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In applications where magnetic particles are used to detect and dose targeted molecules, it is of major
importance to prevent particle clustering and aggregation during the capture stage in order to maximize the
capture rate. Elongated ferromagnetic particles can be more interesting than spherical ones due to their large
magnetic moment, which facilitates their separation by magnets or the detection by optical measurement of their
orientation relaxation time. Under alternating magnetic field, the rotational dynamics of elongated ferromagnetic
particles results from the balance between magnetic torque that tends to align the particle axis with the field
direction and viscous torque. As for their translational motion, it results from a competition between direct
magnetic particle-particle interactions and solvent-flow-mediated hydrodynamic interactions. Due to particle
anisotropy, this may lead to intricate translation-rotation couplings. Using numerical simulations and theoretical
modeling of the system, we show that two ellipsoidal magnetic particles, initially in a head-to-tail attractive
configuration resulting from their remnant magnetization, can repel each other due to hydrodynamic interactions
when alternating field is operated. The separation takes place in a range of low frequencies fc1 < f < fc2. The
upper frequency limit fc2τr ≈ 0.04 (where τr is the rotation time scale) depends weakly on the ratio of magnetic
field to particle magnetization strength, whereas fc1 tends to zero when this ratio increases.
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I. INTRODUCTION

Magnetic particles have the great advantage of being
tunable by external magnetic field. Under uniform static
magnetic field, they are known to form fibrous structures that
change the bulk rheological properties of the suspending fluid.
These suspensions, typically referred to as magnetorheological
fluids (MR) [1], have been employed in a variety of damping
and shock absorbing devices, and the same principle applies
to spherical and elongated elementary particles [2,3].

In biomedecine, magnetic nanoparticles can be used in ex-
perimental cancer treatment called magnetic hyperthermia—
an increase in temperature resulting from the thermal energy
released by magnetic nanocrystals in an external alternating
magnetic field [4]. Also magnetic nanoparticles can be
conjugated with carbohydrates to detect bacteria. Iron oxide
particles have been used for the detection of Gram-negative
bacteria like Escherichia coli and for detection of Gram-
positive bacteria like Streptococcus suis [5]. In these emergent
applications, it can be of interest to concentrate or detect
molecules in vitro by adsorbing them on the particle surface.
Nanoparticles have large specific surface area allowing them
to capture biological molecules. Although in the most general
case the particles tend to be quasispherical, there is an interest
in elongated particles due to their greater magnetization
capacity compared to spherical ones (the demagnetization
tends towards zero when a particle approaches a needle),
which facilitates their detection by magnets. If they are
functionalized with biological molecules, the particle response
to a magnetic field is a very practical way to dose the adsorbed
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matter. Also, elongated particles induce measurable optical
anisotropy. This anisotropy is used, for instance, to detect the
presence of hemozoin crystals, an ellipsoidal magnetic particle
synthesized during the destruction of hemoglobin cells by
malaria [6].

When compared to isotropic ones, anisotropic particles can
be easily torqued by an external field, and the corresponding
orientation can be visualized by simple optical techniques
[7]. The torque features are attractive to several applications,
where anisotropic magnetic particles are used as force sensors,
microstirrers, active components in constrained geometries,
microrheological probes [8,9], or externally actuated mi-
cropropellers [10,11]. One can benefit from the very rich
orientation dynamics of an assembly of magnetic particles
submitted to an oscillating magnetic field. As an example,
Ref. [12] formed colloidal ribbons self-assembled from mi-
croscopic magnetic ellipsoids of permanent magnetic moment
perpendicular to their long axis. The assembly performed using
static magnetic field was reoriented when the external applied
field oscillates.

While the formation of assemblies is the basis of the
multiple applications cited above, particle clustering can
be undesired typically in optical applications. Therefore,
in this paper, we are interested in exploring a plausible
way of separating a couple of attractive magnetic particles,
thanks to the torque applied by an external magnetic field.
When elongated magnetic particles are submitted to alter-
nating magnetic field, the system is subject to a compe-
tition between direct magnetic particle-particle interactions
and solvent-flow-mediated hydrodynamic interactions (HI),
leading to translation-rotation couplings that are more intri-
cate than the coupling found for spherical particles studied
in Ref. [13].
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We consider for this study the case of elongated ferromag-
netic microparticles. Elongated particles like cobalt with a size
O(100nm) can be in the single domain state, which allows
them to have remnant magnetization even in the absence of
the magnetic field, without being subject to Brownian motion:
the dipolar coupling parameter, which is the ratio of the energy
of dipole-dipole interactions and the particle thermal energy,
is relatively high, O(1000). Particles are modeled as ellipsoids
and are considered to have remnant magnetization, as if they
have been exposed to a magnetic field prior to the application
of an alternating field, and Brownian motion is not taken into
account (the particle size is close to a micron). In cases where
thermal fluctuations cannot be neglected (nanosized particles),
their impact on particle motion is diffusive, which favors
particle separation in dilute systems. A dipolar representation
is used to account for pairwise magnetic interactions [14].
In the case of one particle pair, the dipolar interaction is
sufficient to capture the primary magnetic interaction, unlike
concentrated systems, where detailed multipole representation
may be warranted to resolve very localized variations in the
magnetic field.

