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Shear-induced laning transition in a confined colloidal film
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Using Brownian dynamics simulations, we investigate a dense system of charged colloids exposed to shear flow
in a confined (slit-pore) geometry. The equilibrium system at zero flow consists of three well-pronounced layers
with a squarelike crystalline in-plane structure. We demonstrate that, for sufficiently large shear rates, the middle
layer separates into two sublayers where the particles organize into moving lanes with opposite velocities. The
formation of this “microlaned” state results in a destruction of the applied shear profile; it also has a strong impact
on the structure of the system, and on its rheology as measured by the elements of the stress tensor. At higher
shear rates, we observe a disordered state and finally a recrystallization reminiscent of the behavior of bilayer
films. We also discuss the system size dependence and the robustness of the microlaned state against variations
of the slit-pore width. In fact, for a pore width allowing for four layers, we observe a similar shear-induced state
in which the system splits into two domains with opposite velocities.
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I. INTRODUCTION

Dense colloidal suspensions subject to strong spatial con-
finement can form solidlike structures not seen in their bulk
counterparts. A well-established example are hard-sphere-like
colloidal particles between two parallel plates with a distance
Lz of the order of the particle diameter d [1–4]. Depending
on the commensurability of Lz and d (as well as the chemical
potential), one observes the formation of n layers with either
square or hexagonal lattice symmetry within the plane parallel
to the plates [with alternating order n�, n�, (n + 1)�, . . .]
[1,2]. Moreover, at high densities exotic structures such
as buckled and rhombic crystals do occur [1]. While the
equilibrium behavior of strongly confined suspensions is well
understood for many colloidal and molecular systems, the
interplay between particle packing and shear flow remains
surprisingly elusive. This contrasts the fact that sheared films
are of major relevance in many industrial processes involving
surface coatings, lubricants, and microfluidic devices.

A number of recent experimental and numerical studies
have focused specifically on hydrodynamic effects occurring
due to the interplay of confinement and flow [5–11]. Hydro-
dynamic effects have also been considered in the context of
slit-pores with modulated pore widths [12–15] and confined
active particles [16–18]. However, these studies typically
consider dilute systems and relatively wide gaps involving
a bulklike region (at zero flow) in the middle region [8–10].
Another set of studies considers the flow of non-Brownian
particles (no thermal fluctuations), including their frictional
properties as a function of Lz [19,20].

In the present paper, we are interested in the shear-induced
behavior of a thin film of Brownian spheres, which, already in
equilibrium, forms a crystalline lateral structure with square
symmetry. Specifically, we consider the case of n = 3 layers.
The system is studied on the basis of overdamped Brownian
dynamics (BD) simulation without hydrodynamic interactions
(following various earlier studies on dense systems under
flow [21–24]). The particles interact via screened Coulomb
interactions (matched to a real, silica system [25,26]), and the
confining walls are considered as smooth on the particle scale.
Shear is then imposed via a force acting on each particle, which
only depends on the distance relative to the walls.

The present investigation extends earlier numerical and
theoretical studies by some of us in which we focused
on shear-induced transitions in bilayer systems [27,28] and,
in particular, their description within the Frenkel-Kontorova
model for solid friction [29]. From the perspective of a
shear-driven bilayer, the trilayer film can be seen as a first step
toward the third dimension. Moreover, as we will demonstrate,
the trilayer film displays a novel effect that was already
briefly mentioned in Refs. [28,29], and which we think is
typical for sheared thin films: This effect consists of the
formation of a state in which the particles in the middle
layer organize into lanes along the flow direction. Laning is
a typical nonequilibrium effect that occurs quite generically
in binary systems of particles driven in opposite directions
(such as in dusty plasmas [30,31], granular matter [32],
pedestrian and ant dynamics [33–35], as well as oppositely
charged colloids driven by an electric field [36,37]). In the
present case, the driving force is represented by the shear flow
generating competing effects on the particles in the middle
layer. Moreover, the laning is accompanied by a transformation
of the (originally flat) middle layer into two sublayers. This
is in sharp contrast to the behavior of bilayers (and also of
bulk suspensions), where the layers always remain flat [21]. In
our system, the laned state occurs at shear rates in between
the initial square state and the subsequent shear melting.
Interestingly, a similar effect (stripe formation and related
“buckling”) has been reported in the context of experiments
[6] of strongly confined hard-sphere suspensions.

