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Curvature-controlled defect dynamics in active systems
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We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric
constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have
found that collective motion patterns are particularly rich on ellipsoids with four umbilics where vortices tend to
be located near pairs of umbilical points to minimize their interaction energy. Our results provide a perspective on
the migration of living cells, which most likely use the information provided from the curved substrate geometry
to guide their collective motion.
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I. INTRODUCTION

Active particles are known to spontaneously form complex
dynamic patterns at length scales ranging from the molecular
[1] to the cellular [2,3] up to macroscopic patterns seen in
flocking birds [4], schooling fish [5], or humans in crowded
environments [6,7]. The key feature of these active systems
is the constant energy input on each individual unit, which
renders the system completely out of equilibrium. Collective
phenomena in such active systems have been successfully
described using so-called self-propelled particle models [8]
that are limited to close neighbor interactions only [9]. In
unconstrained two-dimensional (2D) and three-dimensional
(3D) systems these models display a self-organized pattern
formation resembling experimental observations [9]. The
behavior of active particles confined to a surface has been
mainly studied on planar surfaces of zero Gaussian curvature.
It is known, however, that the presence of intrinsic surface
curvature frustrates local order giving rise to novel physics
[10], as has been shown for 2D fluids confined to curved
surfaces [11]. As a consequence of the Poincaré-Hopf theorem,
for instance, it is not possible to have continuous fluid flow on
the entire surface of a sphere, which requires the presence
of two +1 defects (vortices) [12]. The effect of nonzero
Gaussian curvature on self-propelled particles remains poorly
understood, with only a few recent examples studying the
effect of spherical constraints [13,14]. In living systems,
cells are influenced by surface curvature as demonstrated
by cell movements in the developing corneal epithelium
leading to vortex patterns [15] or by the coordinated collective
migration of cells during embryonic development [16]. The
emergent behavior of moving cells is not only the result
of intercellular interactions, but is crucially influenced by
geometrical constraints [2,17,18]. The aim of the current
work is to investigate the impact of nonconstant Gaussian
curvature constraints on the collective behavior of self-
propelled particles. Our restriction of the geometry of the
surfaces to ellipsoids allows an analysis of how geometrical
cues [represented by the umbilical points of the surface,
Fig. 1(c)] effectively interact with defects in the director field
(e.g., vortices). The strong coupling between vortex position
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and umbilical points demonstrates the importance of surface
geometry on the emergence of patterns in active systems. This
work could have significant implications in understanding
collective phenomena especially in the context of growing
tissues, where cell movements are constrained to constantly
changing surfaces.

II. METHODS

We use a Vicsek-type model [8] of N spherical active
particles of radius σ confined to the surface of an ellipsoid with
principle axes x, y, and z. Particles are self-propelled (moving
with a scalar self-propulsion term v0) and are polarized (being
oriented towards the direction n). Particle interactions occur
via a short ranged linear force potential consisting of short
ranged repulsive forces Frep and attractive forces Fadh from
neighboring particles scaled by the mobility parameter μ. The
overdamped equations of motion for particle i are described
by

dri(t)

dt
= v0ni(t) + μ

N∑
j=1

F(ri ,rj ), (1)

where ri is the position of particle i and F(ri ,rj ) is the short
ranged linear force potential [Fig. 1(b)] given by [2]

F(ri ,rj ) = ei,j

⎧⎪⎨
⎪⎩

Frep
dij −Req

Req
, if dij < Req

Fadh
dij −Req

R0−Req
, if Req � dij � R0

0, if R0 < dij ,

(2)

where ei,j = (rj − ri)/|rj − ri |,di,j = |ri − rj |, and Frep and
Fadh are the values of the maximum repulsive and attractive
forces at dij = 0 and di,j = R0, respectively. In the presence of
neighboring particles, the particle direction n and direction of
motion ṙ usually deviate and the particle direction n realigns
with the velocity ṙ according to

dni(t)

dt
= −ri × ṙi

τ‖ṙi‖ × ni + ξ, (3)

