
PHYSICAL REVIEW E 95, 062415 (2017)

Backward renormalization-group inference of cortical dipole sources
and neural connectivity efficacy
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Proper neural connectivity inference has become essential for understanding cognitive processes associated
with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalo-
gram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the
brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data.
We use a method based on maximum entropy and the renormalization group to infer the position of the sources,
whose success hinges on transmitting information from low- to high-resolution representations of the cortex.
The performance of this method compares favorably to other available source inference algorithms, which are
ranked here in terms of their performance with respect to directed connectivity inference by using artificially
generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically
connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The
overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow
of information as long as the equivalent dipole sources are correctly found.
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I. INTRODUCTION

A major step in understanding the mechanisms underly-
ing brain function deals with modeling its electromagnetic
properties. Neural activity and its associated ionic dipole
currents give rise to externally measurable potentials or fields.
Calculation of dipole current external manifestations such
as scalp potentials constitutes the forward problem. This is
already a reasonably hard problem due to the convoluted
geometry of the brain and the conduction discontinuities in the
head, which determine its Green’s function. More demanding
is the inverse problem, i.e., to obtain estimates of the dipole
currents, given the external measurements. We address the
inverse problem, the inference of the dipole currents, by using
maximum entropy and the renormalization group. We then go
on to study whether, from the inferred currents, the information
flow between different regions can also be determined in what
is termed the neural connectivity problem. Different types
of neural connectivity can be considered, such as structural
(i.e., anatomical), functional, and effective connectivity [1],
which, even though they have been introduced in the brain
analysis context, can also be used whenever characterizing
multiple time series interactions. In view of the ever-growing
realization that adequate connectivity descriptions are essential
to understand the mechanisms behind brain function, whether
under normal or under pathological conditions, research
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efforts have been focused towards including connectivity
characterization as a goal [2–4]. The popularity of current
methods varies according to brain signal modality (scalp
electroencephalogram (EEG), brain field potentials, functional
magnetic resonance imaging (fMRI), action potential charac-
terization, magnetoencephalography (MEG) [2–9]). While on
one hand, adequate connectivity inference requires including
the dynamics of as many simultaneous structures as possible,
the statistical estimation performance of all methods is
severely penalized as the number of structures that need to
be considered grows. Efforts at circumventing this are geared
to dimensionality reduction strategies. Broadly speaking,
achieving dimensionality reduction amounts to representing
the data through some minimal set of relevant observations or
parameters. Here we focus on how to reduce the number of
time series that need to be processed when dealing with EEG.
Substantial work has been done both in what is termed the
EEG electrode space [10,11] (using electrode data directly)
and the region of interest (ROI) space, i.e., one based on
employing signals obtained by solving the inverse problem
of source reconstruction [12–14]. Suppose that the cortex
is represented at a certain resolution by a lattice of points,
typically of the order of 105. Then in principle any site could
be a source or sink of information. By working only with
a few identified active sites the dimensional reduction can
be effectively achieved. This represents an advantage over
working on the space of electrodes for two reasons. One
is that a reduction from O(102) electrode time series to a
few active region time series is achieved. Second, and maybe
more importantly from a biological point of view, connectivity
between active sources is potentially more informative than
between scalp electric potentials.
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By their very own nature source reconstruction problems
are mathematically ill posed [15]. This implies considerable
uncertainty regarding achievable solutions. Despite this, a fair
level of signal characterization success has been achieved
in source or neural activity characterization. This stands
in marked contrast to much rarer systematic ROI-based
connectivity method appraisals [16–18]. To help extend the
breadth of those appraisals we examine different source recon-
struction techniques under partial directed coherence (PDC)
[2] connectivity inference. PDC was chosen because it is
a frequency domain quantifier of the concept of Granger
causality [19] (see Appendix C for more details) and because
EEG spectral bands reflect important neurophysiological states
[20]. An additional consideration for selecting PDC was
its established asymptotic statistical criteria for inferring
connections [21]. For the inverse problem, three popular source
localization estimation techniques, variational Bayes (VB)
[22], standardized Loreta (sLoreta) [23,24], and minimum
norm estimate (MNE) [25], are considered together with a
recently introduced method to deal with the crucial step of
determining a prior. This last method of inference, which
works at several different scales, is divided into two parts. First,
the inference part leads from a prior distribution of sources to a
posterior distribution, on a given scale. The second part leads
from a posterior on a coarse scale to a prior on a refined
scale using renormalization group (RG) ideas. Here we use
a variational Bayes method for the inference part and hence
the resulting algorithm is termed backward renormalization
group variational Bayes (BRG-VB). The BRG method was
presented in Ref. [26] and it draws from ideas in Refs. [28,29].
In practice ROI space performance is important because all
connectivity estimation methods are limited by the number
of time series that need to be simultaneously considered thus