The paper is organized as follows. In Sec. II, we describe
our model system as well as some details of the computer
simulations. Numerical results are presented in Sec. III,
where we start by describing the overall dynamical behavior,
followed by a detailed discussion of the shear-induced laning
transition, the resulting single-particle dynamics, and the
implications for the shear stress. Additionally, we present
results for a system with four layers, where we observe a
similar laned state. Finally, we summarize and conclude in
Sec. IV. In the three Appendixes, we provide further simulation
results concerning the stability of the laned state against
variation of the system size, confinement width, and initial
conditions.
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II. MODEL AND SIMULATION DETAILS

Following previous studies [27,28], we consider a
model colloidal suspension where two spherical particles
(diameter d) with distance rij interact via a combination of
a repulsive Yukawa potential, uYuk(rij ) = W exp

[−κrij

]
/rij ,

and a repulsive soft-sphere potential, uSS(rij ) = 4ε(d/rij )12.
The interaction parameters are set to W/(kBT d) ≈ 123

(where kBT is the thermal energy), and the inverse De-
bye screening length is set to κ d ≈ 3.2 (for details, see
Refs. [25,26]). Spatial confinement is modeled by two plane
parallel, smooth, uncharged surfaces separated by a distance
Lz along the z direction and of infinite extent in the xy plane.
We employ a purely repulsive fluid-wall potential [27],

u
(±)
wall(zi) = 4πεw

5

(
d

zi ± Lz/2

)9

, (1)

where zi is the z position of particle i. The dimensionless
coupling parameter εw/kBT is set to 1. This choice of potential
is motivated by previous investigations of the equilibrium
structure, where we found very good agreement with exper-
iments [25,26]. Our investigations are based on standard BD
simulations in three dimensions, where the position of particle
i is advanced according to [38]

ri(t + δt) = ri(t) + D0

kBT
Fi(t)δt + δWi + γ̇ zi(t)δtex. (2)

Here, Fi is the total conservative force acting on particle i, and
δWi denotes a random Gaussian displacement with zero mean
and variance of 2D0δt for each Cartesian component. The
friction constant is (D0/kBT )−1, where D0 is the short-time
diffusion coefficient. The time scale of the system is set to
τ = d2/D0, which defines the so-called Brownian time. We
impose a linear shear profile [see the last term in Eq. (2)]
representing flow in the x direction and gradient in the z

direction, characterized by a uniform shear rate γ̇ [24,39].
This ansatz seems plausible for systems in which the impact
of the walls on the driving mechanism can be neglected,
such as charged colloids confined between likewise charged,
smooth walls [40,41]. For this situation, the distance between
the colloids and the wall is naturally rather large, suggesting
that the motion of the colloids is not directly coupled to that
of the particles comprising the wall. Thus, one may assume
that the shear flow away from the wall is approximately
linear. We note, however, that despite the application of a
linear shear profile, the real, steady-state flow profile can be
nonlinear [42]. Furthermore, to reduce the computation time,
we neglect hydrodynamic interactions. We focus on a strongly
confined (Lz = 3.2d) and dense (ρd3 = 0.85) system with
1587 particles. The resulting lateral width of the simulation
cell then follows as L ≈ 24.2d. Periodic boundary conditions
were applied in the flow (x) and vorticity (y) directions. The
time step is set to δt = 10−5τ . After an equilibration period of
107 steps (i.e. 100τ ), the system relaxes (in agreement with our
expectations [26,28]) in a trilayer with square in-plane order.
Then the shear force is switched on. After starting the shearing,
the simulation was carried on for an additional period of 100τ .
During this time, the steady state is reached. Only after these
preparations did we start to analyze the considered systems.

III. NUMERICAL RESULTS

In this section, we present our numerical results for the
dynamical behavior of the shear-driven trilayer. We start
by reviewing the overall behavior, followed by a detailed
discussion of the novel, microlaned state of the middle layer,
the associated single-particle dynamics, and the resulting
rheological behavior. Finally, we briefly discuss a system
consisting of four layers, displaying a similar laned state.

A. Overview

As a first overview of the shear-induced structural changes,
we present in Fig. 1 BD simulation snapshots at representative
values of the dimensionless shear rate γ̇ τ . We can identify four
different states. The first one is a laterally crystalline state with
square in-plane ordering in each of the three layers. This state
corresponds to the equilibrium configuration (γ̇ = 0) at the
thermodynamic conditions considered, and it persists at small
shear rates such as γ̇ τ = 10 [see Fig. 1(a)]. The degree of
(local) quadratic translational order in each layer is quantified
by the order parameter 	n with n = 4, with 	n being generally
defined as

	n =
˝

1

NL

NL∑
i=1

1

Nb
i

∣∣∣∣∣∣
Nb

i∑
j=1

exp(inθj )

∣∣∣∣∣∣
˛
. (3)

In Eq. (3), NL describes the instantaneous number of particles,
and Nb

i is the number of neighbors of particle i in the
considered layer (the position of each layer can be extracted
from the density profile; see below). The value of Nb

i was
calculated from the intralayer pair correlation function by
determining the radius related to the first minimum of the

FIG. 1. (a)–(d) Simulation snapshots of the xy plane at ρd3=0.85
and Lz = 3.2d for different shear rates. The red (blue, green) circles
represent particles of the upper (middle, lower) layer.
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FIG. 2. In-plane order parameter for square (	4) and hexagonal
(	6) symmetry as a function of the dimensionless shear rate γ̇ τ .
The order parameter was calculated separately for the middle and the
contact layers.

intralayer pair correlation function [27]. Perfect square or
hexagonal order is characterized by 	4/6 = 1, respectively.

