Eq. (A5) is reduced to the contour integral on the complex
plane and can be easily calculated by residues. As a result we
obtain

f−q⊥ (z) = 2π

ε̄Q(q⊥)
exp[iAqxz − Q(q⊥)|z|]. (A7)

If the expression given by Eq. (A7) is substituted into the
formula (A3) we obtain the Coulomb term in the expression
(2.17).
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