making adequate ROI estimation a potentially useful means of
dimensionality reduction as mentioned before. We have used
artificial data simulations to rank the reconstruction methods
with respect to correct connectivity inference.

This paper is organized as follows. Section II describes
the forward problem of generating the scalp potential time
series. This permits generating artificial data from any desired
distribution of dipole currents. In Sec. III the inverse problem is
described and the BRG method as applied to EEG is discussed.
Section IV presents the method to, first, obtain interacting time
series, which will act as dipole current sources and, second,
how to estimate the causal interactions between these sources.
In Sec. V we show the results of applying these methods to
different configurations of interacting series and a discussion
appears in Sec. VI together with ensuing conclusions.

II. FORWARD PROBLEM

There are several possibilities of how the cortex can
be represented by a discrete lattice. The highest-resolution
lattice, where the centroid of each triangular face represents
one current dipole, is �D [Fig. 1(e)] and has |�D| ≈ 104

triangular plaquettes. This is an approximate representation
of the continuum limit, represented by a lattice �c of O(105)
sites obtained from a structural magnetic resonance image
(MRI) for each hemisphere [30]. Notice that the space where
the forward problem will live depends on assumptions made
about plausible sources and sinks of current in the brain. Most
of the current passing through EEG sensors (and magnetic
field flowing thought MEG sensors) is assumed to stem from
large pyramidal cells located in the third layer of the cortical
mantle. Tens of thousands of neurons aligned in columnar
structures generate a dipole moment that dominates the current

FIG. 1. (a)–(e) The renormalized lattices that represent a brain hemisphere used to solve the inverse problem at the different scales.
(f) Each original lattice representing one hemisphere of the brain was inflated into a sphere [27]. Initially, for the coarsest lattice, an icosahedron
was inscribed in the sphere. Regions of the sphere are identified with the icosahedron’s face below. (g) The renormalization, in the inflated state
is obtained by dividing each triangular face into four triangles. Deflation takes back to the lattice representations of the cortex. The dipoles
possible positions at each scale are at the average centroid of all triangles in the original surface lying below the triangular faces derived through
the renormalization procedure [(b)–(e)] or from the icosahedron faces (a).
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observed in the scalp [15]. Such columnar structures have an
apical size of 0.5 mm2 [31], and given the area of the cortical
mantle (1500 cm2 [32,33]), a resolution higher than O(105)
sites violates physiological assumptions [15,34].

Starting at such continuum limit, consider the following
general scenario. Sources J (ri,t), collectively denoted J ,
with ri ∈ �c, give rise to signals Vs(t) through a mechanism
described by a Green’s function operator G

Vs = GJ, (1)

where for the EEG case we consider, Vs is the scalp potential.
The Green’s function G is a matrix that encodes the effect of the
cortical dipole currents J responsible for the Vs array of scalp
potentials at any (fixed) time. It is a reasonable approximation
to consider the J as an array of scalars, since the direction of
the dipole vector is supposed to be outward perpendicular to the
cortex, due to its columnar organization discussed above. This
linear model was used by Refs. [22] and has been discussed
by Refs. [15,34–37], and [38].