Results for 	4 and the hexagonal order parameter 	6 for
the individual layers as functions of the shear rate are plotted in
Fig. 2. For completeness, we also present in Fig. 3 the density
profile in the z direction, ρ(z) = 〈N (z)/N�z〉 [where N (z)
is the instantaneous number of particles at a given distance
z, and �z defines the bin width]. In the initial state, all
layers are characterized by a high degree of squarelike order
(and, correspondingly, very small values of 	6). This changes
at γ̇ τ ≈ 18, where we observe a sudden decrease of 	4. A
visualization of the system’s structure in the subsequent state
is given in Fig. 1(b), suggesting, at first glance, a substantial
loss of in-plane order as compared to the initial state. However,
as we will discuss in more detail in Sec. III B, this state is
characterized by a “splitting” of the middle layer into two
sublayers, where the particles in the two sublayers organize
into lanes. Therefore, the top view provided in Fig. 1(b)
provides only partial information. The splitting can already
be seen from the density profile (see Fig. 3), which displays, at
γ̇ τ = 28, a double peak in the middle of the slit. This contrasts
the single middle peak observed at other shear rates. The third
state [see Fig. 1(c)] has an overall disordered appearance,
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FIG. 3. Density profiles along the shear gradient (and confine-
ment) direction for different shear rates. In the inset, the middle
peak of the density profile for γ̇ τ = 28 is magnified, revealing the
double-peak structure.

with the degree of hexagonal order being somewhat larger
than the values of 	4. The corresponding density distribution
(see Fig. 3) is characterized by an unsplit yet rather broad
peak at the middle position. This “molten” state resembles the
one seen in shear-driven bilayer systems at shear rates directly
beyond the quadratic regime [27]. This correspondence also
holds for even higher shear rates where the trilayer system
(in analogy to the bilayer) recrystallizes into a state with
hexagonal in-plane order in all layers [see Figs. 1(d) and 2].

We can thus conclude that while the limiting behavior of the
trilayer at low and high shear rates, respectively, is identical
to that in bilayer systems [27], the breakdown of ordering at
intermediate shear rates shows pronounced differences. In the
next subsection, we analyze in more detail the structure in this
“microlaned” state.

B. Laning transition

To better understand the nature of the laned state, we present
in Fig. 4 snapshots only of the middle layer at the same shear
rates considered already in Fig. 1. We note that, independent
of the precise value of γ̇ τ , the middle layer has a certain width
involving particles located at z values slightly above or below
the middle plane at z = 0. In Fig. 4 we distinguish between
these particle using different colors. The snapshots at low and
high shear rates reveal, as expected, the occurrence of quadratic
[Fig. 4(a)] and hexagonal [Fig. 4(d)] order, respectively,
with the colors of the particles suggesting an essentially
random distribution of positive and negative z values within
the middle plane. This mixed distribution also holds in the
shear-molten state [Fig. 4(c)]. In contrast, Fig. 4(b) clearly
demonstrates a “micro” phase separation of the particles: The
two different types arrange into narrow “lanes” along the flow
(x) direction, with the quadratic order between particles of

FIG. 4. (a)–(d) BD simulation snapshots of the middle layer at
ρd3 = 0.85 and Lz = 3.2d for different shear rates. The blue (red)
circles represent particles with z > 0 (z < 0).
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different lanes being much less pronounced than in the initial
quasiequilibrium state. This separation explains the splitting
of the density peak observed at γ̇ τ = 28 (see Fig. 3), as well as
the accompanying decrease of the order parameter 	4 (Fig. 2).

From a physical point of view, the occurrence of the lanes
may not be surprising: We recall that, in the present shear
geometry, particles at equal distance from the middle plane
experience an oppositely directed shear force via the externally
controlled flow profile. The occurrence of a “laning transition”
in binary systems of oppositely driven particles is indeed a
well-established phenomenon that has been observed in a wide
variety of systems, including colloids and pedestrians [34,43].