The paper is organized as following. In Sec. II, we explain
the model and show the results for the translation and rotation
trajectories of a pair of particles with no HI. Section III shows
the impact of HI on the relative trajectories as a function
of the alternating field frequency. Stokesian hydrodynamic
interactions are taken into account in the frame of the force-
coupling method. We focus especially on the case of a pair of
particles in a head-to-tail initial configuration. A simple model
based on Stokes fundamental solutions is used to explain the
impact of the frequency on the particle pair separation. This
section also includes a discussion on the effect of varying
separately particle magnetization-to-magnetic field ratio, as
well as the particle aspect ratio. The paper is ended with
conclusive remarks.

II. SYSTEM DYNAMICS IN THE ABSENCE OF HI

This section sets the problem and the relevant parameters
that come into play. A cluster here consists of two elongated
particles that tend to aggregate if they are submitted to a
constant magnetic field. A theoretical model for the dynamics
of the particle pair is written and solved, first with neglected
HI between moving particles. Elongated particles, called here
fibers, are modeled as prolate spheroids with minor semiaxis
a and major semiaxis λa. The aspect ratio λ of the so-called
fiber is larger than unity, and it is taken equal to 6 for all the
results shown in this paper.

A. Single fiber

The fibers are assumed to have constant magnetic dipole
intensity (remnant magnetization), with M oriented along the
fiber axis. Its dipole moment is therefore m = μ0V M, where
μ0 is the vacuum magnetic permeability (μ0 = 4π10−7 in
H/m or N/A2) and V is the particle volume (V = 4

3πλa3 for
spheroid).

Under alternating magnetic field H = H0cos(ωt)ey , where
ω = 2πf and f is the frequency of the magnetic field, the
fiber is submitted to a magnetic torque Tm = m × H. If θ is
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FIG. 1. Top panel: sketch of the fiber under magnetic field.
Bottom panel: angular motion of one particle under alternat-
ing magnetic field for different frequencies: f τr = 0.014, 0.046,
and 0.46.

the angle between the field direction and the fiber principal
axis (following Fig. 1), then the magnetic torque intensity is
Tm = −βcos(ωt)sinθ , with β = μ0V MH0.

In a viscous fluid, the fiber also experiences hydrodynamic
torque from viscous friction. In the absence of hydrodynamic
interactions between particles, the viscous torque is linearly
related to the speed of rotation of the fiber through Th = −αθ̇ .
The hydrodynamic coefficient α is proportional to the fluid
viscosity and depends on the fiber aspect ratio (the dot refers
to the derivative in time) and on the Reynolds number based on
the fiber rotational motion. The present study is performed in
the limit of negligible fluid inertia. This means that for a fiber of
length L rotating at angular frequency ω in a fluid of density
ρf and viscosity μ, the Reynolds number Re = ρf L2ω/μf

is very small. For a fiber of length 1 μm in water, the case
Re � 1 corresponds to a rotation speed ω � 106 rad/s or f �
160 kHz. In this limit, the microhydrodynamics principles
fully apply. The friction coefficient of a prolate spheroid
rotating around one of the small axis can be modeled following
Ref. [15] (also written in Ref. [16]):

α = 16
3 πμa3δ3(1 + λ2)[(2δ2 + 1)log(λ + δ) − λδ]−1, (1)
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TABLE I. Typical system parameters.

Liquid phase Water

Fiber length 1 μm
Fiber aspect ratio λ = 6
Fiber material Cobalt
Magnetic field intensity H0 = 5 kA/m
Particle magnetization M = 5 kA/m
Fiber rotation time scale τr = 1 ms

with δ2 = |λ2 − 1|. If particle inertia is negligible, meaning
that the time relaxation due to change in particle position
and orientation is very small compared to the particle rotation
time scale (ρpa2/μ � 1), the sum of the torques that a
particle experiences cancels; i.e., Tm + Th = 0. The equation
of angular motion becomes [−αθ̇ − βcos(ωt)sinθ = 0], and
the corresponding solution starting from the initial angle θ0

satisfies

θ (t) = 2atan

[
− tan

(
θ0

2

)
e− 1

ωτr
sinωt

]
. (2)

We define the rotation time scale τr from the ratio α/β that
appears in the angular motion equation:

τr = α

β
= 4μ

μ0H0M
f (λ). (3)

Note that the rotation time does not depend on the
particle size but on the aspect ratio via the function f (λ) =

δ3(1+λ2)
λ[(2δ2+1)log(λ+δ)−λδ] (≈9.09 for λ = 6). τr is the characteristic
time scale in the considered problem. Typical parameters that
describe the system are summarized in Table I.

