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Pragmatical access to the viscous flow of undercooled liquids
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The paper derives a relation for the viscosity of undercooled liquids on the basis of the pragmatical model
concept of Eshelby relaxations with a finite lifetime. From accurate shear relaxation data in the literature, one
finds that slightly less than half of the internal stresses relax directly via single Eshelby relaxations; the larger
part dissolves at the terminal lifetime, which is a combined effect of many Eshelby relaxations.
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The shear response of undercooled liquids is much better
measured [1–10] than it is theoretically understood [11,12].

The problem intimately is related to the existence of a
terminal lifetime τc. The existence of such a lifetime, after
which the final relaxation is exponential, has been shown in
aging experiments [13]. It is experimentally well established
[13,14] that this lifetime is markedly longer than the Maxwell
time τM = η/G.

At shorter times, the shear relaxation proceeds with the
Kohlrausch time dependence tβ with a Kohlrausch β close to
1/2. The relaxation processes behind this Kohlrausch behavior
must be back-and-forth jumps because one finds a recoverable
compliance J0 which is more than a factor of 2 larger [1,2]
than the elastic recoverable compliance 1/G alone.

Thus there must be a crossover from back-and-forth jumps
at short times to no-return jumps at the terminal lifetime τc for
which, here, there is a theory [11,12].

A first attempt to attack this problem is the pragmatical
model of Eshelby relaxations with a finite lifetime [15]. The
present paper develops this model further and derives a relation
for the ratio τc/τM between terminal and Maxwell times.

With this relation, accurate shear relaxation data allow for
determining the fraction fc of the internal stresses which are
not relaxed by any single Eshelby relaxation but dissolve in the
collective terminal process. The recognition of the fraction fc

is important for the description of dielectric and other nonshear
relaxation data because it increases their viscous components.
In particular, fc is crucial for the understanding of nonlinear
dielectric data [16].

The pragmatical model [15] has six parameters: The infinite
frequency shear modulus G, the viscosity η, the recoverable
compliance J0, the Kohlrausch β, the structural lifetime τc,
and, finally, the full width Wr at half maximum of the
distribution of local structural lifetimes on a logarithmic scale.

Since measured data are only rarely accurate enough to fix
six parameters, this implies an undesirable arbitrariness in the
results of the fitting procedure [15].

On the other hand, none of the six parameters is avoidable.
In the case of the shear modulus G, the viscosity η, and
the Kohlrausch β, this is generally agreed. The recoverable
compliance J0, although no longer in the focus of the attention
of the community, is an acknowledged textbook [17] material
constant.
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Finally, since one has dynamical heterogeneity in under-
cooled liquids [18], one must also reckon with a distribution
of local structural lifetimes.

In the pragmatical model [15], each double-well potential
stands for a local cooperative rearrangement. The rearranging
region changes its volume and its shape in the rearrangement,
coupling to the surrounding elastic matrix according to the
Eshelby theory [19].

In the Eshelby theory, the structural jump of the central core
couples to the stress not to the strain [19]. This implies that
the effects of different structural jumps do not add in the shear
modulus but in the elastic shear compliance [17],

J (ω) = 1

G
+

∫ ∞

−∞

L(τ )

1 + iωτ
d ln τ − i

ωη
. (1)

The retardation function L(τ ) defines the zero-frequency
recoverable compliance J0, the infinite-frequency elastic com-
pliance, plus the integral over the retardation processes,

J0 = 1

G
+

∫ ∞

−∞
L(τ )d ln τ. (2)

In the absence of a secondary relaxation peak, the density
of local cooperative rearrangements in the logarithm ln τr of
their relaxation time is given by

l(τr ) = l0(τr/τc)β, (3)

in order to reproduce the rise in the shear response with the
Kohlrausch tβ .

A given local rearrangement with relaxation time τr does
not exist forever because the surroundings flow, providing it
with a decay time τc.

The rates r = 1/τr and rc = 1/τc add up to the total decay
rate 1/τ = r + rc, so

τ = 1

r + rc

= τrτc

τr + τc

, (4)

which is always shorter than both τr and τc.
The total response probability of the rearrangement within

its lifetime is given by

r

r + rc

= τc

τc + τr

(5)

(in the first version [15], this was mistakenly taken to be the
retardational response probability).
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This probability divides into a probability for viscous
response,

rrc

(r + rc)2
= τrτc

(τc + τr )2
, (6)

and a probability for the retardation response,

r2

(r + rc)2
= τ 2

c

(τc + τr )2
. (7)

Integrating both components over τr , one finds the total
integral Iβ (in reasonable approximation),

Iβ = l0π [1 + 13.27(β − 1/2)2 + 135(β − 1/2)4], (8)

with the exact retardation fraction,

fr = 1 − β. (9)

The resulting retardation function is

L(τ )d ln τ = τ 2
c

(τr + τc)2

l(τr )

G
d ln τr , (10)

which evaluates to

L(τ ) = l0

G

τc − τ

τc

(
τ

τc − τ

)β

. (11)

A fraction fr of the relaxation shear response goes into
the retardation J0 − 1/G, and a fraction 1 − fr is the viscous
response at the average relaxation time τc.