Inspired by the numerous studies of laning in colloidal sys-
tems, we define here a laning order parameter (see, e.g., [43])
addressing the particles in the middle layer. We first assign
to each particle the parameter φi , which is chosen to be 1 if
the lateral distance |yi − yj | to all particles of the adjacent
sublayer j is larger than the average distance rlane = ρ−1/3/2.
Otherwise, φi is set to 0. The laning order parameter is then
defined as


 =
〈

1

Nmid
L

Nmid
L∑

i=1

φi

〉
. (4)

In Eq. (4), Nmid
L denotes the number of particles within the

middle layer.
Numerical results for 
 as a function of the shear rate are

plotted in Fig. 5. One clearly recognizes a regime of shear rates
(18 � γ̇ τ � 32) with a strong degree of laning, consistent with
the observation in Fig. 4(b). We note that the results for 


depend somewhat on the system size. This aspect is discussed
in more detail in Appendix A. We find that the range of shear
rates of the laned state decreases slightly upon an increase of
the system size N . However, the general effect remains even
for much larger systems (N = 6627). We have also tested
the robustness of the laned state against small variations of
the slit-pore width Lz (see Appendix B). The test simula-
tions reveal that, upon decreasing Lz from its current value
(Lz = 3.2d), the laned state vanishes because the lateral
pressure in the x and y directions decreases. For larger Lz,
the quadratic equilibrium configuration is no longer stable,
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FIG. 5. Laning order parameter within the middle layer as a
function of the shear rate.
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FIG. 6. Velocity of the center of mass of all three layers as well
as the sublayers of the middle layer.

and a hexagonal in-plane order is favored, limiting the range
of suitable Lz.

The separation of the system into lanes also explains the
relatively low values of the translational order parameters in
this state: The results in Fig. 2 have been obtained by averaging
over the entire layers, which, for the middle layer, clearly yields
distorted results.

C. Single-particle dynamics

We now turn to dynamical aspects associated with the shear-
induced structural behavior discussed so far. To start with, we
consider in Fig. 6 the velocity of the center of mass of each
layer (and sublayer, where appropriate).

The initial, square state is characterized by zero motion of
all three layers; in other words, the particles are “locked” in
the regular potential valleys formed by the neighboring layers.
Upon increasing the shear rate toward the laned, molten, and
hexagonal states, the two outer layers start to move, while
the average velocity in the middle layer remains zero. This is
expected in view of our shear geometry, which implies that
the shear force vanishes at z = 0. Contrary to this average
motion, however, the sublayers formed in the laned state
do move, as Fig. 6 reveals. In particular, the corresponding
velocities are close to those of the outer layers. Thus, the
velocity profile within the middle layer transforms into two
“domains” with opposite velocities. In the molten state, we
still observe sublayer motion, but the corresponding velocities
“decouple” from those of the outer layers (reflecting a gradual
disappearance of lanes). As a consequence, the sublayer
velocities decrease to zero upon approaching the hexagonal
state. We thus see that the laned and molten states, which were
hardly distinguishable from their configurations (see Fig. 1),
differ clearly in their velocity profiles.

Further information on the dynamics on the particle level is
provided by investigating typical trajectories. Specifically, we
consider in Fig. 7 the position of typical particles in the flow
(x) direction. The colors indicate the corresponding z position.
The thick horizontal line in part (a), which is composed of
aligned trajectories of multiple particles, reflects the “locking”
of the particles in their lattice position at low shear rates.
In the other extreme case [the hexagonal state, part (d)], we
observe uniform flow behavior of the particles in the outer
layers, as well as the rest of the ones in the middle plane.
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FIG. 7. Trajectories of arbitrarily chosen particles at different
shear rates corresponding to the four states. The colors indicate the
position in the z direction (see the color bar on the right).

Regarding the intermediate states, the trajectories reflect some
degree of nonuniform behavior. In particular, we observe in
the lane states trajectories with oscillations around x = 0 at
early times; these oscillations correspond to particles hopping
between the sublayers of the middle plane (and thus hopping
back and forth). In the molten state, the behavior becomes
more uniform; in particular, a large number of particles in the
middle plane rests. This indicates that the system approaches
a uniform velocity profile similar to the hexagonal state.

A further characteristic dynamical feature of each state is
the mean-squared displacement (MSD) relative to the center
of mass. Here we focus on the MSD in the middle layer, since
this layer shows the greatest variety in order and dynamics.
Taking into account that the center-of-mass velocity in this
layer is zero, and specializing on the flow (x) direction, we
define the MSD according to

MSDx =
〈

1

Nmid
L

Nmid
L∑

i=1

[xi(t) − xi(0)]2

〉
, (5)

where Nmid
L is the number of particles in the middle layer.

Results for the MSD in the four different states are plotted
in Fig. 8. In the square (γ̇ τ = 10) and hexagonal (γ̇ τ = 80)

∝ t

∝ t2
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100

103
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M
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D

x

γ̇τ = 10
γ̇τ = 28
γ̇τ = 40
γ̇τ = 80

FIG. 8. Mean-squared displacement in the flow direction relative
to the center of mass of the particles in the middle layer at different
shear rates (in units of d2).

state, respectively, the MSD increases somewhat with time,
particularly for t > 10τ . However, it remains smaller than 1d

throughout the simulation time considered (t < 200τ ). This
reflects the persistent trapping of the particles at the sites of the
square or hexagonal lattice. We thus expect that the diffusive
behavior in the range 10τ < t < 200τ is transient.