The angular motion of one particle submitted to the
magnetic field oscillation is displayed in Fig. 1. The maximum
angle that the particle can reach with respect to the initial mag-
netic field direction H0 depends on the oscillation frequency
scaled by the rotation time scale. At low frequency, the particle
becomes perfectly aligned with the magnetic field direction
and the relative orientation with respect to the field alternates
between 0 and π . This is called the oscillation regime. At high
frequency, the particle major axis vibrates around an average
value, failing to align with the magnetic field direction. This
is the vibration regime.

B. Two fibers

Ferromagnetic particles experience magnetic dipolar
forces. By analogy with electrostatics, the induced dipole
moment of each elongated particle is supposed to be a result
of two opposite point charges q and −q near the particle tips.
Following Bossis et al. [17], the charge value q is related to
the fiber dipole moment m = qL. The charges are placed at
a distance a from each fiber extremity (see the sketch on the
top-left corner of Fig. 2). The magnetic interparticle forces are
reduced to forces between charges written as

Fm = ± q2

4πμ0

r∗

r∗3
= ±[μ0M

2a2]
π

9

r∗

r∗3
, (4)

where r∗ is the distance between charges scaled with a, and
μ0M

2a2 is the force characteristic scale.
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FIG. 2. Effect of the frequency on the behavior of two fibers under
alternating magnetic field in the absence of HI. Left (case A) and right
(case B) columns correspond to different initial configurations with
the line joining fiber centers aligned with (and, respectively, perpen-
dicular to) the magnetic field direction. The + and − charges are
placed at the extremity of the continuous lines following the ellipsoid
major axis. The magnetic moment of every particle is oriented from
− to +. The first row corresponds to the initial state of the system.
The second to fourth rows correspond to dimensionless frequencies
f τr = 0.023,0.069, and 0.138, respectively, with HM = 1010 and
H/M = 1. In these rows, blue and red colors correspond to the
system configuration at chosen time t and t + 1/(2f ), respectively.
The circular arcs indicate the relative trajectory of the center of P2

with respect to P1 in time.

A repulsive force must be included to avoid parti-
cles from overlapping, both here and in the next section,
where HI will be taken into account without fully resolv-
ing lubrication near particle contact. The force used here
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is classical in computer simulations of the dynamics of
magnetic particles:

Fr = [μ0M
2a2]e−ξ (|r∗|−2.2) r∗

r∗ . (5)

The parameter ξ is set to 10 so that for two particles that are
in mechanical contact the repulsive force exactly balances the
attractive magnetic interaction [18] when the force is applied
at the position of charges. The sum of dipolar and repulsive
forces constitutes the interparticle forces FP1P2 = −FP2P1 .
The notation FP1P2 refers to the force applied at particle P1

from interaction with particle P2. The point of application of
interparticle forces is located near the particle extremities,
leading to additional torques, noted as TP1P2 and TP2P1 at
particles P1 and P2, respectively.

The third force is the viscous drag. A particle, which
center of mass has a translational velocity ẎP , experiences
viscous drag force Fh opposite to the direction of motion.
Assuming hydrodynamic interactions are negligible, the drag
force expression is identical to the isolated particle case; i.e.,
Fh = −K · ẎP . The resistance matrix K is diagonal in the
principal frame of a symmetrical particle, and its coefficients
depend on the particle shape. For a spherical particle of radius
a, K = 6πμaI, where I is the identity tensor. For a prolate
spheroid of major axis direction 1 and minor axis directions
2 and 3, K11 = 8πμaδ3[(2δ2 + 1)log(λ + δ) − λδ]

−1
and

K22 = K33 = 16πμaδ3[(2δ2 − 1)log(λ + δ) − λδ]
−1

(from
Ref. [15] written in Ref. [16]). The translation equation of
motion is therefore Fh + Fm + Fr = 0.

If we neglect hydrodynamic interactions, the viscous torque
applied to a rotating particle is Th identical to the expression
of the single particle given in the previous subsection. The
two-body problem is restricted to one plane containing the
magnetic field and the relative particle positions. In this plane,
the equations for rotational and translational motion of particle
Pi (Pj being the other particle) are given by

θ̇Pi
= 1

α

(
TPiPj

+ Tm,Pi

)
, (6)

ẎPi
= K−1 · FPiPj

. (7)

The time integration of the particle angular and translational
motion was done using Adams Bashforth scheme of order 3,
with a time step dt ≈ τr/60. The behavior of the system
without hydrodynamic interactions discussed in this section
is globally not dependent on the time step, neither on the
strength of the repulsive force (parameter ξ ).