To generate the artificial data we consider a particular set
of time series J (ri,t) different from zero only at a few chosen
positions. Not all the regions of the brain are active at the same
time and only a few are relevant for a given task. This is the
key to start thinking about dimensional reduction of the inverse
problem. In this paper we consider up to five such positions.
The forward problem is to obtain Vs from J at each time step.
The inverse problem is to estimate J (ri,t) for all sites at �D . In
order to build �D , we first inflate the original �c to a sphere,
while minimizing the pairwise distances [30]. An icosahedron
is then inscribed into the sphere [Fig. 1(f)]. Regions of the
sphere are identified with the icosahedron’s face below. After
dividing each face into four triangles, as indicated in Fig. 1(g),
new regions in the sphere are assigned to the newly created
plaquettes. This process is iterated five times until �D has
2 × 20 × 45 ∼ 4 × 104 [39]. Once the desired resolution is
achieved, the vertices in the sphere can be reprojected back
to the cortical space [Fig. 1(e)]. The average of the centroids
of the plaquettes in the original �c will define the position
of each dipole used in the inverse problem. This is the lattice
where most inverse problems are solved, and is the lattice
where the VB, sLORETA, and MNE algorithms will be solved.
The BRG-VB algorithm, however, consider all scales, from the
icosahedron to the finest resolution desired [Figs. 1(a)–1(e)].
Each scale constitute a different �d . The inverse problem will
then be solved at each scale �d , from the scalp electrode
signals, which are only known at the electrode positions and
include the addition of white zero-mean-independent Gaussian
noise ξ

V = GJ + ξ = Vs + ξ. (2)

The connectivity problem is to assess a causal model
that represents the time interdependencies among the various
recovered currents. To ensure transparency and reproducibility
by other researchers, actual computations of the forward
problem were performed using SPM software and FIELDTRIP

toolbox [40], through a lead field matrix calculated using the
realistic boundary element model (BEM) solutions based on
the FreeSurfer MRI head template image within the SPM

software containing G’s definition used for M = 128 scalp
electrodes placed according to the standard system.

Simulations employed different values of noise-to-signal
ratio as imposed by

RNSR = σ 2
ξ

σ 2
Vs

, (3)

where σ 2
ξ is the noise variance and σ 2

Vs
is the signal variance

over all scalp sensors. The reason to use the expression in
Eq. (3) rather than its inverse is its consistency with Sato
et al. [22].

The forward problem, as stated, yields the potentials asso-
ciated to a current distribution instantaneously. Dynamically
varying currents result in time-dependent potentials. We can
work with sources represented by independent time series or
can add a causal structure to the sources’ time series. By
choosing to add a causal structure to the sources’ times series,
see Sec. IV, we simulate dependent time series. The challenge
is then to identify conditions under which the causal structure
can be recovered.

III. BRG FOR THE INVERSE PROBLEM

We used four different methods for the inverse problem.
Since the backward renormalization group method is of recent
introduction, it is briefly described next. For the VB and MNE,
we used an in-house implementation and for sLoreta method,
we used the implementation of Dalal et al. [23].

The application of Bayesian methods to inverse problems
is now quite common. In our case the problem can be
described as obtaining an approximation to the ground state of
a Hamiltonian with both ferromagnetic and antiferromagnetic
interactions. This is done by iteration of the variational Bayes
algorithm, which can be described as an iterative mean-field
method. It clearly is very useful to start from a good initial
approximation. A good candidate for the initial approximation
is obtained from the solution of the problem first on a coarser
scale. A second iterative process works on successive finer
representations of the lattices.