In the shear-molten state, the long-time behavior of the
MSD become diffusive (i.e., linear in time) at long times,
as expected in a liquidlike state in the absence of any
center-of-mass motion. The intermediate dynamics can be
further analyzed in terms of an effective single-particle model
describing a particle in a harmonic potential (mimicking the
spatial confinement in the z direction) [27]. Here we rather
focus on specific features of the laned state. The corresponding
MSD behaves indeed differently. In particular, we observe a
ballistic regime ∝t2 at intermediate times. Such a ballistic time
dependence also occurs for a free particle under shear flow
[44], reflecting the presence of net (center-of-mass) motion. In
the present case, the motion is performed by the two sublayers
in which the middle layers split (see the nonzero velocities of
the sublayers in Fig. 6). Having this in mind, it seems somewhat
surprising that the MSD at later times becomes diffusive again.
Recall, however, that the MSD defined in Eq. (5) involves
all particles in the middle layer. This includes, in particular,
particles jumping between the sublayers. An example is seen
in Fig. 7(b), where the trajectories show particles of the middle
layer switching their direction of motion. On the level of the
MSD, these jumps (i.e., spontaneous changes of the direction
of motion) manifest themselves as an oscillatory, yet irregular,
time dependence, as may be verified from Fig. 9, where we plot
the MSD of a single system (without averaging). Averaging
over many systems then finally leads to the observed diffusive
behavior.

D. Rheological properties

To complete the picture of the three-layer system, we
have also investigated rheological properties as probed by the
components σmn (with n,m ∈ x,y,z) of the stress tensor σ .
The components were calculated (consistent with [28]) via the
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0.5

1

1.5

2

2.5
·105

t/τ

M
S
D

x

FIG. 9. MSDx of one single system at γ̇ τ = 28 (in units of d2).
For the calculation, only the particles from the middle layer were
considered.
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FIG. 10. Components of the stress tensor as a function of the
applied shear rate.

virial expression

σmn =
˝

1

V

∑
i

⎡
⎣∑

j>i

Fm,ij nij + δnzδmz σw(zi)

⎤
⎦
˛
, (6)

where δnm is the Kronecker delta, Fm,ij is the m component of
the two-particle interaction forces, nij is the n component of
rij , and σw is the stress contribution from the confining walls.
The latter is defined as

σw(zi) = −∂u
(±)
wall(zi)

∂zi

(zi ± Lz/2). (7)

The kinetic contributions were neglected. In fact, in the frame-
work of overdamped BD simulations, the only nonvanishing
contributions to the kinetic stress are given by the ideal gas
contribution, which are σ ideal

nn = −P = −NkBT/V for all
diagonal components and zero for all others. Results for the
steady-state stress tensor [i.e., limt→∞ σmn(t)] as functions
of the dimensionless shear rate are presented in Fig. 10. We
consider first the diagonal components (a), the negative values
of which correspond to the pressure tensor components of the
confined system. The equilibrium limit (γ̇ → 0) is character-
ized by σxx = σyy , as expected in the fully symmetric quadratic
state forming our starting configuration. The corresponding
normal stress σzz is much larger in magnitude, a generic effect
in strongly confined fluids. Upon increasing the shear rate, we
find that all diagonal components σmm reflect, to some degree,
the shear-induced transitions. As a general trend, the normal
stress further increases in magnitude. We understand this as a
consequence of the fact that, with increasing γ̇ , the distance
between the layers increases progressively (see the density
profiles in Fig. 3). This enables the particles to follow the flow
more efficiently. At the same time, however, it brings more and
more particles into the contact zone close to the walls, which,
consequently, increases the overall repulsion. A further feature
upon increasing γ̇ is that, beyond the threshold toward the
laned state, σxx and σyy deviate from one another, indicating a
structural asymmetry between flow and vorticity direction.

We now turn to the nondiagonal components
[see Fig. 10(b)]. The shear stress σxz reveals a strongly
nonmonotonic behavior with several multivalued regimes
where the shear rate corresponding to a certain stress value

10−2 10−1 100 101 102 103

0

5

10

15

tγ̇new

σ
x
z

γ̇newτ = 10
γ̇newτ = 28
γ̇newτ = 40
γ̇newτ = 80

FIG. 11. Stress-strain relations in the colloidal trilayer for dif-
ferent shear rates γ̇new, starting from the equilibrium (square)
configuration. The shear is switched on at t/τ = 0.01.

is not uniquely defined (as already reported earlier by us
[28]). In particular, the ranges of γ̇ where the stress decreases
imply that the corresponding (laned or shear-molten) state
is mechanically unstable and would not be observable in a
simulation (or experiment) at constant stress. The other off-
diagonal components (σxy,σyz) remain zero for all shear rates.

