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Transitions between multiple dynamical states in a confined dense active-particle system
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We study the collective motion of a dense suspension of active swimmers in a viscous fluid medium. The
swimmers are modeled as soft spheres moving in a highly viscous fluid medium. The magnitude of the propelling
thrust exerted by each particle is taken to be a constant and the direction is aligned to its velocity. Depending
on the magnitude of the exerted thrust, several nonequilibrium steady states are observed. The transitions between
the steady states are characterized using the total dissipation as a function of the magnitude of the thrust. The
transitions between the nonequilibrium states are characterized by changes in exponent at low thrust values. At
high thrust values, hysteretic transitions between ordered and disordered states are observed.
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I. INTRODUCTION

The mechanics of matter composed of individual inde-
pendently moving particles is quite complex. Among such
granular materials, distinction can be made between passive
particles which are propelled by external forces and active
particles which are able to self-propel. Swarms of such self-
propelling objects moving collectively display very interesting
dynamics as observed in schools of fishes or flocks of birds
[1]. This collective behavior is observed in a range of length
scales spanning micoorganisms to human crowds. At small
length scales, bacterial colonies [2] and sperm cells [3] show
interesting patterns of motion. Examples of collective behavior
at larger length scales include human crowds [4], active
granular media [5], polar active particles [6], and colloidal
particles [7]. Recent advances in the field of active matter can
be found in several seminal works [8–11].

Even in self-propelling active matter, the organized collec-
tive motion arises from two reasons: (1) Individual particles
are able to observe neighbors and adjust the direction of
motion, and (2) hydrodynamic effects of the surrounding
medium could provide the coupling. In general, the effects
of these two mechanisms may not be equivalent and a
combination could contribute to the collective motion. We are
interested in the latter case where hydrodynamic interactions
are thought to help reduce the total energy expenditure of the
particles by minimizing viscous dissipation. Hydrodynamic
interactions are important in the motion of bacteria and other
microorganisms using beating of flagella or cilia [12] in a
viscous medium at low-Reynolds-number swimmers and is of
interest in potential technological applications.

Models of these phenomena have generally been of two
types: (a) continuum models obtained by considering field of
orientation vectors representing particles coupled to standard
hydrodynamics equations and (b) discrete particle models.
Toner and Tu [13] proposed a nonequilibrium continuum
dynamical model for the collective motion of the biological
organisms. The most common particle-based model without

any hydrodynamic interactions has been the Vicsek model
(VM) [14] and its variants. In this model, the particles are
assumed to interact with their neighbors within a certain
distance and align themselves in the average direction of
the velocities of the neighbors. This method works well for
low-noise and high-particle-density systems [15]. Lu et al.
[16] used an improved self-propelled model for identifying the
transition from a collective state to random motion of bacteria.
Laskar et al. [17] described the spontaneous motion of active
filaments in three dimensions by considering a minimal active
filament model with the hydrodynamic interaction. Baskaran
and Marchetti [12] showed that large-scale nonequilibrium
phenomena can be observed due to hydrodynamic interactions
between the active particles. Collective behavior has also been
observed without having any alignment mechanism in the
self-propelled suspension [18].

Experiments as well as theoretical studies confirm the
presence of different kinds of global patterns of the self-
propelled systems. Tsang and Kanso [19] reported that ge-
ometric confinement and flagellar activity of microswimmers
result in hydrodynamically triggered phase transitions. They
identified three phases: chaotic swirling, stable circulation, and
boundary aggregation. Transitions between phases in dense
active colloids [7] or soft active particles [20] inside a box has
been observed. Depending on the packing fraction (or density)
solid or gaslike phases and sometimes cluster [7] phases
have been identified. In the high viscous regime, different
low-energy states of the self-propelled particles, namely the
coherent flock, the rigid rotation, and the random droplet
have been identified [21]. Solon et al. [22] demonstrated the
microphase separation using Viscek model in the coexistence
region.

In most earlier work, the fluid medium is either ignored and
the collective motion is obtained from neighboring particle
heuristics or the hydrodynamics interactions are modeled
in detail through a solution of Navier-Stokes equations in
the appropriate regime. In this work, we account for the
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hydrodynamic interactions through Stokes drag, thus obviating
the need for explicit solution of the hydrodynamic equations.
Our model is a generalization of our earlier work on wet
granular slurries [23,24] and is valid in the regime of viscosity-
dominated low-inertia fluid medium. Under this assumption,
the fluid velocity at a point is obtained by an average velocity
of particles in a neighborhood of the point. The thrust is taken
to be oriented in the instantaneous direction of the particle
velocity and of constant value. We study the behavior of a
dense collection of self-propelled particles in a square cavity.