The BRG-VB method works by extracting information
from the posterior in a way similar to the variational Bayes
approach of Ref. [22], with the extra ingredient that it employs
RG ideas as described in Refs. [26,28,29] to systematically
generate informative prior distributions from the posteriors
obtained by solving the problem at a coarse-grain represen-
tation of the cortex. The RG is sometimes referred to as a
semigroup since it can not be inverted. This is true for the
configurations of the degrees of freedom, but in the space
of coupling constants (hyperparameters) the RG map can be
inverted and from a coarse-grain distribution, the distribution
on a more refined lattice can be obtained.

Consider the problem defined at a given resolution d, i.e., a
lattice �d of Nd sites rd

i is used to represent the cortex where
the dipoles live (see Fig. 1). In Eq. (2), the dimensions of the
different variables arrays are as follows. If there are M sensors
and T time measurements, then the matrices V,Jd ,Gd , and
ξ are of dimensions M × T , Nd × T , Nd × M , and M × T ,
respectively. We now consider a particular time step and the
process will be repeated for every time step. To do inference
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we need to discuss priors, likelihoods, and any informational
constraints. The model for the dipole density prior probability
density Q0( Jd ) = ∏

i Q(J d
i |αd

i ) is parametrized by a set of
unknown precision parameters αd = {αd

i }. Given αd the J d
i ’s

are mutually independent and the joint prior will be a product
over sites. We now describe how to proceed at a particular
site i ∈ �d . Each αd

i is the inverse of the variance of the
zero mean Gaussian prior for the dipole density amplitude
J d

i . Hyperpriors for each individual member of αd
i are needed

since these are unknown. Sato et al. [22] use a product of �

hyperprior distributions
∏

i �(αd
i |α̂d

i ,γ̂ d
i ). Integrating over the

values of αd
i with the Gaussian priors, the � leads to Student’s

t distributions for J d
i . At each site rd

i of the cortex, the prior
density is given by

Q0
(
J d

i

∣∣α̂d
i ,γ d

i

) =
∫ ∞

0

α1/2

√
2π

e− α(Jd
i

)2

2 �
(
α
∣∣α̂d

i ,γ̂ d
i

)
dα

=
√

α̂d
i

2πγ d
i

�
(
γ d

i + 1
2

)
�(γ d

i )

1[
1 + (J d

i )2α̂d
i

2γ d
i

]γ d
i +1/2

,

(4)

however, the posterior will not necessarily be in the same
Student t family. A projection using the variational Bayes
method, leads back to the Student t family generating a
dynamics of the hyperparameters of the �’s, that converges to a
final value at that unique scale. Their method can be succinctly
described by the iterative mapping from the hyperparameters
of the prior to those of the posterior(

α̂0
d ,γ

0
d

) variational Bayes−→ (
α̂

f

d ,γ
f

d

)
. (5)

In Sato et al. [22] the prior of the dipole density was taken as
spatially constant, meaning that the initial conditions are the
same for every site. It turns out to be preferable to use priors
that are not constant over space, but which carry information
obtained from solving the problem at a coarser scale. This
means that the prior values of the hyperparameters can depend
on the lattice site. In order to do this, Caticha [26], following
multiscale ideas in da Rocha Amaral et al. [28,29], considered
a maximum entropy problem where the relevant space is
formed by the dipole variables at the two scales and the
electrode potentials. Thus, we seek the maximization of the
relative entropy

S[P ||Q] = −
∫

P ( Jd ,Jd−1,v)

× ln
P ( Jd ,Jd−1,v)

Q( Jd ,Jd−1,v)
d Jdd Jd−1dv (6)

to obtain P ( Jd ,Jd−1,v) from a prior Q( Jd,Jd−1,v). The idea
behind this is that we have incomplete information about the
currents at the two resolutions and also about the potential
v. The distribution P that maximizes S[P ||Q] is subject to
the constraints of what we know. In addition to normalization,
P ( Jd ,Jd−1,v) is subject to the following constraints.

(i) Integrating over all configurations of the dipole variables
at scale d − 1 and d yields the marginal v distribution,
constrained to P (v) = δ(v − V ), where by v is the variable
that represents the potential and V is the array of measured
data.