Finally, we consider the relaxation of the (shear) stress
after a sudden switch-on of a finite shear rate γ̇new, starting
from the equilibrium (square) configuration at γ̇ = 0. Toward
that end, we plot in Fig. 11 the quantity σxz as a function
of the strain γ̇ t (with fixed γ̇ = γ̇new). Similar to earlier
investigations performed for a bilayer system [28], the shape
of the stress-strain relation depends strongly on the state into
which the quench is performed. In particular, for all shear
rates beyond the quadratic regime, we observe a pronounced
stress “overshoot,” i.e., a maximum in the stress-strain relation.
The strain corresponding to this maximum depends on γ̇new;
at the highest value considered, it is about 10%. This value can
be related to the typical size of the nearest-neighbor cages in
the quadratic state, which are broken by the shear [45]. We also
note that the closer γ̇new is to the “critical” value (γ̇cτ ≈ 18)
separating the quadratic and laned states, the longer is the time
in which the stress relaxes toward its final, steady-state value.

Due to the finite relaxation time toward the final steady
states, which can become rather large particularly close to
the transitions, we expect the system to display hysteretic
behavior. In Appendix C, we discuss the hysteresis of the
shear stress for a successive increase and decrease of the shear
rate starting from the quadratic and hexagonal steady state,
respectively. We find that due to the finite relaxation time, the
transitions between the steady states are shifted against each
other in the two setups.

This is most notable for the transition from the melted
to the hexagonal or laned state, respectively. Nevertheless,
the system in both setups eventually reaches all steady states,
suggesting that the appearance of the laned state, in particular,
is independent of the initial configuration.

E. Toward multiple layers

To test whether the phenomenon of laning is restricted to
three-layer systems, we have performed some simulations with
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FIG. 12. Laning order parameter for the inner layers of a four-
layer system (Lz = 4.1d).

four- and five-layer systems. The precise value of the slit-pore
width is always chosen such that the equilibrium configuration
is the quadratic state. Applying then the shear, we monitor the
laning order parameter 
 [see Eq. (4)] of the inner layers.
Toward that end, particles with the z position larger than the
mean z position of the corresponding layer in equilibrium form
the top sublayer, whereas all other particles form the bottom
sublayer. We find that for the particular choice of Lz = 4.1d,
the two inner layers indeed split up, leading to a laned state
for a narrow range of shear rates. This is reflected by the
sharp peak of 
 at γ̇ τ = 10, seen in Fig. 12. We note that
the “flank” on the right-hand side of the peak is a result of
the finite number of particles in the system (see Appendix A
for a systematic discussion of system size effects). Thus,
the range of shear rates where laning occurs is smaller
than that in the trilayer system. The small nonvanishing values
of the laning order parameter for large shear rates should be
considered as an artifact resulting from our definition of the
sublayers. Inspecting the resulting steady-state configurations
in real space, see Fig. 13, we find that the particles arrange in
pyramid-like arrangements in the y-z direction, which move
with similar velocity in the x direction. Similar to the laned
state of the trilayer system, the bottom and top pyramids move
in opposite directions.

−6 −4 −2 0 2 4 6

−1

0

1

y/d

z/
d

FIG. 13. Front view of the mean position of the particles for
a system consisting of four layers (Lz = 4.1d, γ̇ τ = 10). Similar to
the laned state, the inner layers split up such that the particles organize
in triangular configurations marked by the dashed lines.

Upon varying Lz around the value Lz = 4.1d, we still find
laning (see Appendix B for a corresponding discussion of
the three-layer system), but the corresponding ranges of γ̇

are smaller than in the former case. For even wider widths
allowing for five layers, we do not find a laned state at all at
the considered density ρd3 = 0.85. Instead, the five quadratic
layers formed at γ̇ τ = 0 break up under shear, leading to
four moving layers. Nevertheless, a laned state in a five-layer
system may still occur for higher densities, where the lateral
pressure (which generally stabilizes “buckled” configurations)
is larger. However, a detailed study of the density dependence
is beyond the scope of the current paper.

IV. CONCLUSIONS

Using BD simulations we have studied the structural and
dynamical behavior of a thin colloidal film confined to a narrow
slit-pore under planar shear flow (constant shear rate). We
focused on a dense, strongly confined system whose equilib-
rium configuration consists of three well-pronounced layers
with a squarelike crystalline in-plane structure. Compared to
the previously studied case of two layers [27], the three-layer
systems displays a novel dynamical state at shear rates beyond
the depinning transition (i.e., the breakdown of the equilibrium
structure). In this “microlaned” state, the middle layer splits
into two sublayers with the particles being organized into
lanes with opposite velocities. Closer inspection shows that
the sublayers are “dragged” by the closest (bottom or top)
outer layer, which essentially follows the externally applied
flow profile. Overall, the situation corresponds to a plug flow
with two domains, whose interface is within the middle layer.
Upon further increase of the shear rate, the system enters a
molten state and finally recrystallizes into an ordered state
with hexagonal in-plane structure reminiscent of the behavior
of the bilayer films [27].