In order to characterize equilibrium thermal phase transi-
tions, a physical quantity such as the specific free energy is
studied in terms of the reduced temperature and the changes
in power law exponents across the transition. In analogy, we
consider the total dissipation as a function of the thrust to
characterize the transitions between the dynamical states in
this problem.

We begin with first describing the model and the numerical
approach. Next, we present results of simulations in which the
thrust is increased gradually over a wide range. We observe
characteristic steady states for ranges of the thrust values.
These transitions are characterized by the total dissipation
in the system. Both continuous and hysteretic transitions are
observed in this model.

II. MODEL

A. Governing equations

Our model is based on that of a wet granular slurry presented
earlier [23,24]. The particles are taken to be immersed in a
viscous liquid and all particles are able to propel themselves.
We consider a fixed number of N interacting spherical particles
of equal radius r and mass m, constrained to move within a
frictionless two-dimensional square cavity. The particles are
modeled as soft disks of finite mass. The fluid inertia in this
model is taken to be small in comparison to the particle inertia.

The total force on the ith particle �Fi is taken to be the sum
of an interparticle force �Fpp,i , self-propelled force �Fsp,i , and
dissipative force �Fd,i ,

�Fi = �Fpp,i + �Fsp,i + �Fd,i . (1)

Following Refs. [23,24], the interparticle interaction force
�Fpp,i is taken to be of a linear soft-sphere form

�Fpp,i =
{

−kn
�δ, |�δ| > 0

�0, otherwise,
(2)

where �δ = {|�ri − �rj | − [(di + dj )/2]} �ri−�rj

|�ri−�rj | is the separation
of two particles i and j in terms of position vectors �ri and
�rj and diameters di and dj for all neighboring particles j .
The direction of the force is along the line joining the particle
centers.

The self-propelled force �Fsp,i is modeled as

�Fsp,i = mi(β − α|�vp,i |2)v̂p,i , (3)

where mi is the mass of the particle, v̂p,i is a unit vector in
the direction of the velocity of the ith particle �vp,i , and β is a
thrust coefficient. α is a small positive coefficient introduced
to ensure that a single particle in a dilute suspension does not

exhibit unbounded acceleration [25]. One can also rationalize
α as a net momentum sink since the thrust itself is being
modeled as a monopole force. For dense ensembles, this issue
does not arise. α can even be set to zero in such a case without
loss of generality. This was the choice exercised in this case.

The dissipative force on each particle arising from the
surrounding fluid medium is estimated using Stokes’ drag.
The equation for the dissipative coordination force on the ith
particle is taken to be proportional to the relative velocity
between a particle and the fluid at that location [24],

�Fd,i = Cvdi(�vi − �vp,i), (4)

where Cv is a coordination coefficient analogous to the Stokes’
drag coefficient 3πμ with μ the fluid viscosity. Cv is a
measure of the local coordination each particle experiences
with its neighbors. �vi is the velocity of the fluid determined
from a weighted mean of the surrounding particles. The
relative velocity is determined based on n neighboring particles
surrounding the ith particle [24]:

�vi =
∑n

j=1 mjWij (‖�ri − �rj‖,hi)�vj∑n
j=1 mjWij (‖�ri − �rj‖,hi)

, (5)

where the weighing function Wij is of a Gaussian form given
by

Wij =
{

exp
( − η

‖�ri−�rj ‖2

hi
2

)
,

‖�ri−�rj ‖
hi

� 1,

0, otherwise,
(6)

and hi is a radius of influence for particle i which corresponds
to the extent to which the particle’s neighborhood influences
the fluid velocity. η is taken as 2 in our simulations following
Drumm et al. [26]. Consistent with the assumption that fluid
inertia is small in comparison to particle inertia, the calculated
fluid velocity �vi is taken to be zero if there are no surrounding
particles in the neighborhood.