(ii) The marginal Q( Jd−1) is given, e.g., by the Student
t-distribution product family.

(iii) Knowledge about the relation between the dipole
representation at different scales coded by Q( Jd |Jd−1) is
obtained from the renormalization transformation.

(iv) Given Jd , knowledge of Jd−1 is irrelevant for v:
Q(v|Jd Jd−1) = Q(v|Jd ). This states simply that for the
forward problem, when the finer scale information of the
currents is available, the value of coarser scale renormalized
variables brings no new information.

Marginalization and the product rule of probability give

Q( Jd ) =
∫

Q( Jd−1)Q( Jd |Jd−1)d Jd−1, (7)

which can be calculated from (ii) and (iii). Solving the maxi-
mization problem leads to the maximum entropy distribution
P ( Jd ,Jd−1,v). The important result is that the fine-grained
marginal P ( Jd ) = ∫

P ( Jd ,Jd−1,v)d Jd−1dv, is given by (see
Appendix A)

P ( Jd ) = Q( Jd |V ) = Q( Jd )Q(V |Jd )

Q(V )
, (8)

where instead of the variable v, the actual value of the measured
potentials V appears. Inference using maximum entropy gives
the same result as Bayes posterior rule when starting from the
same prior uses constraints imposed by data measurements
[41]. This is almost what one would have expected, Bayes
theorem but with a twist: that the prior at this new scale [Eq. (7)]
is obtained by whatever information is available from Jd−1,
i.e., Q( Jd−1) and the backward renormalization procedure
Q( Jd |Jd−1). Of course the best that can be done for Q( Jd−1)
is to use the result obtained at the previous scale, the coarse
posterior.

Restricting the distributions to Student’s t-distribution
products, we have to use Q( Jd |α̂0

d ,γ
0
d ), from Eq. (7) given

by

Q
(

Jd

∣∣α̂0
d ,γ

0
d

) ≈
∫

Q
(

Jd−1

∣∣α̂f

d−1,γ
f

d−1

)
Q( Jd |Jd−1)d Jd−1.

(9)

The posterior in the coarser scale d − 1, coded by (α̂f

d−1,γ
f

d−1)
induces a prior in the d scale parametrized by (α̂0

d ,γ
0
d ). We start

at the coarsest resolution with the same (αi
0,γ

i
0 ) initial values at

every site of the coarsest lattice �0. Next obtain via variational
Bayes the parameters for the posterior of J0 from Eq. (5) and
proceed for the next scales as represented by the map:(

α̂
f

d−1,γ
f

d−1

) BackRenorm−→ (
α̂0

d ,γ
0
d

)
. (10)

Beginning with a uniform prior at the coarsest scale, that is
a set of parameters (α̂0

0,γ
0
0) uniform over the lattice �0, we

iterate the mapping(
α̂0

0,γ
0
0

) VB→ . . .
BackRenorm→ (

α̂0
d ,γ

0
d

) VB→ (
α̂

f

d ,γ
f

d

)
BackRenorm−→ (

α̂0
d+1,γ

0
d+1

) VB→ . . . (11)

to finally obtain a posterior at the finest scales described by
(α̂f

D,γ
f

D), the desired answer to the inference problem since
they give an answer to the query about active regions.
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This mapping from the coarse posterior to the finer prior
can only be implemented in an approximate way. There is the
additional problem that due to the convoluted shape of the
cortex: dipole directions on different scales do not coincide.
Also the spatial part of renormalization step is quite messy.
A simple model of the renormalization, see the Appendix B,
suggests (α̂0

d ,γ
0
d ) ≈ (α̂f

d−1,γ
f

d−1) as an approximation. How-
ever, we have used the prior hyperparameter at position i of
lattice �d given by

