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Anisotropic hydrodynamic function of dense confined colloids
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Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both
direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk
the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto
hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy
x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic
channels to yield the confined fluid’s hydrodynamic function in the short-time limit. Most importantly, we find
the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure
factor. This observation is important in order to guide future theoretical research.
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The dynamics of complex fluids in spatial confinement
is a challenging scientific problem, which is of importance
for a broad range of applications such as the flow of blood
in narrow capillaries [1], diffusion of colloidal dispersions
through mesoporous matrices [2], and structural arrest in thin
polymer films [3]. Generally speaking, confinement induces
microscopic ordering of the fluid constituents, which in turn
strongly modifies the confined fluid’s dynamic properties.
State-of-the-art simulations [4], theoretical analysis [5], and
experiments [6] have so far focused on the effect of direct
particle interactions, bringing into evidence that the confined
fluid’s microscopic ordering is accompanied by both position-
and direction-dependent diffusivity.

Diffusion of complex fluids in confined geometries is a
complicated physical phenomenon, however, which depends
not only on direct particle interactions as described above,
but also on indirect many-body interactions mediated by
the solvent. These latter hydrodynamic interactions are both
long range and nonadditive, making their quantitative studies
challenging. Nevertheless, their effect on diffusion can be
quantitatively determined for dense bulk colloidal dispersions
[7]. For dense colloids in confined geometries, however, the
additional complication of confining walls has so far hindered
studies on the effect of hydrodynamic interactions, whether
by simulations, theoretical calculations, or experiments. The
important question then remains: How does confinement
modify hydrodynamic interactions and thus affect wave-
vector-dependent diffusion?

Here we apply a unique x-ray scattering methodology
on colloid-filled microfluidic channel arrays (see Fig. 1) in
order to address the aforementioned question experimentally.
We have very recently demonstrated that high-energy x-ray
photon correlation spectroscopy (XPCS) provides access to
wave-vector-dependent diffusion of dense colloids in confined
geometries [8], thus demonstrating the strongly anisotropic
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effect of direct particle interactions. Here we analyze the
data in the short-time limit, allowing us to also extract the
hydrodynamic contribution in a formally correct manner. Most
importantly, we find that the confined fluid exhibits a strongly
anisotropic hydrodynamic function, akin to its structure factor.
This observation provides important mechanistic insights into
hydrodynamic interactions in confined geometries and will
thus be essential to guide future theoretical research.

The wave-vector-dependent diffusion of dense dispersions
of colloidal particles can be described by the Langevin or
the Smoluchowksi equations, in which the fast motion of the
solvent molecules are coarse grained to yield a stochastic force
acting on the Brownian particles. This is in general a complex
physical phenomenon, but in the short-time limit one obtains
the seemingly simple result1

D(q) = D0
H (q)

S(q)
, (1)

where D(q) is a short-time effective diffusion coefficient
describing the initial decay of density correlations of wave
vector q, D0 the Stokes-Einstein diffusion coefficient of
dilute suspension of noninteracting Brownian particles, S(q)
the structure factor containing direct interactions, and H (q)
the hydrodynamic function describing indirect particle-
particle and (possible) particle-wall interactions mediated by
the solvent [7,9,10].2 Note that D(q), D0, and S(q) can be
experimentally determined in separate scattering experiments,
as described below, providing access to H (q). Intuitively,
this form of D(q) makes sense; a maximum in the structure
factor S(q) corresponds to a density component that is
favorable in terms of the free energy of interactions and thus
decays slowly. We emphasize, however, that the hydrodynamic

1We consider long enough time scales that the particles’ velocities
have equilibrated.

2Note that since we formally included also indirect particle-wall
interactions in the confined colloid’s H (q), it becomes unity in the
limit of infinite particle dilution and sufficiently large wall separation.
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FIG. 1. Schematic of the experiment. A collimated, partially co-
herent x-ray beam impinges normal to the colloid-filled microfluidic
channel array. The anisotropic scattering pattern is measured in
transmission mode, as a function of wave-vector components parallel
(||) and perpendicular (⊥) to the confining channels. The red (φ = 0◦),
blue (16◦), and green (45◦) thick lines on the detector depict the
different directions with respect to the confining channels in which
we collect scattering data. The figure is not to scale.

function H (q) is a notoriously complicated quantity; while
the underlying many-body particle interactions have been
studied extensively for dense colloidal dispersion in bulk [7],
the additional complication of particle-wall interactions has
hitherto hampered analysis of H (q) in confined geometries.