where τ is the relaxation time and ξ is angular noise described
by a δ-correlated Gaussian white noise term with zero mean,
〈ξ (t)ξ (t ′)〉 = ηδ(t,t ′).
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FIG. 1. Active particles confined to the surface of an ellipsoid.
(a) Particle motion on a triangulated surface is performed in two
steps: unconstrained motion in the tangential plane (1, 2) followed
by a projection onto the surface (3). �N1, �n1, and �̇r1 are the surface
normal vector, particle orientation vector, and velocity vector at point
p before the projection. (b) Particles interact via a finite short-ranged
repulsive-attractive linear force potential within a cutoff distance
R0 = 2.4σ . (c) Example of an ellipsoid with principal axis x = 4,
y = 2.5, and z = 1 resulting in aspect ratios x/z = 4 and x/y = 1.6;
lines of maximum and minimum principle curvatures are shown in
blue and orange, respectively. Points of constant normal curvature
(umbilics) are highlighted as red spheres. (d) Director field (black
arrows) and vortex order parameter (�, color coded) on the ellipsoidal
surface shown in (c) after 15 800 time steps; red dots indicate positions
of umbilics.

Particle motion on the curved surface is performed by
an unconstrained motion in the tangential plane followed
by a projection onto the surface. In order to preserve the
absolute values of the individual velocities, the particle
velocity vector and orientation vector are rotated with respect
to the angular difference between the surface normal of the
initial and final tangent plane [Fig. 1(a)]. Arbitrary surfaces
are approximated with triangulated meshes generated via a
custom mesh relaxation algorithm in RHINO and GRASSHOPPER

[19,20].
To test the influence of varying Gaussian curvature on pat-

tern formation of self-propelled particles, we have performed
particle simulations on two classes of ellipsoidal surfaces:
(i) spheroidal and (ii) nonspheroidal. General ellipsoidal
surfaces [shown in Fig. 1(c)] are characterized by their three
principal axes x, y, and z and have nonconstant Gaussian
curvature. Spheroidal ellipsoids are either prolate (x/z =
y/z < 1) or oblate (x/z = y/z > 1). However, there are points
on the surface which are spherelike, i.e., where any direction
is a principal direction, which are called umbilical points
or umbilics. In contrast to the surface of a sphere, where
every point is an umbilic, ellipsoidal surfaces have a finite
number of umbilical points, having either two (spheroids) or
four (nonspheroidal ellipsoids) [Fig. 1(c)]. Simulations were
performed on ellipsoids of varying aspect ratios (see Fig. 3)
and all surfaces were scaled such that the surface area is always
the same. Units of length, time, and mass are defined in the
model by specifying R0 = 1, the relaxation time τ = 1, and
the mobility parameter μ = 1. The model included N = 828
particles at a fixed particle radius σ = 5/12 and packing

fraction ϕ = 1 (defined as the ratio of the cross-sectional area
of the particles to the total surface area of a reference sphere
with radius RSP = 6, ϕ = Nπσ 2/4πR2

SP ). The interaction
parameters between the particles were based on those used
in [2]: Frep = 10, Fadh = 0.75, Req = 5/6, and η = 2(×10−3).
Values of the self-propelled velocities range from v0 = 0.1
to v0 = 0.5 and are chosen such that v0 � μFrep; therefore,
the study is in the regime of low noise and low velocity and
particles interact virtually as hard spheres. The mesh size
was chosen to be inversely proportional to the local Gaussian
curvature and much smaller than the particle radius, resulting
in typical numbers of surface triangles of ten times the particle
number. Particles are initially randomly distributed on the
surface with random overlaps and random orientations. All
simulations have been performed in MATLAB R2015B by solving
the overdamped differential equations of motion (1) and (3)
using a forward Euler integration method with a fixed time
step of 
t = 0.01τ for a total of 2.5(×104τ ) time steps.

The directed motion of active particles and the spherical
topology of the ellipsoid usually lead to the formation of two
vortices [Fig. 1(d), second vortex at the back of the ellipsoid].
The position of the vortices on the surface was determined
by adapting the 2D vortex order parameter (VOP) recently
introduced in Ref. [21], defined by

� = 1

1 − 2/π

⎛
⎝∑

i

|ni · ti |
/∑

j

‖nj‖ − 2

π

⎞
⎠, (4)

where ni is the orientation of particle i, ti is the azimuthal unit
vector to the tangent plane, and � = 1 for purely azimuthal
and � = 0 for pure radial orientations. The VOP has been
evaluated at each vertex point of the triangulated surface
including the first three shells of particle neighbors. The
position of the vortex was then defined as the local center
of mass of the calculated VOPs, for values above 0.7. We then
evaluated the geodesic distance between the two vortices and
between each vortex and each umbilical point (dVDU, vortex
distance to umbilical point), whereby dVDU is the distance
between the vortex center and the umbilical point. Geodesic
distances are measured on the triangulated surfaces using the
Fast Marching toolbox [22], which is an implementation of
the FAST MARCHING algorithm introduced by [23].