We consider two configurations where the initial distance
between particle centers is r0 = 12.5a, and the initial angle
of orientation of both fibers θ0 = 20◦. In configuration A (left
column of Fig. 2), the line joining particle centers is initially
parallel to the magnetic field direction. In configuration B
(right column), the line of centers is perpendicular to the
magnetic field. If the magnetic field was invariant in time,
the particles would first rotate toward the field direction, then
get aggregated in case A (in a head-to-tail configuration) and
repelled in case B. Under alternating magnetic field, we follow

the evolution of angular and relative particle distance in the
directions normal and parallel to the magnetic field using
�X = XP 1 − XP 2 and �Y = YP 1 − YP 2, respectively. The
relative trajectories are displayed in Fig. 3. Two behaviors are
observed:

In case B, at low frequency, particles tend to separate
along the x direction (see the monotonous increase of the
absolute value of �X and �Y ). The system conserves globally
its repulsive nature earned from the initial configuration.
However, when the frequency increases, the distance between
particle centers remains almost constant in time, meaning
that at high angular oscillation the average in time of the
interparticle force tends to zero.

In case A, we distinguish three regimes. At low frequency,
the angle θ of both particles oscillates under the alternating
magnetic field. The line of centers remains parallel to the
magnetic field. At intermediate frequencies, the angular
orientation of both particles oscillates between −π and π .
At long times, the relative trajectories of their centers can
be described by circular arcs of radius λa (as sketched in
Fig. 2). This corresponds to a large-scale oscillation of the
relative positions �X and �Y . At high frequencies, the
line of centers becomes perpendicular to the magnetic field
direction at long time (�X → 2λa and �Y → 0, according
to Fig. 3).

Note that the problem of angular motion of a pair of
ellipsoidal particles is to some extent similar to the problem
studied by Ref. [19] relative to the synchronization of spherical
particle oscillations in an AC field due to dipolar interactions. It
would have been of interest to consider two time scales, a short
one related to the period of the AC field and a longer one related
to the evolution of the amplitude of the oscillations, so that
a stability analysis could be done like in Ref. [19]. However,
holding the particle center of gravity fixed, completely changes
their rotational dynamics, so this analysis is not possible
without taking into account the coupling with the translational
equations, which would be quite difficult to realize. Instead, we
have studied the rotational dynamics by the direct integration
of the set of equations over a time long enough to distinguish
between different dynamics and so to delimit different regimes
depending on the frequency of the applied field. The summary
on the dynamics of the particle pair in case A is the following.
A1 synchronous continuous rotation at low frequency, A2
asynchronous oscillation of π at intermediate frequency (as
shown in Fig. 4), and A3, oscillation (of an angle less than π )
at high frequency. For example, we observe an asynchronous
rotation, in the range f τr ≈ [0.017–0.04] for case A with
H0/M = 1. Note that the intermediate regime depends on the
initial particle orientation with respect to the magnetic field.
The first two regimes do not lead to a significant change of
the initial configuration because particles spend a consequent
time while they keep aligned, which increases the attraction
between opposite charges. The third regime leads to the change
in the particle configuration where the particle center line
becomes perpendicular to the magnetic field since oscillating
particles spend less time aligned with the field where the
attractive magnetic interactions are the most important. In all
cases, the particle distance remains constant.
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FIG. 3. Evolution of particle relative position in time in the absence of HI for different frequencies f τr = 0.023,0.069, and 0.138, and for
H/M = 1. First row: �X = xP 1 − xP 2. Second row: �Y = yP 1 − yP 2. Left column, case A; right column, case B.

III. EFFECT OF HYDRODYNAMIC INTERACTIONS

A. Numerical simulations based on the force-coupling
method (FCM)

Particle-resolved direct numerical simulations were per-
formed to calculate the hydrodynamic interactions between the
particles submitted to the forces and torques described above.
The numerical simulation of particle trajectories and suspen-
sion flow field is based on the force-coupling method (called
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FIG. 4. Asynchronous flip-flop motion of particles observed from
the angular trajectories of both particles (red and black) without
hydrodynamic interactions, for H0/M = 1 and f τr = 0.032. Initial
configuration follows case A with θ10 = π/9 and θ20 = π/3. The
green line is the 2cos(ωt).