Our model of the fluid drag follows from our previous
work [23,24], where each particle experiences a drag due to
the relative velocity between the fluid and its own motion.
The fluid velocity is estimated using a weighted average of
velocities of the surrounding particles. Through this approach,
we are able to estimate the fluid velocity field without needing
to explicitly solve the Navier-Stokes equations in a coupled
framework. We have shown in our previous work [23,24]
that this approach is valid for studying the dynamics of dense
suspensions. As can be seen from Eq. (4), the effect of the fluid
is through a hydrodynamic drag on the particles. This drag
force penalizes absence of local coordination and therefore
gives rise to coordinated motion. In the absence of the fluid
(or this force), only thermal motion will be observed.

B. Simulation details

We perform the simulations in a two-dimensional square
domain. Disks of 5 mm diameter are initially packed at 74%
area fraction in a square lattice. The domain is filled with 6084
particles. The walls of the domain are modeled as fixed disks
of the same size as the particles.

The acceleration of each particle is given by the algebraic
sum of the forces on each particle divided by its mass. The
acceleration is integrated numerically to position and velocity
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FIG. 1. Steady phases at different χ are shown at two different values of nondimensionalized time τ = t/
√

L

β
. Representative velocity

vectors are overlaid (the black arrows) with the particles to show the overall motion at each phase. (a) Random motion of particles at
χ = 1.2 × 102. (b) Circular motion at χ = 6 × 102. (c) Circular motion of particles at χ = 1.2 × 103 with a particle-free inner core region.
(d) Two circulating cells state at χ = 3.6 × 103. (e) Rotary motion with self-sustaining vortices are observed for χ = 6 × 104. (f) Oscillatory
motion spanning the whole domain is shown for χ = 6 × 105.

as a function of time using the velocity Verlet algorithm [27].
More details about the algorithm is given in our earlier work
[24]. Accurate determination of forces on each time step is
computationally very expensive; a linked list algorithm is
therefore used to reduce the computational effort [28].

III. RESULTS AND DISCUSSION

The dynamics of this system is governed by three dimen-
sionless groups: L̄ = L

d
, k̄ = knd

mβ
, and χ . The definition of χ

arises as a ratio of two force scales. Fd is a local hydrodynamic
coordination force (due to drag), where Fd ∼ Cvd

√
βL. Here√

βL is a scale associated with the maximum possible speed
in the domain. The second force scale is the thrust given by
Fp ∼ mβ. A ratio of these two scales will yield χ = L̄ Fd

Fp
. On

simplification, one can define

χ = CvL
√

L

m
√

β
. (7)

We have discussed the effect of χ on the phase transition char-
acteristics, since it conceptualizes the competition between
the hydrodynamic and propulsion forces. We have varied χ

by changing Cv while maintaining β and the other parameters
constant. As long as one varies χ while keeping L̄ and k̄ the
same, one will obtain the same results. At low χ or Cv , the
thrust force is high relative to the drag force. We note that,
in this model, the dissipative force promotes the alignment
of the particles. This is because the drag force on a particle is

proportional to the relative velocity of the particle and the fluid
medium at that point. If the particle velocity is the same as that
of the fluid medium, the drag force is zero. The velocity of
the fluid at the location of the particle is the weighted average
of the surrounding particles. Thus the drag force promotes the
alignment of the particle velocity with the neighbors. The drag
coefficient Cv plays the key role in determining the magnitude
of the drag force.

We begin the simulations with χ = 60. For aiding visu-
alization, the particles are colored blue and pink depending
on their initial position. Particles initially in the top half are
colored pink and those in the bottom half of the cavity are
colored blue. We increase χ in steps of 6 allowing for sufficient
time at each value of χ for the system to attain a steady state.
For different ranges of χ , we observe various steady states
as shown in Fig. 1. The two columns for each value of χ

show the system at two time instants in order to obtain a sense
of the steady-state configurations attained by the system. All
different phases are shown in the Supplemental Material [29].

At low values of χ = 1.2 × 102, we have random tra-
jectories of the particles akin to thermal noise as shown in
Fig. 1(a). Low values of χ correspond to a reduced tendency
of the particle to coordinate with its immediate neighbors, as
discussed earlier. As χ is increased gradually in steps of 6,
we observe a sharp transition towards an organized vortical
state at χ = 3.36 × 102. For values of χ between 1.2 × 102

and 3.36 × 102, the particles move in random trajectories
spanning the domain. The random motion of the particles is
due to the dominance of particle-particle collisions and the
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thrust force in relation to the drag force. Diffusion of the
particles can be observed at the interface between the blue and
pink particles. For the range 3.36 × 102 � χ � 6.72 × 102,
we observe collective behavior of the particles in the form of
periodic rotary motion as shown in Fig. 1(b). In this regime, the
particles travel around the center of the cavity. Since the χ for
this regime is still low, this state is not immediately attained.
This state is only observed upon performing the simulation for
a sufficiently long time.