III. RESULTS

In order to investigate the influence of the umbilical points
on the dynamics of these defects, we performed simulations on
(i) spheroidal and (ii) nonspheroidal ellipsoids. On spheroids
the system of active particles showed a two-phase dynamic
behavior: on short time scales (t < 1000) two vortices form at
opposite sides of the spheroid. This is followed by a transition
period [Figs. 2(c) and 2(d)], in which these two vortices rotate
around the surface normal at the umbilical points forming
a stable motion pattern (Supplemental Material movies 1
and 2 [24]). The snapshots of Fig. 2 show the formation of
a vortex (yellow region) close to an umbilical point (red dots)
on prolate [Fig. 2(a)] and oblate spheroids [Fig. 2(b)] at three
consecutive time points. After their formation, vortices main-
tain an almost constant dVDU with a significantly smaller sepa-
ration distance on prolate (Fig. 2(c), Supplemental Material
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FIG. 2. Evolution of the vortex order parameter � on a (a)
prolate and (b) oblate spheroid with aspect ratios x/z = 0.25 and
x/z = 4, respectively. Vortices are quickly formed near umbilical
points (red dots) where they maintain a constant geodesic distance
(dVDU, vortex distance to umbilic) between vortex center (color coded)
and umbilics (c), (d) with a significantly smaller separation distance
on prolate spheroids compared to oblate spheroids. The distance dVDU

from vortex position (center of mass of � > 0.7) to umbilic stabilizes
almost instantaneously on the prolate spheroid (c), whereas it takes
considerably longer on the oblate spheroid (d).

movie 1 [24]) compared to oblate spheroids (Fig. 2(d),
Supplemental Material movie 2 [24]). By systematically
changing the aspect ratio of the spheroid [Fig. 3(a)], we found
that for prolate spheroids the dVDU is smallest for large aspect
ratios and decreases as spheroids become more elongated
(low x/z). The same trend with aspect ratio can be observed
for oblate spheroids, however, with higher dVDU values when
compared to prolate spheroids of similar aspect ratios [a profile
curve for v0 = 0.5 is presented in Fig. 3(c)].

Particles interact via distant dependent forces that translate
into an effective potential energy. In order to minimize this
energy particles tend to move parallel to their neighbors.
Hence, the total potential energy in the system will eventually
transition to a lower energy state for long enough simulation
times. As a result, particles distant from the poles of the
spheroids and their umbilical points perform a collective
motion which can be best described as band formation. In order
to maximize the alignment of their velocities (to minimize
the interaction energy) they move along geodesic paths
and hence coherently move in one direction (Supplemental
Material movies 1 and 2 [24]). Depending on contingencies
in the initial conditions of the simulation, the particle band
structure can split into several subbands with opposite (i.e.,
counter-rotating) movement directions. These subbands were
found to be stable over the length of the simulation (Sup-
plemental Material movie 3 [24]). The particle bands are
a consequence of the spherical topology and are different
from the high-density particle bands that occur in the Vicsek
model for large system sizes. Here, high-density particle bands

FIG. 3. Mean distance of vortex center to umbilical points
〈dVDU〉 for (a) spheroids of different aspect ratios and velocities and
(b) triaxial ellipsoids of different aspect ratios at a constant particle
velocity v0 = 0.1. The 〈dVDU〉 shown in (a) increases with the aspect
ratio of the spheroids. 〈dVDU〉 obtains significantly smaller values
(even for small aspect ratios) on prolate spheroids compared to oblate
spheroids. A profile curve for v0 = 0.5 is shown in (c). On triaxial
ellipsoids the 〈dVDU〉 is also correlated with the aspect ratio with
zones of stabilized vortices and regions that are vortex free (depicted
as triangles). Each data point was averaged over ten independent
simulations.

propagate perpendicular to their elongation direction parallel
to the mean particle polarization and are surrounded by a
background of mainly uncorrelated particles of low density.
Such moving localized structures have been observed in two-
dimensional Euclidean [25–29] and open three-dimensional
space [30].