Wave-vector-dependent diffusion of a confined fluid was
probed by XPCS that measures the temporal intensity
autocorrelation function g2(q,t) = 〈I (q,0)I (q,t)〉0/〈I (q,0)〉2

0,
where 〈· · · 〉0 denotes a temporal average over initial times
t = 0 [11,12]. The connection between the measured in-
tensity autocorrelation function and the fluids’ density fluc-
tuations is given by the Siegert relation g2(q,t) = 1 +
γ |f (q,t)|2, where γ is the experimental contrast and f (q,t) =
〈δn−q(0)δnq(t)〉/〈δn−q(0)δnq(0)〉 the normalized intermediate
scattering function, with δnq(t) a Fourier component of
the fluid’s spatiotemporal density fluctuations and 〈· · · 〉 an
ensemble average. For colloidal dispersions the connection
between the intermediate scattering function and wave-vector-
dependent diffusion in the short-time limit is obtained via
f (q,t) = exp[−q2D(q)t], where q = |q| [7,9].

By temporally averaging the scattered intensity we carry out
a small-angle x-ray-scattering (SAXS) experiment [13]. For
a dispersion of only slightly polydisperse spherical colloidal
particles we thus measure a normalized SAXS intensity
I (q) = 〈I (q,0)〉0 ∝ P (q)S(q), where P (q) is the separately
measurable form factor describing the particles’ spherical
shape and size distribution, while the structure factor S(q) =
N−1〈δn−q(0)δnq(0)〉 describes microscopic interparticle
correlations. Note that whereas isotropic bulk fluids exhibit
isotropic structure factors S(q) [7], the anisotropic packing of
particles in confined geometries shows up as anisotropy in S(q)
[14]. The latter anisotropy can be seen in the data of Fig. 1.

We studied a colloidal dispersion of spherical silica particles
(bulk volume fraction 0.168) dispersed in ethylene glycol. This
system has previously been shown to exhibit properties similar
to the archetypical hard-sphere fluid [15]. We determined the
particles’ average diameter σ = 182 nm and size polydisper-
sity �σ/σ = 1.5% by SAXS on a dilute bulk dispersion,
while we applied dynamic light scattering (DLS) [16] on a
dilute bulk dispersion (same solvent and temperature as in the
XPCS experiment) to determine the particles’ Stokes-Einstein
diffusion coefficient D0 ≈ 1.11 × 10−13 m2 s−1. For details on
the synthesis of the colloidal dispersion, see Ref. [17].

We confined the colloid in an array of parallel and identical
high-aspect-ratio rectangular microfluidic channels with a
period of 2 μm. The confined colloid was in contact with a bulk
reservoir of volume fraction 0.168. The confining channels had
a depth of ≈18 μm (i.e., ≈100σ ) and a width of H = 490
nm (i.e., H ≈ 2.7σ ), as determined by scanning electron
microscopy, and they were fabricated into a 300-μm-thick
Si wafer by electron-beam lithography and KOH etching
following Ref. [18]. With this approach we obtain confining
walls that are structureless on the length scales relevant for the
colloid, facilitating interpretation of the experimental results.
Finally, we also prepared a bulk fluid compartment, which
allowed us to collect bulk data from the same sample cell.

We conducted our combined transmission XPCS and SAXS
experiment on colloid-filled microfluidic channels on instru-
ment ID10 of the European Synchrotron Radiation Facility
(ESRF). We used an incident x-ray beam with an energy of
h̄ω = 21 keV and we let it impinge normal to the channel
array. The incident beam size was 10 × 10 μm2 at the sample
position, i.e., we averaged the data from five identical confining
channels. We maximized the incident x-ray flux by focusing
the beam onto the sample plane and we minimized parasitic
scattering from air by placing an evacuated flight tube between
the sample and the detector. Finally, we measured x-ray
scattering 5.3 m behind the sample in a twofold approach as
follows. First we obtained an overview of the anisotropic static
scattering pattern (shown in Fig. 1) using the two-dimensional
(2D) single-photon-counting CdTe MAXIPIX detector [19].
Since the 2D detector was too slow to study diffusion in
the present colloidal dispersion, next we measured XPCS
and SAXS data simultaneously in a few selected scattering
directions using a point detector. For this purpose, we used
a scintillation counter (Cyberstar) connected to a hardware
correlator (Flex), with a 0.1 × 0.1 mm2 aperture in front of
the detector. All data presented below were collected using the
point detector at room temperature T = 294 K.