At higher values of χ in the range 6.78 × 102 � χ � 3 ×
103, a central particle-free void is observed, as can be seen
in Fig. 1(c). It is observed that for a fixed χ , the location
and the size of the core remains fairly invariant with respect
to time. As shown in the Supplemental Material [29], this
regime also displays characteristics of slow diffusion in the
radial direction. The formation of the central core is a result
of higher rotational speeds at which the centrifugal forces aid
formation of this particle-free region.

For 3.24 × 103 � χ � 4.2 × 103, two rotating cells form
and rotate about their own centers as shown in Fig. 1(d). This
state is observed to be metastable in the sense that the two
cells break down to a single cell and reform over different
time intervals.

Next, a rotary motion with an oscillating unfilled core is
observed for higher values of χ > 4.2 × 103. A sample case
for χ = 6 × 104 is shown in Fig. 1(e). The values of average
speed of a single agent are low in this regime and become
smaller with increasing χ . In to contrast the case shown
in Fig. 1(b), segregation of the blue and pink particles can
be observed. This is due to the fact that the particles begin
the rotational motion from their initial state and diffusion is
relatively small.

For very high values of χ > 1.56 × 103, we observe
an interesting state, where all particles oscillate together
horizontally like a viscous fluid with no bulk motion of the
particles [29]. A sample case for χ = 6 × 105 is shown in
Fig. 1(f). We have identified different states and transitions
between them, depending on the relative magnitudes of the
thrust and dissipative forces. Some of the states identified by
us have been observed by Seyed-Allaei and Ejtehadi [30],
which they term homogeneous gaseous phase, band structures,
moving clumps, moving clusters, vibrating rings, and vortical
structures, by using a combined continuous Vicsek model and
repulsive particle system model. Similar observations have
been reported in Ref. [31] as well.

We characterize the states and transitions between them
quantitatively using the total energy dissipation. With increas-
ing χ , the velocities of the individual particles decreases and
thus the total dissipation decreases. The viscous dissipation at
a point in the domain is calculated using

φ=2μ

{(
dvx

dx

)2

+
(

dvy

dy

)2}
+ μ

(
dvy

dx
+ dvx

dy

)2

. (8)

Here, vx and vy are the local velocity field components of the
particles at a particular location. It should be noted that, for
the sake of simplicity, we have not considered the change of
the shape of the individual particle. Let us define a total free
energy dissipated during the time interval 0 � t � T as φT =∫ T

0

∫
V– φdV– dt . Here, V– is the total volume of the domain and

T is a long enough time to ensure a stable average. From this,
the nondimensional version of φT , called 
, can be defined as


 = φT

CvL2
√

βL
, (9)

using the scales defined earlier. It must be mentioned that 


is an estimate of total energy dissipated by the system, which
is proportional to the total entropy produced in the same time
interval. According to the general extremal principle, it can be
used as a predictor of steady states [21].

In Fig. 2 the variation of the magnitude of the total
dissipation is shown with the dimensionless number χ . Here,
we have increased χ from 60 to 6 × 105 by keeping the same
initial conditions of all the simulations. Transitions between
the different steady states are observed due to an increase of
χ . As discussed earlier and also can be seen from Fig. 2,
there are mainly three phases: thermal motion, rotation, and
oscillation. Therefore, from Fig. 2, it can be said that with
increase of χ , total dissipation of the system decreases and
the behavior of the particles changes from thermal motion
(χ � 3.36 × 102) to the oscillatory state (χ > 6 × 105). The
thrust forces add power to the system at each time step, leading
to a oscillatory state from the regime of random motion. The
sharp transition from the thermal motion to rotation is shown
in the insets of Fig. 2. The time-averaged velocity vectors show
the sharp transition from the thermal motion to rotation phase
at χ = 332.15. A continuous decrease in 
 was observed for
transitions B and C.