The particle bands on the ellipsoids are quickly formed as
can be seen in the evolution of the total particle alignment
(Fig. 4) and are stable over the entire simulation time. In order
to explore the stability of these particle bands, we have tested
the influence of system size for spheroids of two different
aspect ratios (x/z = 0.25 and x/z = 4) at a constant particle
density (Fig. 5). Such a system size scaling keeps the overall
shape constant but changes the local Gaussian curvature. For
particle simulations of up to 1.3(×104) particles we observe the
same trend of vortex umbilical point distance as seen for small
particle numbers. However, the time required to reach stability
increases with the particle number and takes significantly
longer on oblate spheroids (with pronounced fluctuating dVDU

values) compared to prolate spheroids (Fig. 5). Furthermore,
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FIG. 4. Measurements of the particle band structure for (a), (c)
prolate and (b), (d) oblate spheroids of aspect ratios x/z = 0.25 and
x/z = 4, respectively. The directed collective motion leads to a band
formation that can be measured by summation of the local average
of the dot product of each particle with its nearest neighbors (�i ,
local mean vector dot product of particle i) (a), (b). The particle band
quickly forms and was found to be stable over the entire simulation
time (c), (d). Particle band thickness (dband) is defined as the distance
between the boundaries of the regions that have � values below 0.8,
normalized by maximum geodesic distance between the poles of the
spheroids.

the dVDU seems to decrease with system size which might be
related to the finite long range ordering of particles as well
as the decrease in local Gaussian curvature. This would hence
lead to a reduction in the vortex-vortex and vortex-umbilical

point interactions. The high-particle density structures that
occur in the Vicsek model were not observed for these larger
surfaces, although we have only performed simulations with
small particle numbers and low particle velocities. The main
focus of the paper is to investigate the role of Gaussian
curvature on active particles constrained to ellipsoids by
systematically varying the aspect ratio. Further work will be
required to understand the role of system size and hence the
magnitude of curvature on pattern formation in active particle
simulations (Fig. 5).

Two additional dynamical features are observed in the
collective motion on nonspheroidal ellipsoids. The first feature
is caused by the presence of four umbilical points, which
causes a dynamic exchange of the two vortices between pairs
of umbilical points that have a large geodesic distance. For
low velocities (v0 = 0.1) vortices encircle pairs of umbilical
points resulting in oscillating values of the dVDU for both
vortices [Figs. 6(a), 6(b), 6(d), 6(e), and Supplemental Material
movie 4 [24]). Here, each vortex has the largest separation
distance from the other vortex when both are in the vicinity of
umbilical points [Fig. 6(c)]. At higher velocities (v0 = 0.5)
the vortices become confined to regions of high Gaussian
curvature between umbilics and the direction of the bulk
particle motion becomes aligned with principle curvature
directions (Supplemental Material movie 5 [24]). The pairs
of umbilical points that a vortex encircles can be exchanged
during a simulation; however, this exchange is coupled to the
motion of the other vortex, as both vortices tend to maximize
their separation distance.

The evolution of the vortex distance to each of the four
umbilical points is correlated with the aspect ratio of the
ellipsoid (Fig. 7). On prolatelike (black curves in Fig. 7)
and oblatelike (blue curves in Fig. 7) ellipsoids with large
aspect ratios and pairs of close umbilics, the dVDU quickly

FIG. 5. Evolution of the vortex distance to umbilical point 1 (dVDU,U1) (a), (c) (normalized by geodesic distance between umbilics) and the
corresponding vortex order parameter (b), (d) (�) on prolate (a), (b) (x/z = 0.25) and oblate spheroids (c), (d) (x/z = 4) for four different
particle numbers and v0 = 0.5. The time required to reach stability increases with the particle number and takes significantly longer on oblate
spheroids compared to prolate spheroids.
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FIG. 6. Vortex dynamics on a triaxial ellipsoid with axis ratios x/z = 2, x/y = 1.14, and v0 = 0.1. dVDU for vortices (a) 1 and (b) 2 (blue
and red curves) as a function of time measured from two different umbilical points (U1 and U3). The circles indicate the maximum distance of
the vortices at t = 2(×104) (a) and t = 2.24(×104) time steps (b), which are peak values of the vortex to vortex distance shown in (c). Images
depicted in (d) and (e) are the corresponding mapped values of � and director fields. On triaxial ellipsoids with pairs of close umbilical points
the vortices encircle the two closest umbilics whereas they switch positions when umbilics are farther apart. All cases lead to stable oscillations
in distance as illustrated in (a) and (b). The distance between vortices is maximized close to the umbilical points and switches between the two
symmetric configurations (c).