here FCM). The method initially developed for spherical
particles, as described in Refs. [20] and [21], was then adapted
to ellipsoidal particles by Ref. [16] (see their paper for careful
description and validation of the numerical method). Flow
equations (here Stokes equations) are dynamically coupled to
Lagrangian tracking of particles. The fluid is assumed to fill
the entire simulation domain, including the volume occupied
by the particles. The fluid velocity and pressure fields are
solutions of the mass and momentum conservation equations.
The presence of a particle in the fluid is then represented by
a body force distribution written as a multipole expansion in
the Navier-Stokes equations. Only the first two terms of the
expansion are deployed. The first term of the expansion, called
the monopole, represents the force that the particle exerts
on the fluid (due to magnetic forcing and particle-to-particle
repulsive forces). The second term, called dipole, consists of
an antisymmetric part related to the magnetic and interparticle
torques that a particle applies on the fluid and a symmetric
part that ensures that the strain rate within the fluid volume
occupied by the particle is zero (particles are solid bodies).
The distribution of particle forcing on the Eulerian grid (used
to solve the flow equations) is done thanks to anisotropic
Gaussian functions that take into account the ellipsoidal
shape of the particle. The particle translational (respectively,
rotational) velocities is obtained from a local weighted average
of the volumetric fluid translational (respectively, rotational)
velocity field over the region occupied by the particle. The
trajectory of every particle is then obtained from numerical
integration of its equation of motion. The angular motion of
one particle obtained from numerical simulations is compared
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FIG. 5. Sketch of the fiber under magnetic field on the left panel
with the velocity perturbation in the fluid induced by the particle
rotation. On the right, angular motion of one particle under alternating
magnetic field for different frequencies f τr = 0.014, 0.046, and 0.46:
comparison of FCM results (dotted lines) with the theoretical solution
(solid lines). Solid and dashed lines cannot be distinguished due to
the good agreement.

to the analytical solution in Fig. 5. The excellent agreement
shows that this method is accurate, both in calculating the
angular motion of the particle under an external torque and in
detecting the instant of particle departure from one equilibrium
orientation to the other.

B. Particle separation depends on the field frequency

Simulations based on the FCM were performed starting
from both configurations A and B, as in the previous
section. The relative particle trajectories in configuration B
are not significantly influenced by HI. At frequency up to
f τr = 0.046, the fibers exhibit separation along the direction
perpendicular to the magnetic field as sketched in Fig. 7. At
higher frequencies, the sum of applied forces tend to zero when
averaged in time, and the particle relative distance remains
constant. Nevertheless in case A, the impact of alternating
field on fiber separation is drastically changed when HI are
accounted for. The system becomes repulsive within a range
of low frequencies (f τr = [0.0037–0.023] when H0 = M).

FIG. 7. Left panel: initial state of two ferromagnetic elongated
particles. Right panel: position and orientation of both particles
after 3.5 period of oscillation of the magnetic field, revealing the
separation of these particles due to hydrodynamic interactions. The
charges represent the magnetic dipole orientation of every particle:
opposite and equal charge signs induce particle-particle attraction and
repulsion, respectively.

As a matter of fact, for the system of ferromagnetic fibers of
length 1 μm in water, the corresponding frequency range is
[25–250] Hz using H = M = 5 kA/m, which remains in the
Stokesian flow domain.

The relative trajectories in x and y directions of particles
initially placed according to configuration A are displayed in
Fig. 6, at different frequencies. While they exhibit oscillatory
motion under the alternating field, particles repel each other.
Their relative motion can be divided in two stages.

(1) In a first stage, the lower particle is lifted upward
(the upper particle is pushed downward) with respect to the
magnetic field direction, until the line between both centers
becomes almost perpendicular to the magnetic field (�Y ≈ 0).
The duration of the first stage is quite short, since it takes 5 to 10
periods of magnetic field oscillation so that this lift-up process
is completed. It is probably not striking that separation happens
when HI are taken into account because velocity perturbations
induced by particle motion are of repulsive nature. However,
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FIG. 6. Evolution of particle relative position in time (starting from configuration A) for different frequencies and H/M = 1. The four black
lines are from numerical simulations taking into account HI for four different frequencies. The two blue lines represent particle trajectories in
the second stage (in the x direction), which would be obtained without HI for the two frequencies f τr = 0.0037 and 0.02. The large thickness
of the black lines are due to fluctuations in particle relative positions while oscillating under the alternating magnetic field.
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what is totally unexpected is that the transition from the
aggregated to repulsive state, when the frequency is increased,
is very sharp. At f τr = 0.0029 the system remains aggregated,
whereas separation happens at f τr = 0.0037.

(2) In a second stage, repulsive motion occurs exclusively
in the x direction and net separation happens. Note that, in
this second stage, the repulsive motion in the x direction
is slower than in the first one. A net slope reduction can
be noticed on �X curves. Some observations are noted on
the particle trajectories during this second stage. The first
one is that the repulsive motion in the x direction is not
due to the same repelling mechanism as in configuration
B without HI. In the latter case, particles are subject to a
drift due to magnetic interparticle forces (between identical
charges) exclusively. The relative motion in the x direction,
calculated once the first stage is completed and with switching
HI off, is displayed in Fig. 6 with blue lines. When HI
are accounted for, the rotation of one particle exerts a
hydrodynamic translation force on the other particle due to
shape anisotropy, via the torque-velocity coupling, in addition
to the repulsion due to magnetic forces. The separation
process is slowed down by HI. The second observation is
that particle rotation takes place in the same direction during
the first stage, whereas particles can alternate their direction of
rotation during the second stage. The magnetic field direction
is a kind of vertical barrier that an isolated particle cannot
cross when oscillating exclusively under magnetic torque.
Crossing this barrier is made possible thanks to the additional
torque coming from inter-particle forces, and the direction of
rotation in time is essentially monitored by the sign of these
torques.