1

α̂0
i,d

= 1

α̂
f

I,d−1

+ 1

3

∑
n.n

1

α̂
f

Inn,d−1

+ 1

9

∑
n.n.n

1

α̂
f

Innn,d−1

, (12)

since, numerically, it was found that bringing information from
nearest- (Inn) and next-nearest neighbor (Innn) faces increased
the quality of the inference. Since adding the neighboring
terms increases the prior uncertainty about Ji,d , this can be
seen as a conservative choice of the new prior. For simplicity
we also hold γ 0

i,d . While such a simple prescription may be
improved we make two comments. First, that we only need an
approximation to the parameters at the higher resolution since
they will be improved by the variational Bayes refinement.
Second, and theoretically very important, the reuse of data at
different coarseness levels might seem to be a reuse of the data
in a simple Bayesian approach, which is not the case in entropic
inference, since imposing an already satisfied constraint will
not lead to a posterior different from the prior.

IV. CONNECTIVITY

A. Model for the dipole source dynamics generation

The above method is applicable instantaneously: given
the dipole currents at time n the hyperparameters can be
obtained. However, if the currents are time dependent, then the
hyperparameters will inherit a time dependence. We consider
the following model for the time dependence of the set of time
series {xa(n)}, which are located at a few sites in lattice �c.
We choose to generate five causally related time series. Each
series is associated to an active region. However, despite being
causally active a source may or may not be electrically active.
This is indicated by a time-independent variable qa , which
takes value one if the source is electrically active and zero if
not. The dipole current source that feeds the forward model
is given by Ja(n) = qaxa(n). The choice of the set of {qa}
determines what is called a scenario. The scenarios we simulate
are shown in Fig. 2. The uncrossed units are electrically
active qa = 1 and the crossed out units are electrically inactive
qa = 0. The underlying dynamics between source signals was
imposed using a multivariate autoregressive (MAR) model
involving five dynamic variables drawn from Example 5 in
Ref. [2] (Fig. 2):

x1(n) = a11x1(n − 1) − a12x1(n − 2) + ω1(n)

x2(n) = a21x1(n − 2) + ω2(n)

x3(n) = −a31x1(n − 3) + ω3(n)

x4(n) = −a41x1(n − 2) + a42x2(n − 1)

+ a43x3(n − 2) + ω4(n)

x5(n) = −a51x4(n − 1) + a52x5(n − 1) + ω5(n), (13)

FIG. 2. The simulated scenarios. All use identical time series
structures. In the different scenarios the number of electrically
active time series that represent dipole currents are: (a) with five
(q1−5 = 1), (b) with two (q1,5 = 1,q2,3,4 = 0), and (c) and (d) with
three (q1,4,5 = 1,q2,3 = 0). Crossed out nodes have qa = 0, uncrossed
nodes qa = 1. Scenarios (c) and (d) differ only by the position of the
sources. The actual values used to generate the time series of system
13 were: a11 = .95,a12 = 0.9025,a21 = .5,a31 − .4,a41 = −.5,a42 =√

2/4,a43 = √
2/4,a51 = −√

2/4,a52 = √
2/4.

where the abc’s are non-negative constants and describe the
contribution of xa at a certain time to the value of xb at a
later time. The ωa are independent Gaussian noise processes
with zero mean and unit variance. The signal from the
source x1 goes to x2, x3, and x4 directly but only reaches
x5 indirectly via x4. The illustrative computations shown here
employed T = 400 simulated time series sample points for
100 performed simulations. The dynamics in model 13 has
been widely used by many researchers for benchmarking
purposes [42], where the choice of abc coefficients was chosen
to ensure that oscillations generated at x1(n) propagate to other
structures. The specific values are shown in Fig. 2.