stabilizes. On ellipsoids with umbilics that are farther apart
[red curves in Figs. 7(a) and 7(b)], however, the dVDU exhibits
stable oscillations after a longer transition phase. In each of
these cases, two vortices form that maximize their separation

FIG. 7. Evolution of the vortex distance to umbilical point (dVDU)
for three different triaxial ellipsoids with axis ratios x/z = 2, x/y = 5
(blue); x/z = 2, x/y = 1.14 (red); and x/z = 8, x/y = 5 (black)
and v0 = 0.1. (a), (b) The distance to the umbilical points (dVDU,
U1, U3) for each of the two vortices (dashed line indicates second
vortex). (c) The distance between the vortices is maximized with
fewer fluctuations on elongated ellipsoids. (d) Vortices quickly form
and are stable for the entire simulation time with � values well above
the threshold value of 0.7.

distance [Fig. 7(c)] and are stable over the entire simulation
time [Fig. 7(d)].

The second feature offered by nonspheroidal ellipsoids was
detected for flat prolatelike ellipsoids (x/y > 3, x/z < 1). In
this case no stable vortices are formed [triangles in Fig. 3(b)].
The formation of bandlike collective motion is suppressed on
these surfaces due to the highly curved edge which inhibits
particle motion between the upper and lower surfaces of the
flattened ellipsoids, thus constraining particle motion to either
the upper or the lower surface (Supplemental Material movie
6 [24]). In addition, for extremely flat prolatelike ellipsoids
(x/y > 5, x/z < 1), the particles perform a collective oscilla-
tory movement between the poles of the surface.

IV. DISCUSSION

This work identified umbilical points on ellipsoidal surfaces
as crucial geometric features to interpret collective motion
patterns on closed surfaces. Umbilical points define special
surface regions of high geodesic separation and provide
information about local variation in curvature. We have shown
that vortex motion is connected to these umbilics, where
normal curvature is constant. To explain the observed motion
patterns, we need to consider interactions between defects
(e.g., vortices) in the director field, interactions between
these defects and geometric features of the surface, as well
as dynamic effects from bulk particle motion. It is known
that vortices repel each other with an interaction energy
depending linearly on separation distance [11,31]. On surfaces
with nonconstant Gaussian curvature, each vortex experiences
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an additional geometric potential determined by the local
Gaussian curvature [32]. In this case, the vortex interactions
can be described by an effective free energy [33] that takes into
account the broken translational invariance due to intrinsic
curvature. This energy essentially describes the deviation
from perfect alignment in the vector field and implies that
the energy of the system is minimized when the particle
alignment is globally maximized. Although the energy of the
vortex in our system is not clearly defined, these concepts
can still help us to understand the vortex dynamics around
umbilics in the simple cases of prolate and oblate spheroids
[Fig. 3(a)].

On prolate spheroids the locations of umbilics coincide
with regions of high Gaussian curvature (and geometric
potential), causing vortices to be pushed towards umbilics,
since it increases the global alignment of the director field.
This approach of the vortex towards a point of high Gaussian
curvature at the same time reduces the local alignment of
the vortex vector field, causing an avoidance of the umbilics.
Vortex dynamics thus arise from a balance between these
opposing factors. With increasing aspect ratio (x/z � 1) the
contribution of the global alignment becomes predominant,
leading to decreasing dVDU values [Fig. 3(a)]. Using the same
reasoning, on oblate spheroids we would expect that the high
Gaussian curvature rim will be avoided by vortices, while at the
same time the higher global alignment that can be achieved in
the flatter region will be obtained when the vortex approaches
the rim. The alignment of particles moving parallel to the
rim, however, is increased when the vortex is located at the
umbilical point. This alignment becomes further increased at
higher particle velocities, leading to decreasing dVDU values
[Fig. 3(a)]. The dependence of dVDU on aspect ratio, and a
quantitative understanding of the orbital frequency of vortex
motion around the umbilic, however, cannot be explained using
this energetic argument. Additional insight can be gained by a
simple approximation of spheroids as capped cylinders [32],
where the vortex interaction energy, E, is proportional to H/R,
where R is the radius and H is the height of the capped
cylinder. This simple approximation immediately implies that
the interaction energy is lower on oblate spheroids compared to
prolate spheroids and explains why the dVDU in Fig. 2 is larger
on oblate spheroids. The geometric potential of the umbilics
decreases with decreasing aspect ratio and hence the vortices
are less constrained, which is reflected by the increasing dVDU