Note that the results shown here are obtained starting from
configuration A as an example. In experiments, aggregated
needles often follow tail-to-head configuration with one
particle among the pair inclined of a small angle (5◦ for
instance) with respect to the magnetic field direction. This
is due to defaults on particle surfaces. We realized some
tests (not shown here) starting with such configuration. They
obey to the same dynamics as case A with respect to the
frequency.

C. Comparison with a simplified HI model

In order to understand the mechanism responsible of cluster
breakup by HI, we reconsidered the equations of motion,
Eqs. (6) and (7), and supplemented them by an estimation
of the velocity perturbations induced on each particle from the
translational and rotational motion of the other one. Knowing
that the source of motion of each particle is due to magnetic
torque and dipolar force interactions, the velocity perturbation
is estimated by using a linear distribution of point forces and
point torques along the fiber axis. For a simple explanation of
point force and torque solutions, see Ref. [22]. The prediction
of linear and rotational velocities from the slender-body theory,
first introduced by Batchelor [23], could be more accurate
for these elongated particles. However, we show a posteriori
that the simple model used here is enough to capture the
particle relative trajectories and their dependence on the
frequency.

We define ω12 and u12 as the total rotational and transla-
tional velocity perturbations induced at P1 from the imposed
forces and torques applied at particle P2. ω12 is O(a3/r3)
less than the angular velocity induced by the magnetic torque
and can therefore be neglected. The perturbation velocity u12

at particle P1 resulting from the translation and rotation of
particle P2 can be calculated, using the combination of point
force and point torque solutions:

u12 = uS@P1 + uR@P1 . (8)

The velocity perturbation uS at particle P1 generated by the
force FP 2P 1 (applied at particle P2) is called Stokeslet in the lit-
erature on microhydrodynamics. At a position x, the Stokeslet
velocity perturbation from the force applied at xP 2 is modeled
as uS(x − xP 2) = G(x − xP2) · FP 2P 1

8πμ
, using the Oseen-Burger

tensor G(x) = ( I
r

+ xx
r3 ). The velocity perturbation uR at parti-

cle P1 generated by the torque TP2 = TP2P1 + Tm,P2 is called
Rotlet and is written as uR(x − xP 2) = TP 2

8πμ
× R(x − xP2),

using the Rotlet tensor R(x) = x
r3 . Considering a uniform

linear distribution of the point forces and torques along the
major axis of P2, the perturbation velocity at P1 can be
written as

uS@P1 = 1

L2

∫ L

0

∫ L

0
uS(x1 − x2)dx1dx2

= 1

8πμ

1

L2

∫ L

0

∫ L

0
G(x1 − x2) · FP2P1dx1dx2, (9)

uR@P1 = 1

L2

∫ L

0

∫ L

0
uR(x1 − x2)dx1dx2

= 1

8πμ

1

L2

∫ L

0

∫ L

0
TP2 × R(x1 − x2)dx1dx2. (10)

Finally, note that the perturbation velocity at P2 is u21 =
−u12, because the forces applied on both particles are equal
and opposite, the torques are equal and the coefficients of
matrices G and R are even and odd functions, respectively.

The set of translation and rotation equations (being similar
for both particles, it is only written for P1) becomes

θ̇P1 = 1

α

(
TP1P2 + Tm

) + ω12, (11)

ẎP1 = K−1 · FP1P2 + u12. (12)

The initial particle angles θ01 and θ02 can be different. At the
first instants, particles align with the magnetic field direction.
After that, with the departure from one equilibrium orientation
to the other, torques applied on both particles are almost equal,
and the angular velocities too. Therefore, one notation θ will
be shortly used to refer to the angle of both particles with the
magnetic field direction. In the translation equation of motion,
the coefficients of the mobility matrix K−1 depend exclusively
on this orientation angle θ . Equations (11) and (12) were solved
numerically to obtain the particle trajectories, using the same
integration scheme as Sec. II B.

Figure 8 reveals that Eqs. (11) and (12) allow predicting
particle angular and translational motion in agreement with
numerical simulations. Also particle separation occurs in a
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FIG. 8. Idem Fig. 6. Black lines are from FCM simulations. Green lines are predicted using the simplified model [Eqs. (11) and (12)] at
identical frequencies.

range of frequencies [fc1–fc2]τr close to the range found in
numerical simulations ≈[0.0037–0.029]. Therefore, we used
this model to further understand the role of HI and frequency
in cluster breakup.