We performed systematic investigation of impairments due
to noise corrupting the electrode potentials for the five-dipole
scenario [Fig. 2(a)] using the noise-to-signal ratios RNSR of
0.25, 0.1, 0.01, and 0.001 (the practically noiseless condition)
and for the two-dipole scenario [Fig. 2(b)] using RNSRs of
0.01, 0.1, and 0.25. For the tree-dipole scenarios [Figs. 2(c)
and 2(d)], only the value of RNSR = 0.1, as adopted by Sato
et al. [22], was used.
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FIG. 3. Localization error for different noise levels (RNSR = 0.01, 0.1, and 0.25) for two-dipole scenario [Fig. 2(b)]. Error measured in
mm. Note that source 5 is deeper than source 1 and its localization is harder. Only BRG-VB finds both sources with small error. sLoreta finds
source 1 with a small error but it increases for source 5. VB and MNE are equivalent on source 1 but VB is better for source 5 while MNE is
more affected by the depth of source 5. Error bars are standard deviations obtained from 100 simulations.

B. Connectivity inference

Partial directed coherence (PDC) was chosen as the
connectivity benchmark criterion because it is a frequency
domain quantifier of the concept of Granger causality [19]
(see Appendix C for details) and because frequency domain
representations have important physiological correlates in
EEG such as sleep stages [20].

PDC interaction from a source structure at position j

towards another structure at position i is given by

πij (ν) = Āij (ν)√∑N
k=1 Āki(ν)Ā∗

kj (ν)
, (14)

for some normalized frequency ν between 0 and 0.5 where
Āij (ν) are the elements of the matrix Ā(ν) given by

Ā(ν) = I −
p∑

r=1

Arz
−r |z=e−j2πν , (15)

where I is the identity matrix and Ar are obtained from the
adjustment of a multichannel autoregressive model of the form:

J(n) =
p∑

r=1

Ar J(n − r) + ω(n), (16)

where J(n) = [J1(n), . . . ,JN (n)]T is the array of sources and
ω(n) is a zero mean vector white Gaussian noise process

FIG. 4. For two-dipole scenario [Fig. 2(b)] the simulated dipole cortical surface positions and the estimated currents using MNE, sLoreta,
VB, and BRG-VB are contrasted. RNSR = 0.1 independent Gaussian noise was added to scalp electrodes. The arrows represent the estimated
(PDC above 0.1) and simulated connections between sources (points in yellow).
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FIG. 5. Two dipole scenario with sources 1 and 5 defined in Fig. 2(b). PDC connectivity reconstructed by the BRG-VB, VB, and sLoreta
methods for noise level of RNSR = 0.1. Left: forward connection from 1 to 5, right: feedback connection from 5 to 1. Dark red solid lines
indicate significant PDC (red) and turn into green nonsignificant lines (green) as they fall below the dashed dark lines that represent the null
connectivity hypothesis threshold level of α = 0.05 significance level. Gray shadows represent the confidence intervals [43].

[44]. Following determination of each source, we selected the
time series of highest power within its ROI to subject it to
connectivity appraisal via PDC.

V. RESULTS

We first did a systematic comparison between the different
algorithms used in the inverse problem. While this is of interest
in itself, we feel that details are beyond the scope of this paper.
We only present a summary of the source localization results.

Consistently, throughout the different scenarios, the backward
RG gave better results than the other methods. It is an obvious
fact that the localization of sources is simpler when fewer
sources are active and we begin by analyzing the simplest
case. As an example, we show in Fig. 3 the localization
errors associated with the source reconstruction from the two
active source scenario of Fig. 2(b). In this scenario source
number 1 is near the scalp and source number 5 is deep into
the cortex. Due to the decay of the Green’s function, noise
affects much more the localization of deep sources and this
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FIG. 6. Top (a) and (b): Original positions for two three-dipole
scenarios [Figs. 2(c) and 2(d), respectively] with arrows representing
the simulated connections. Bottom (c) and (d): The corresponding
BRG-VB result overlaid onto the cortical surface at a representative
time point with arrows representing the estimated connections
(PDC > 0.1) across sources. RNSR = 0.1 independent Gaussian noise
was added to scalp electrodes’ potentials.