Finally, we perform simulations with increasing χ from 60
to 6 × 105 and then gradually reducing χ back to 60. The total
dissipation is plotted against χ as shown in Fig. 3. The total
dissipation with increasing χ is shown using a red line and the
decreasing χ is shown in black. Two sets of simulations were
performed to investigate the nature of the transitions. In the first
case, we have increased the value of χ from 60 to 6 × 105. Each
simulation was performed for a time long enough (τ > 600)
to reach a steady state. The next simulation was started by
taking the final state of the particles of the previous χ as
initial condition with an increase of χ value of 6. A similar
procedure was followed by lowering the χ values from 6 × 105

to 60 with a step of 6. In the regions of low χ , we observe
random motion of the particles—the thermal motion phase.
Two distinct hysteretic zones were identified from Fig. 3.
During the random motion of the particles, at low χ values,
a hysteretic characteristic is observed with a higher value of
dissipation during the decreasing χ . We have identified two
routes of phase transitions depending on the initial condition.
As shown in Fig. 2, when all the simulations were started with
the same initial condition, the transition from the one vortex
motion to the thermal motion is continuous. On the other hand,
when simulations were started by taking the final state of the
previous simulation as the initial condition, a delayed transition
was observed (see Fig. 3). The hysteretic transition between
thermal and rotary phases occurs due to a competition between
a particle’s own motivation to retain its thrust direction and the
neighborhood’s hydrodynamic influence to cause a change.
Similar hysteretic phase transition has also been reported by
Solon et al. [22], where the effect of the neighborhood particles
is decreased due to a decrease in the density. Conceptually,
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FIG. 2. Total dissipation with the nondimensional group χ is shown. Phase transitions with the different χ values are observed. Total
dissipation 
 decreases with an increase of χ . Three distinct phases are observed: thermal motion, rotation, and oscillation. Two separate phase
transitions are shown: (A) thermal motion to rotation and (C) rotation to oscillation; the presence of a metastable phases of double vortex and
single vortex is shown in panel (B). Time-averaged velocity vectors are shown in the insets for different phases.

these two routes to hysteretic transitions are governed by
similar physics.
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FIG. 3. The total dissipation with increasing χ is shown using a
red line and decreasing χ is shown in black. Hysteresis due to an
increase or decrease of χ values is observed near the transition from
thermal motion to rotation.

It is interesting to note from Fig. 3 that far from the critical
transition points, 
 ∼ χ−3. This scaling appears to hold both
in the thermal motion regime as well as in the rotary state
regime. This implies that

φT

CvL2
√

βL
∼

(
CvL

√
L

m
√

β

)−3

. (10)

A comparison of the hydrodynamic force and self-propelled
force acting on a single particle (of diameter d and mass m)
can be written as

Cv|�vi − �vp,i |d ∼ mβ. (11)

By simplifying this equation, one obtains the following scaling
for the slip velocity between the particle velocity and the fluid
velocity

|�vi − �vp,i | ∼ mβ

dCv

. (12)

Recasting the Eq. (10) using Eq. (12), one obtains

φT ∼ m

(
d

L

)2(
mβ

dCv

)2

. (13)

Using Eq. (12), one can write φT ∼ c|�vi − �vp,i |2, where c is a
proportionality constant. This suggests that the drag force on
a single particle in a dense suspension is of the Stokes form,
where the energy dissipation is proportional to the square of
the slip velocity.
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We have observed a transition from thermal motion to
a fluidic state (rotary phase) due to an increase of χ . This
transition bears a striking resemblance to the glass-fluid phase
transition observed by previous researchers [32–37]. The
glassy phase was observed when the density of the particles
is greater than the glass transition density [32]. In the present
work, the collection of particles behaves like a fluid when
the exerted thrust by each particle is low (at higher χ ). At
higher thrust, the particles are trapped in a high configurational
entropy state where the behavior is reminiscent of a glass.

IV. CONCLUSION

We have systematically studied various steady states of
an active particle system. Our model uses a Stokes approach
to treat hydrodynamic interactions, which play the key role
in the collective motion of the particles. We characterize the

steady states and their transitions by the total dissipation which
appears to be a natural way of characterizing nonequilibrium
systems. Hysteresis is present in transitions between a gaseous
state (thermal motion) and a rotational state. We have also
observed a two-vortex metastable solution in a certain range
of χ , which sharply transitions to the single vortex rotational
state at two critical values of χ . Finally, we have also observed
that away from these critical transition points, 
 ∼ χ−3 in
the four dynamical states—thermal, single- and two-vortex
rotational, as well as in the oscillatory states.
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