This implies a contribution to the viscosity from the no-
return processes,

τc

η

∣∣∣∣
1

= β

1 − β
(J0 − 1/G) = 1 − fr

fr

(J0 − 1/G). (12)

The formulation in terms of fr is needed for cases with excess
wings and secondary relaxations.

Note that this part of the viscosity is not a collective effect;
it is due to individual Eshelby jumps which are not followed
by a backjump.

The collective effect of all Eshelby jumps leads to the finite
structural renewal lifetime τc, the decay time for all internal
stresses, even in those shear stress directions for which the local
rearrangement does not couple. Defining fc as the fraction
of internal stresses released by the collective effect, only the
fraction 1 − fc is left for the direct effect of the Eshelby jumps.
This in turn implies a fraction (1 − fc)fr responsible for the
retardation J0 − 1/G.

With this normalization, the collective contribution to the
viscous flow is

τc

η

∣∣∣∣
2

= fc

(1 − fc)fr

(J0 − 1/G). (13)

There is a third contribution: The relaxing region is
surrounded by a flowing liquid. The flow of the surroundings
induces additional jumps in the relaxing core, which have to
be added to the inverse viscosity (the fluidity).

In order to calculate the third contribution, note first that the
decay of the cooperatively rearranging region is a continuous
process, induced by many rearrangements in the surroundings.
After the time dt , the state can be considered to consist of a
fraction dt/τc of a new state and a fraction 1 − dt/τc of the
old one.

FIG. 1. Fit of recoverable compliance data [1,2] in terms of the
pragmatical model.

In continuous flow, the new state is created in equilibrium
with the actual shear state at the given time. This continuous
creation process implies a backlag of the equilibrium shear
position εeq of the state by στc/2η.

Thus, if one interrupts the continuous flow by taking the
external shear stress away at time zero and shear strain zero,
the sample relaxes within a few picoseconds (the adaptation
time of the vibrations) to the shear strain ε(0) = −σ/G. Then,
as the local relaxations proceed, the sample relaxes gradually
to ε(∞) = −σJ0, where J0 is the recoverable compliance [17].

To fulfill this, the actual average equilibrium shear position
εeq(0) of the local relaxations must be at a negative value,

εeq(0) = −σ (J0 − 1/G)

fr

, (14)

where the factor 1/fr accounts for the fraction of local
relaxations decaying without a backjump.

Equating the two expressions for εeq, one finds

τc

η

∣∣∣∣
3

= 2

fr

(J0 − 1/G) = 2

1 − β
(J0 − 1/G). (15)

Adding all three contributions, one gets the full fluidity,

τc

τM

= 3 − fr

fr

(GJ0 − 1) + fc

fr (1 − fc)
(GJ0 − 1), (16)

where τM is the Maxwell time η/G.
Fitting the pragmatical model parameters τc, τM, GJ0, and

fr to shear relaxation data, one can determine the ratio fc.
The ratio fc is obtained most accurately from mechanical

recoverable compliance measurements [1,2], which determine
G, η, and J0 directly. Wr has little influence on the curves, so
one has essentially only τc and β as free parameters. Figure 1
shows the fits.

Table I compiles the determinations of the collective
viscous flow fraction fc from recoverable compliance and
G(ω) data. The most accurate results in Table I are the first
four recoverable compliance measurements [1,2], which fix fc

within a few percent.
A helpful result from these fits is that the width Wr of

the lifetime distribution is comfortably small on the order of
half a decade (remember that a simple Debye relaxation peak
already has a width of about a decade). This conclusion is
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TABLE I. Determination of the collective fraction fc of the vis-
cous shear response by applying Eq. (16) to recoverable compliance
data (TNB is tri-naphthyl benzene, OTP is ortho-terphenyl, 6-PPE
is 6-polyphenylether) and to high accuracy G(ω)-data (DC704 is
a vacuum pump oil, 5-PPE is 5-polyphenylether, PC is propylene
carbonate, and PG is propylene glycol). Values marked with asterisks
are taken from fits of dielectric data. PC has an excess wing
f1/6(τr/τc)1/6 with f1/6 = 0.035, and PG has an excess wing with
f1/6 = 0.027 (see the text).