Let us start by considering the intensity autocorrelation
function g2(q,t). This is exemplified for the confined fluid
in Fig. 2(a), where the data have been collected diagonally
across the confining slit, i.e., at a 45◦ angle with respect to the
confining walls (see Fig. 1 for a graphical definition). These
data were collected at a wave-vector magnitude approximately
corresponding to the primary maximum in S(q), viz., |q| ≈
2πσ−1, with σ denoting the average particle diameter. For
comparison, we also show data collected from the bulk fluid
at the same wave-vector magnitude. We note that the confined
fluid exhibits stretching of the correlation functions, indicating
a distribution of relaxation times, which we attributed in
Ref. [8] to be (at least partly) induced by confinement.
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FIG. 2. (a) Temporal intensity autocorrelation functions g2(q,t)
measured from bulk (red dashed line) and confined (blue solid line)
fluids at a scattering vector magnitude |q| ≈ 2πσ−1, approximately
corresponding to the primary peak in the structure factor S(q). The
confined fluid data have been collected at a 45◦ angle with respect to
the confining channels. The vertical dashed line and the gray region
depict the structural relaxation time τI = σ 2/4D0 and the short-time
regime where we analyze the single exponential decay, respectively.
(b) Short-time limit of the data of (a), plotted as ln|f (q,t)|, showing
single exponential decay.

The vertical dashed line in Fig. 2(a) depicts the structural
relaxation time τI = σ 2/4D0, providing an estimate of the
time during which significant structural relaxation occurs [7].
The short-time limit of Eq. (1), where f (q,t) exhibits single
exponential decay, is thus given by t � τI. In Fig. 2(b) we
replot the data of Fig. 2(a) as ln|f (q,t)| in this short-time
limit, corroborating the single exponential decay of f (q,t).

Linear least-squares fits to the data in Fig. 2(b) for different
q yield D(q) according to ln|f (q,t)| = −q2D(q)t . These are
presented in Fig. 3(a) for both the confined and bulk fluids as
D(q)/D0, where we have used D0 as obtained by DLS. We
collected the confined fluid’s data in three different directions
with respect to the confining channels: parallel to the channels
[φ = arctan(q⊥/q‖) = 0◦; red squares], diagonally across the
channel (φ = 45◦; green diamonds), and in an intermediate
direction (φ = 16◦; blue circles), as schematically depicted in
Fig. 1. Notably, the confined fluid exhibits significantly slower
diffusion compared to bulk in a broad wave-vector regime
around q ≈ 2πσ−1. This could in fact already be observed
in Fig. 2(b) as the slower decay of f (q,t) in confinement
than in bulk for the presented q. We will show below that
this confinement-induced slowing down is due to both direct
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FIG. 3. Wave-vector-dependent microscopic structure and dy-
namics. The data are presented for the confined fluid in different di-
rections with respect to the confining channels: φ = arctan(q⊥/q‖) =
45◦ (green diamonds), 16◦ (blue circles), and 0◦ (red squares). Data
from the bulk fluid (black triangles) are also shown for comparison.
The error bars are comparable to or smaller than the symbol size.
Note that the x-axis scale does not start from origin. (a) Relative
short-time diffusion coefficient D(q)/D0. (b) Structure factor S(q),
taken from Ref. [8]. (c) Hydrodynamic function H (q).

particle interactions, contained in the structure factor S(q), and
indirect interactions mediated by the solvent, described by the
hydrodynamic function H (q).

Equation (1) shows an intimate relationship between D(q)
and S(q). Therefore, we also present in Fig. 3(b) the structure
factors S(q), as obtained in Ref. [8] by dividing the temporally
averaged data by the experimental form factor measured from
a dilute dispersion. The data collected from the confined
fluid exhibit prominent anisotropy, with the primary maximum
being stronger for φ = 16◦ than for 0◦ and 45◦. We attribute
this effect to confinement-induced anisotropic particle pack-
ing, similar to previous observations for dense hard-sphere
[14,20] and charge-stabilized colloidal dispersions [21] in
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spatial confinement. We further note that the primary maxima
of the confined fluid’s S(q) are both stronger and shifted
to larger wave vectors q compared to the bulk counterpart,
implying denser particle packing in the former case as noted
in Ref. [8]. Since the positions and magnitudes of the maxima
are anisotropic, i.e., depend on φ [14,20], whereas the average
particle density in the slit is characterized by a single value,
we cannot determine the average particle density in the slit
based on these data only. In qualitative terms, however, we can
partly attribute the slower diffusive dynamics in confinement
compared to bulk to the larger average particle density in the
former case.

Returning to the dynamic data of Fig. 3(a), the confined fluid
exhibits direction-dependent slowing down that correlates
with the magnitude and position of the primary maximum
in the structure factor. In fact, the inverse of D(q) behaves
qualitatively (but not quantitatively) as the anisotropic S(q), as
observed already in Ref. [8], where we analyzed the full f (q,t)
using a stretched exponential within the phenomenological
Kohlrausch-Williams-Watts (KWW) model. We do note,
however, that the wave-vector-dependent diffusion coefficients
D(q) of the confined fluid determined (i) in the short-time limit
and (ii) within the KWW model differ quantitatively from each
other by a factor ≈2, since the latter contain mixing of different
time regimes.