By monitoring the components of the stress tensor, we find
that the microlaned state is characterized by a negative slope
of the shear stress as a function of the shear rate. This suggests
that the microlaned state is, in fact, mechanically unstable
and will not be observable in simulations (or experiments) at
constant stress.

A similar phenomenon has been reported within an experi-
mental study of strongly confined hard-sphere suspensions [6].
Specifically, the authors of Ref. [6] observe a shear-induced
transition from an (initial) configuration consisting of four flat
layers to a configuration consisting of three buckled layers,
which are characterized by distinct velocities (the layers were
distinguished by monitoring their velocity instead of their
density profile). This latter configuration is explained by a
“mismatch” of the osmotic pressure of the bath and the
pressure (tensor) in the confined system corresponding to flat
layers, which need to be balanced.

In light of these experimental findings, the occurrence of
the microlaned state reported here may be interpreted as a
transition from three flat layers to two buckled layers with
different mean velocities (see Fig. 6). From that point of view,
our results are qualitatively consistent with the observations
of the aforementioned experiments. A detailed comparison
is difficult since the experiments are carried out with the
confined system being connected to a bulk suspension at

062605-7



GERLOFF, VEZIROV, AND KLAPP PHYSICAL REVIEW E 95, 062605 (2017)

constant osmotic pressure, as well as at oscillatory shear. Still,
the qualitative agreement may be taken as an indication that
the shear-induced laned state is a characteristic feature of thin
films of a few layers.

In fact, considering a system consisting of four layers, we
find a very similar state where the system splits into two
domains with opposite velocity. The range of suitable shear
rates and slit-pore widths is smaller than in the trilayer case.
However, we did not observe laning for a system consisting
of five layers at the considered density. Whether or not this
system displays laned (or “buckled”) states at higher densities
remains to be explored.

For future simulation studies, one important direction is
to further investigate the robustness of the microlaned state
for a larger parameter space. This concerns in particular the
slit-pore width and the overall density. Already in equilibrium,
variation of these parameters yields a complex phase diagram
[1] with different crystalline structures. The impact of shear
on these structures as a function of pore width and density has
yet to be fully explored.

In this context, another intriguing question concerns the
spatial dependence of the local shear rate and shear stress in
the direction of the confinement. Toward that end, we note that,
as reported in Refs. [5,46], the present method to calculate
the stress [see Eq. (6)] is not suitable to resolve the spatial
dependence, rather it leads to an inhomogeneous stress tensor.
Instead one should use an appropriate alternative method of
calculation, such as the method of planes (MOP) [47], or one
should consider a system with hydrodynamic equations from
the outset [46,48].

Another key question concerns the impact of hydrodynamic
interactions on the “microlaned” state. The formation of lanes
could be significantly enhanced or disturbed by the explicit
introduction of solvent dynamics (which was neglected here),
due to the small distances between the lanes and rather large
velocities. However, in view of the similarity of the microlaned
state to the buckled state observed in experiments [6], we
expect hydrodynamic interactions to affect the time scales, but
not the overall behavior of the system.
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APPENDIX A: SYSTEM SIZE DEPENDENCE
OF THE LANED STATE

The laned state is characterized by a stripelike ordering
of the middle layer in the flow direction, which may depend
on the system size. To investigate if the laned state is indeed a
finite-size effect, we have calculated the laning order parameter
for additional systems with N = 675, 1200, and 6627 particles.
Results are displayed in Fig. 14.

We find that laning in the middle layer can be observed for
all considered system sizes. For very small systems (N = 675),
one observes large values of the laning order parameter for a
wide range of shear rates. Increasing the number of particles,
the laned state shifts to smaller shear rates and the range of
shear rates is slightly decreased. Nevertheless, the results show
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0.4

0.8

1.2
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γ̇τ
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N = 675
N = 1200
N = 1587
N = 6627

FIG. 14. Laning order parameter for systems with varying size
N = 675, 1200, 1587, and 6627. For N = 675, 1200, and 6627, the
laning order parameter was calculated for a single system, whereas
for N = 1587 an ensemble average was taken (see Fig. 5). The graphs
are shifted by 0.2 for clarity.

that the laned state is not a result of a finite size of the simulation
box, but a physical phenomenon that persists for much larger
systems.

APPENDIX B: CONFINEMENT WIDTH DEPENDENCE
OF THE LANED STATE

In this Appendix, we explore the robustness of the laning
transition against small variations of the pore width around the
value Lz = 3.2d chosen in the main part of the investigation.
These calculations are carried out at constant overall density
ρd3 = 0.85. The more physical strategy would be to vary Lz

at constant lateral pressure P‖ or constant normal pressure P⊥.
However, this technically means to change the ensemble from
canonical to isobaric, which is beyond the scope of this study.
In the present setup (constant ρd3 = 0.85), a slight increase
of Lz implies an increase of the accessible volume in the z

direction and a corresponding decrease in lateral directions.
Thus the lateral pressure within the layers P‖ increases with
the confinement width, as shown in Fig. 15(b). In this figure,
we have calculated this lateral pressure in equilibrium via

P‖ =
3∑

L=1

〈
− 1

V

NL∑
i=1

∑
j>i

Fx,ij xij

〉
, (B1)

with NL being the number of particles inside layer L. We note
that in equilibrium, the pressure in the x and y directions is
the same, as seen in Fig. 10(a).