D. Discussion on the mechanism leading to particle separation

Since the particle separation is intimately related to the
hydrodynamic repulsion during their rotation under the al-
ternating field, a particular attention was paid to the particle
angular motion during the first periods, which are determinant
for the separation. Figure 9 shows the angular trajectories
of both particles, revealing that they rotate in a synchronous
way when hydrodynamic interactions are taken into account,
at least up to the critical frequency fc2. The regime of
asynchronous rotation is shifted toward higher frequencies
(depending on the initial angular configuration) in the presence
of hydrodynamic interactions. The system behavior close to
the critical frequencies is examined in this section.
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FIG. 9. Angular trajectories of both particles computed while
hydrodynamic interactions are taken into account, for H0/M = 1.
Initial angles are θ10 = π/9 and θ20 = π/3. The initial angle does not
have a significant effect in the range of frequency shown here.

Close to the lowest critical frequency fc1, Fig. 10 shows the
evolution of configuration A when HI are taken into account
for two frequencies f τr = 0.0014 and 0.0032 (knowing that
0.0014 < fc1τr < 0.0032). Due to the initial departure from
the field direction (θ0 = 20o), the magnetic torque Tm is
different from zero at the first instants, and both particles
rotate toward the field direction. The plateaus in the curve
of θ correspond to particle quasialignment with the field. The
departure from this equilibrium angular position depends on
the intensity of the magnetic torque, which should overcome
the torque due to interparticle magnetic attraction so that
rotation can take place. According to Fig. 10, the maximum
torque [proportional to sinθcos(ωt)] seems to depend dras-
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FIG. 10. Difference in the behavior of particle pair for frequencies
below and above fc1, starting from configuration A, when HI are
taken into account (f τr = 0.0014 with red line and f τr = 0.0032
with black line). A zoom on the first three periods is shown here. The
angular trajectory (a) and magnetic torque (b) scaled with μ0M

2a3

are plotted for particle P1. The relative trajectory of the centers �X

(c) and �Y (d) are scaled with a. The angle θ is given in radians.
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The cosine function is added in black in (a) to compare the lag of the
particle orientation departure from the field orientation.

tically on the frequency. Additional calculations (not shown
here) reveal that the torque increases monotonously with the
frequency around fc1. Stronger torques lead to stronger Rotlet
perturbation velocity (the Stokeslet one is much smaller in all
cases), which acts in favor of particle separation. When the
Rotlet component uR is switched off, fibers in configuration
A behave similarly to the case without HI. All these findings
do not depend significantly on the initial particle angles θ10

and θ20.
The bifurcation (from separation to nonseparation regime)

around fc2 seems to coincide with the transition of the particle
rotation from a complete rotation (of 2π for every period)
toward a back and forth oscillation regime (as it can be seen
from Figs. 9 and 11). Actually, the regime of separation seems
not to be related to the synchronization of rotation but to the
fact that the particles continuously rotate in the same direction.
Above the critical frequency fc2 there is a regime of rotation
of π back and forth, then at higher frequencies the angular
amplitude of this oscillation is reduced. As shown in Fig. 12,
the first half period generates a lateral displacement; then the
separation in the second half period will be more important if
they continue to rotate in the same direction than if they rotate
back. This regime of oscillation does not induce a separation
contrary to the one of continuous rotation. Therefore, the
highest transition frequency, fc2, seems to depend on the nature
of particle rotation, which is mainly a function of the product
H0M .

The transition from no-separation to separation around fc1

takes place when the hydrodynamic repulsion due to particle
rotation prevails. When the particles abruptly rotate of π the
average torque is readily obtained by integrating dθ/dt over
half a period, which leads to 〈T 〉 = ωα that is decreasing
function with the frequency. The translational velocity of
particle 1 induced by the velocity field coming from the torque
on the particle 2 is proportional to 〈T 〉. On the other hand, the

FIG. 12. Impact of the rotation direction on the repulsion: A-B are
rotating in the same directions. A-C are rotating in opposite directions.

attractive velocity coming from the remnant magnetization,
M , scales as M2. Taking into account the friction coefficient,
we obtain the ratio of the hydrodynamic repulsive velocity to
the magnetic attractive one Vhydro/VF = (ωτr )(πκ)(H0/M).
The coefficient κ accounts for the increase of viscous friction
on the ellipsoidal particle compared to the spherical one, and
its value is between K11 and K22, which are the diagonal
coefficients of the resistance matrix. The critical frequency
fc1 can be thought as the frequency at which the balance
is obtained between Vhydro and VF . Therefore, (fc1τr ) ∝
(M/H0).

E. Effect of H0
M

It was evidenced in the previous sections that the breakup
of fiber pair in a head-to-tail configuration depends on the
competition between hydrodynamic repulsive force taking
place from particle rotation on the one hand and attractive
magnetic forces on the other hand. Different tests were
realized with 0.05 � H0

M
� 10, while the product H0M was

kept constant (leading to invariant fiber rotation time scale).
The range of frequency [fc1–fc2] leading to particle separation
is displayed in Table II for different values of H0

M
. The upper

critical frequency is not significantly dependent on the ratio H0
M

if the product H0M is unchanged. Actually, at high frequency
the fiber rotation tends toward the vibrating regime, and
therefore hydrodynamic repulsion loses efficiency, regardless
of the ratio of the magnetic field to the particle magnetization.