Substance T G GJ0 β Wr τM τc/τM fc

(K) (GPa) (s)

TNB [1] 337 1.18 3.03 0.37 0.0 195.0 14.2 0.67
Aroclor [2] 232.8 2.36 2.42 0.37 0.6 236.6 12.4 0.75
OTP [2] 240.8 2.22 2.64 0.37 0.9 104.7 13.2 0.73
6-PPE [2] 248.2 1.38 2.37 0.39 0.3 344 12.7 0.78
DC704 [10] 214 1.09 2.49 0.46 1.8 0.79 11.7 0.65
DC704 [10] 216 1.05 2.43 0.46 2.0 0.16 11.2 0.62
DC704 [10] 218 1.02 2.44 0.47 2.6 0.041 13.3 0.66
5-PPE [10] 250 1.03 2.33 0.50 2.0∗ 0.69 9.5 0.53
5-PPE [10] 252.5 0.98 2.39 0.48 2.0∗ 0.13 10.3 0.58
5-PPE [10] 255 0.95 2.45 0.47 2.0∗ 0.022 11.0 0.61
PC [9] 159 1.48 2.96 0.47 1.7 0.34 12.5 0.54
PC [9] 161 1.42 2.97 0.49 2.0 0.037 12.1 0.50
PC [9] 163 1.39 3.14 0.55 2.8 0.006 13.0 0.39
PG [8] 171 4.08 6.39 0.53 1.6∗ 0.45 35.9 0.48
PG [8] 174 3.85 6.68 0.54 1.6∗ 0.088 38.9 0.48
PG [8] 177 3.69 6.78 0.54 1.6∗ 0.020 41.1 0.52

corroborated independently by fits of dielectric data in terms
of the pragmatical model where the viscous component is seen
directly at the peak.

G(ω) data give much less accurate fc values because the
viscous component overshadows the retardational one at the
crossover. Nevertheless, very accurate data, such as those in
DC704 and 5-PPE [10], determine fc within an error of about
20%. In some of these fits, Wr was taken from fits of dielectric
data from the same substance.

Another new accurate data set exists for propylene car-
bonate [9]. Like many other strong dielectric substances,
propylene carbonate shows an excess wing with a logarithmic
slope of about −1/6 at high frequencies in its dielectric
response [see Fig. 2(b)]. In the new measurement [9], the
authors demonstrated that the same excess wing slope also
appears in the shear response.

The excess wing requires the relaxation density,

l(τr ) = l0[(τr/τc)β + f1/6(τr/τc)1/6] (17)

with the same f1/6 of 0.03 in propylene carbonate [9] and
glycerol [15].

With Eqs. (8) and (9), it is straightforward to calculate the
retardation fraction fr for this relaxation density. Inserting
fr and the other fit parameters into Eq. (16), one can again
determine fc (see Table I).

With the retardation density L(τ ) obtained from the l(τr )
in Eq. (17), one can calculate the normalized dielectric
susceptibility,

	(ω) = ε(ω) − ε∞
εs − ε∞

, (18)

FIG. 2. Fit of (a) G(ω) data and (b) dielectric relaxation data of
propylene carbonate [9] in terms of the pragmatical model.

FIG. 3. Fit of (a) G(ω) data [8] and (b) dielectric relaxation data
[20] of propylene glycol in terms of the pragmatical model.
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where εs is the static dielectric susceptibility and ε∞ is its
high-frequency limit.

To perform the calculation, one has to normalize L(τ ) to
fr (1 − fc) and add a viscous component at τc with weight
1 − fr (1 − fc), a Gaussian distribution of Debye processes
with the width Wr .

Although the dielectric fits do not determine fc very
accurately, one gets generally smaller fc values (about 1/3)
than the average shear fc of 5/9 from Table I. This is
understandable: An Eshelby relaxation couples to one of the
three electric polarization components but only to one out of
five shear stress components. Thus a factor of 5/3 more shear
equilibration is left for the terminal process.

Applying this fit procedure to shear and dielectric data
obtained by measuring a propylene carbonate sample from the
same charge in the same cryostat [9], one finds not only the
same terminal relaxation time τc, but also the same excess wing
coefficient f1/6 within experimental accuracy. Figures 2(a)
and 2(b) show the shear and dielectric measurements at 159 K.

The same procedure has been followed to evaluate the high
accuracy shear data of propylene glycol [8] in Fig. 3(a). The

evaluation of dielectric data [20] [see Fig. 3(b)] supplies an
excess wing coefficient of f1/6 = 0.027, which was taken to
be the right one for the fit of the shear data.

In this case, shear and dielectric data, although measured
in different laboratories, show essentially again the same τc

for the dielectric data. Since the dielectric relaxation peak
coincides with the dynamic heat capacity one [21], the results
support the concept of a terminal relaxation time.

This is no longer true for DC704. In fact, the correction
of the pragmatical model destroys the seemingly perfect
agreement between shear and dielectrics reported in the first
paper [15] for DC704. The shear τc of the corrected version is
now a factor of 2.4 larger than the dielectric one and lies close
to the ones suggested by the peak positions of heat capacity
and thermal expansion data [14] of DC704.

To conclude, the paper derives a relation between the
structural lifetime and the Maxwell time, which allows for
calculating the collective fraction of the viscous response
(the one resulting from the cumulative effect of all Es-
helby relaxations together) from accurate shear relaxation
data.
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