In Fig. 15(a), we have plotted the laning order parameter
for various widths of the confinement, Lz/d = 3, 3.05, 3.1,
3.15, 3.2, and 3.25. We find that the order parameter is largest
at the upper limit of this range, consistent with our expectation
that an increase of Lz in the considered range enhances the
“buckling” or laning, respectively, and becomes weaker upon
decreasing the width. For very small widths, Lz � 3.05d, the
middle layer becomes strongly disordered, leaving only two
pronounced outer layers.

Decreasing the confinement width also shifts the laned state
toward larger shear rates, which can be explained by the fact
that the stability of the quadratic state at γ̇ τ = 0 increases
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FIG. 15. (a) Laning order parameter for systems with varying
confinement width Lz/d = 3, 3.05, 3.1, 3.15, 3.2, and 3.25 (bottom
to top). For Lz/d = 3, 3.05, 3.1, 3.15, and 3.25, the laning order
parameter was calculated for a single system, whereas for Lz/d = 3.2
an ensemble average was taken (see Fig. 5). The graphs are shifted
by 0.2 for clarity. (b) The inset shows the lateral pressure within the
layers P‖ [see Eq. (B1)] in equilibrium (γ̇ = 0) depending on the
confinement width Lz.

(due to the strong compression of the layer) [29]. Overall, we
find that the range of suitable confinement widths is limited
by two different mechanisms. For small widths, Lz < 3.1d,
the laned state vanishes as the lateral pressure P‖ becomes
too small. For large confinement widths, Lz > 3.25d, the
quadratic crystalline equilibrium state becomes unstable and
the system favors a hexagonal crystalline configuration [1].
The corresponding shear-induced dynamics is expected to be
significantly different since, for example, no depinning occurs.
A closer investigation is beyond the scope of this study.

APPENDIX C: HYSTERESIS

The shear-induced laned and melted states are accompanied
by strong structural transformations of the colloidal layers.
They are related to very long relaxation times, and as a
consequence one would expect hysteretic behavior of the shear
stress as a function of shear rate. This is indeed the case, as
shown in Fig. 16. Here, we have calculated the shear stress
for two kinds of runs. For the first run, we started from the
equilibrium configuration and successively increased the shear
rate from γ̇ τ = 0 by small steps of �γ̇ τ = 0.01 to γ̇ τ = 100.
In each step we started from the final configuration from
the previous step. In the second run, we did the opposite,
starting with the hexagonal steady state for γ̇ τ = 100, and
we successively decreased the shear rate to zero. The data
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γ̇τ
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x
z

γ̇τ = 0 → 100
γ̇τ = 100 → 0
steady state

FIG. 16. Shear stress run averaged over ten systems starting from
γ̇initialτ = 0,100 successively increasing or decreasing to γ̇finalτ =
100, 0 (red, blue) by small steps of �γ̇ τ = 0.01. The steady-state
shear stress (black dashed) is plotted as a reference [see Fig. 10(b)].

were averaged over ten independent runs of ten different
systems. The results are compared to the steady-state results
[see Fig. 10(b)], where the steady state was obtained by
applying a constant shear rate to the equilibrium configuration,
and the simulations were run until the steady state was reached.

For the increasing shear rate run, the transition to the
laned, melted, and hexagonal states shifts to larger shear rates
compared to the steady-state results. The range of the quadratic
state is extended, which can be attributed to the fact that the
noise-induced events initiating the breaking of the crystalline
order are very rare close to the transition from the quadratic
to the laned state. A similar argument can be applied for the
extension of the laned state. Also, the range of the melted
state is drastically increased. In fact, the system was not able
to rebuild a fully crystalline hexagonal state during the whole
run. We suspect that this behavior is due to defects, which were
formed in the melted state and sustained thermal fluctuations
for extremely long times.

For the decreasing shear rate run, the range of the hexagonal
state is slightly extended toward smaller shear rates compared
to the steady-state results. The transitions to the laned and
quadratic states are shifted only slightly relative to the steady-
state results. Overall, the hysteretic behavior is most dominant
for the transition from the melted to the hexagonal state, due to
the strong plastic deformations accompanying the melted state.
The hysteresis for the transition between the quadratic and
laned state, as well as the laned and melted state, is rather weak.
Furthermore, the laned state appears in both runs, suggesting
that the appearance of this state is independent of the initial
configuration.
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