TABLE II. Dependence of the range of frequencies that allow
particle separation on the ratio of the magnetic field intensity to
particle magnetization.

H0
M

[fc1 − fc2]τr

0.05 [0.023–0.037]
0.1 [0.019–0.037]
0.5 [0.0046–0.037]
1 [0.0036–0.029]
2 [0.0014–0.028]
10 [0.0004–0.023]
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TABLE III. Range of frequencies allowing particle separation for
different particle aspect ratios λ. H0/M = 1 for these tests.

λ [fc1 − fc2]τr

6 [0.0036–0.029]
5 [0.0032–0.025]
4 [0.0031–0.025]

However, the low critical frequency fc1 depends drastically
on H0

M
. We actually observe an increase of fc1τr with M/H0

(or a decrease with H0/M) but less than a simple linear
law (as expected from Vhydro/VF = fc1τrπH0/M = 1); this
discrepancy likely comes from the effect of the translational
velocity induced by the Stokeslet that we have neglected in
this simplified approach.

F. Effect of the aspect ratio λ

All the results shown in this paper were obtained for
a particle aspect ratio equal to 6. The results on particle
separation may depend on the aspect ratio in a non trivial way.
At low frequencies, the bifurcation near the critical frequency
fc1 predicted from Vhydro/VF = (fc1τr )(2π2κ)(H0/M) = 1
suggests that fc1 is inversely proportional to the increase in
the friction coefficient when the particle aspect ratio increases.
However, this analysis does not take into account the fact that
the magnetic forces are stronger during particle rotation when
particles are smaller (being closer to each other). As for the
bifurcation near fc2, it is not expected to depend significantly
on the aspect ratio, since the nature of particle rotation is barely
dependent on λ.

We realized some tests, using both the numerical sim-
ulations and the simple model, with decreasing the aspect
ratio down to 3, while the magnetic field strength, particle
magnetization and particle minor axis were kept constant. The
range of frequencies at which particle separation takes place,
for different λ, is summarized in Table III. This table shows
that critical frequencies are almost independent of λ, when the
frequency is scaled by the inverse of the particle rotation rate
τr . Note that the rotation time scale increases almost linearly
with the aspect ratio.

IV. CONCLUSION

Numerical simulations and theoretical modeling were used
to analyze the motion of two elongated spheroidal particles
under the action of an externally imposed alternating magnetic
field. The case of ferromagnetic particles in suspension in
a viscous fluid was considered. Fibers were submitted to a
magnetic torque that leads them to rotate in order to align
with the magnetic field direction and to magnetic forces that
are mainly attractive when particles are initially in a head-
to-tail configuration. During particle rotation, hydrodynamic
repulsive forces take place from the torque-velocity coupling
due to particle anisotropic shape.

FIG. 13. Scheme summarizing the effect of the frequency on
the dynamics of a particle pair, initially placed in a head-to-tail
configuration. The final configuration is sketched in each situation,
according to the most probable scenario.

The dynamics of a particle pair under an alternating field
is sketched qualitatively as a function of the field frequency
in Fig. 13. In the absence of hydrodynamic interactions, three
different rotational dynamics can be identified: a synchronous
rotation at low frequency, an asynchronous flip-flop motion
in some intermediate range, and an oscillation above a given
frequency. The limit of these three domains depends strongly
on the coupling with the translational velocities. In the
third domain, at the highest frequencies, we observe that
the fiber positions switch from head-to-tail to side-by-side,
keeping however constant the distance between the centers.
Introducing hydrodynamic interactions between fibers shifts
the asynchronous flip-flop regime toward higher frequencies
and deeply changes the correlation between the orientational
dynamics and the separation regime: with HI, separation
occurs in the regime of synchronous rotation (f < fc2) at
least if the frequency is high enough (f > fc1) for the
hydrodynamic interactions (proportional to H ) to dominate
the attractive one (proportional to M). For fc1 < f < fc2,
separation keeps growing when the particles have attained their
position side by side. No separation occurs in the oscillation
regime (f > fc2) in which case the dynamics is similar with
or without HI.

The conclusions of this study were obtained with a pair of
ellipsoidal particles having an aspect ratio equal to 6. The
range of frequencies that allowed particle separation were
shown to be independent of the aspect ratio if the frequency
of the alternating magnetic field was scaled by the inverse
of the particle rotation time scale (which itself depends on
the aspect ratio). Systems that consist of a bulk of ellipsoidal
particles with random initial orientation with respect to the
magnetic field will be definitely an interesting subject for
future investigation.
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