in Fig 3(a).
The further loss of symmetry on triaxial ellipsoids adds

some additional complexity to the interactions between vor-
tices and surface geometry. The two pairs of symmetric
umbilical points still define a low energy configuration of the
system since they define the positions of maximum separation
distance for the vortices [Fig. 6(c)]. Thus the dVDU shows
only small fluctuations on prolatelike and oblatelike ellipsoids
with pairs of close umbilics [Figs. 7(a) and 7(b)]. The energy
in the vector field decreases with increasing velocity due to
increasing alignment and causes vortices to be further attracted
to high Gaussian curvature regions between the umbilics
(Supplemental Material movie 5 [24]). In the case of flat
(x/y > 3 and x/z < 1) triaxial ellipsoids no vortices were
observed [triangles in Fig. 3(b)]. This is because the potential
energy stored in the vector field can only partly be minimized

by rotational motion, which leads to motion patterns that
quickly change orientations at the poles. In contrast, on
oblate spheroids of high aspect ratio, particles are still able
to form vortices since they align with the sharp edge of the
ellipsoid.

The dynamical features that we presented in this paper
have significant implications on understanding the behavior of
numerous active biological systems where curvature plays an
important role. In the cell membrane, for instance, complex
cellular processes such as cell signaling and shape regulation
of organelles rely on the collective dynamics of molecules
confined within a two-dimensional curved lipid bilayer [34].
The curvature of the membrane thereby affects the interaction
and dynamics of the molecules, leading to dynamic patterns
that greatly differ from their flat Euclidean counterpart [35].
On the tissue level, cell migration occurs on curved tissues
of the intestinal crypt [36,37] and has been observed during
morphogenesis of the mammary epithelia where the collective
rearrangement of cells determines architecture and polarity
of the epithelia. Large flows of collectively migrating cells
constrained to move on a curved surface occur during
gastrulation of the chick embryo [38] and during embryonic
development of the zebra fish embryo [16]. Curvature also
effects the collective migration of cells during the development
of the corneal epithelia leading to vortex pattern of radial
stripes [15].

Despite intensive research, the mechanisms by which these
cell movements are orchestrated to form structures much
larger than the individual cell remain poorly understood.
In tissues, collective motion emerges as a result of direct
physical contact as has been shown for cells moving on
flat substrates [2,3]. These experiments, however, neglect
the fact that in reality cells are constrained to move on
curved surfaces. Our simple model of polar active particles
confined to move on ellipsoidal surfaces provides insights
into how curvature affects motion patterns in active systems.
The aim was to explore the effect of varying curvature and
topology on collective motion. We have thereby shown that
active directed motion and intrinsic surface curvature lead
to complex motion patterns: particles tend to move along
geodesic paths and are strongly influenced by topological
constraints resulting in particles encircling surface points of
constant curvature. These observations may help to understand
the underlying mechanisms of self-organization and collective
cell migration on nonconstant Gaussian curvature surfaces
such as the coordinated cell migration during the development
of the zebra fish embryo [16].

V. CONCLUSION

In summary, we have explored how geometry affects the
collective behavior of active particles confined to move on a
curved surface. The nonlinear coupling between nonconstant
Gaussian curvature and defect-defect interactions gives rise to
a variety of motion patterns that can be partially interpreted
by theories of vortex-geometry interactions. The richness of
physics observed in our study can be expected to further
increase if one of the following constraints is released: (i) a
reduction of the packing fraction leaving more space for
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the particles, (ii) a softer interaction between the particles
allowing large particle overlaps, and (iii) surfaces with gradi-
ents of positive and negative Gaussian curvature that have
isolated or odd numbers of umbilical points, i.e., handles.
Our results suggest that Gaussian curvature may also be
responsible for the emergence of complex patterns in a variety
of active systems, such as collective cell behavior during
morphogenesis.
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