Now we are finally in a position to determine the hy-
drodynamic function H (q), which according to Eq. (1) is
obtained by multiplying the data of Figs. 3(a) and 3(b).
The resulting data are presented in Fig. 3(c). Let us first
focus on the bulk data, which exhibit two noteworthy effects.
First, we observe hydrodynamic slowing down H (q) < 1. The
magnitude of the bulk H (q) agrees well with that expected for
a hard-sphere fluid [22], providing further evidence of hard-
sphere-like behavior of spherical silica particles dispersed
in ethylene glycol [15]. Second, we note that the functional
form of the hydrodynamic function H (q) is reminiscent of the
structure factor S(q), as typically observed for bulk colloidal
dispersions [7].

Next we turn to the confined fluid’s hydrodynamic function
of Fig. 3(c). Qualitatively, we note a stronger hydrodynamic
slowing down in confinement compared to bulk, as expected
given the larger average particle density in the former case.
The slow wave-vector-dependent diffusion in confinement
compared to bulk, as shown in Fig. 3(a), is thus a combined
result of both direct and solvent-mediated indirect particle
interactions.

The most important observation from the data of Fig. 3(c)
is the functional form of the hydrodynamic function. As
noted above, in bulk the shape of H (q) is similar to that
of the structure factor S(q) [7]. In confinement we make
a similar observation, with the direction-dependent hydro-
dynamic function H (q) exhibiting anisotropy akin to S(q);
the primary maximum in H (q) is shifted to a larger wave
vector q for the intermediate direction φ = 16◦ compared to
the limiting 0◦ and 45◦, in line with the behavior of S(q). In
order to rationalize this observation, we note that H (q) by
our definition contains contributions from both particle-wall
and particle-particle hydrodynamic interactions. We expect the
former contribution to grow monotonically in strength from
the parallel to the perpendicular direction with respect to the

confining walls [23,24]. In dense confined fluids the central
particle experiences a strongly anisotropic local distribution
of particles (see, e.g., Ref. [25] for illustrative examples),
which shows up as a strongly anisotropic S(q) [cf. Fig. 3(b)].
We therefore expect the latter particle-particle contribution to
H (q) to be strongly anisotropic akin to S(q). While we cannot
quantitatively disentangle particle-wall and particle-particle
interactions in the data of Fig. 3(c) (see the discussion below),
we can based on the above reasoning attribute the strong
anisotropy of H (q) to the latter contribution.

Theoretical schemes for describing hydrodynamic inter-
actions in dense bulk colloidal dispersions have been de-
veloped a long time ago [7]. Hydrodynamic slowing down
of single solvated particles near a solid wall is similarly a
well documented phenomenon [23,24], which has also been
experimentally observed in recent years [26,27]. However, the
theoretical description of hydrodynamic interactions in dense
colloids confined between solid walls has not yet been worked
out and hence we cannot at the moment compare the data
of Fig. 3(c) with theoretical predictions. We therefore hope
that our present experimental observations will promote future
theoretical development of the hydrodynamic function H (q)
in confined geometries, using the anisotropic S(q) as input.

We have throughout this study included particle-wall
hydrodynamic interactions in the formal definition of the
hydrodynamic function H (q). Alternatively, they could instead
be included in the Stokes-Einstein diffusion coefficient D0

via an effective viscosity following Refs. [23,24]. Since these
interactions depend on the particle-wall distance, quantitative
determination of the effective viscosity would require as
input the singlet density distribution of particles between the
walls, which is unfortunately not available in the present
study. Nevertheless, in the future such an approach may be
useful in disentangling the contributions of particle-particle
and particle-wall hydrodynamic interactions, provided the
particles’ density profile between the walls can be determined
using, e.g., the methods of Refs. [28,29]. Once successful, this
would, for example, provide means to corroborate intriguing
earlier observations of counterbalancing of hydrodynamic
interactions in dense hard-sphere colloids near hard walls,
where the introduction of hydrodynamic particle-wall in-
teractions was also accompanied by reduced hydrodynamic
particle-particle interactions compared to bulk [27].

In summary, the dynamics of complex fluids in confined
geometries is governed by a convoluted interplay between
direct particle interactions and indirect solvent-mediated
hydrodynamic interactions. While the direct interactions
have been studied before, here we studied the long-range
many-body hydrodynamic interactions. We have employed
a unique combination of high-energy XPCS and SAXS
from colloid-filled microfluidic channel arrays to measure
the direction-dependent hydrodynamic function of a dense
colloidal dispersion in spatial confinement. Most importantly,
we found the confined fluid’s hydrodynamic function to
exhibit strong anisotropy, akin to the anisotropy of the
structure factor. This observation is important to guide
the understanding of hydrodynamic interactions of complex
fluids under confinement and it is our hope that the experimen-
tal results presented here will stimulate theoretical research on
the topic.
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