is reflected in the larger error observed for source 5. We now
look for the connectivity inference using PDC. Still for the
two source scenario, results are shown in Fig. 4. PDC working
with the localization data of BRG-VB estimates correctly the
causal relations. MNE does not find any significant causal
relation, pure VB sources lead to symmetric causal influence
and sLoreta finds a seemingly correct causal effect at the cost
of localization errors. The connectivity indication shown in
Fig. 4 is obtained from the position of the sources and from
the results shown in Fig. 5 where the PDC estimate as a
function of frequency [see Eq. (14)] is shown. MNE is not
shown because it did not go above the significance level for any
frequency. Figure 5 shows BRG-VB’s superior performance,
which confirms the corresponding estimated connectivity from
1 to 5 (Fig. 5 top) for RNSR = 0.1. Note that in Fig. 5 bottom,
the sLoreta method finds a weak connection (from 1 to 5),
which is, however, at the wrong position (away from the first
and second neighbors) for source 5 and the VB method found
sources 1 and 5 at wrong cortical positions (away from the
first and second neighbors) and consequently, Fig. 5 (middle)
shows a nonexistent backward connection from 5 to 1 and a
weak true forward connection from 1 to 5. Note that the PDC
connectivity graphs portray confidence intervals and the null
hypothesis threshold.

Turning on the activity of dipole 4 to simulate the three-
dipole scenarios [Figs. 2(c) and 2(d)] increases greatly the
difficulty of the inverse problem and we could not get
satisfactory source identification for MNE, VB, nor sLoreta,
hence only the causality results for BRG-VB sources will be
discussed.

The BRG-VB reconstructions are shown in Fig. 6, which are
obtained from the corresponding estimated PDC connectivities
using RNSR = 0.1 (Fig. 7). Correct dipole 5 reconstruction
was only obtained in Fig. 6(c). Figure 7(a) also presents
the connectivity plot using the original position for source
5, indicating possible signal impairment. The connectivity
plots [Figs. 7(a) and 7(b)] differ somewhat in magnitude for
connection from 4 to 5.

Now we concentrate on the five-dipole scenario [Fig. 2(a)]
to gauge BRG-VB reconstruction sensitivity as a function of
added electrode noise level. The PDC connections are shown in
Fig. 9. The corresponding estimated PDC change as a function
of sensor noise level can be viewed in Fig. 8 with wrong
feedback connections (from 3 to 1, from 3 to 2, from 4 to 3,
and from 4 to 1) being observed only at higher noise levels
[Figs. 8(c) and 8(d)]. Significant PDC was only larger than
0.1 for 4 to 3 connection. Even though BRG-VB managed to
detect active faces on the cortical surface close to the artificially
imposed ones at all noise levels, the locally reconstructed
signal became degraded to the point of clearly hindering
adequate connectivity inference. This is better illustrated in
Fig. 10, where we showed the percentage of significant PDC
values as a function of noise level on 100 simulated trials.

VI. DISCUSSION

We first address the inverse problem. The BRG method
works by dividing the inference problem into several steps, it
is based on the intuition that solving the related problem at a
coarser resolution should be of interest at the finer resolution.
If this is true then it can be of importance in many inverse
problems. Trying to identify candidates where it can be useful
poses a question about the main ingredients necessary for the
backward renormalization to be of any help in the inferential
process. To do this we have to identify what new information
was brought in by this method. At this point it seems that
inference problems where there is a spatial structure that can
be represented at different resolutions levels are the candidates
for applications. The identification of sources is hindered by
noise levels and the effective noise level at the coarser scale is
expected to decrease by 1/

√
n with respect to the noise level

of the finer scale, where n (=4) is the ratio of the number of
degrees of freedom in the two representations. This certainly
deserves more theoretical and practical studies.

Now we discuss the causal influence part of our work.
We ranked connectivity inference via PDC performance under
a representative set of source reconstruction methods. The
BRG-VB method was more robust under the tested artificial
scenarios involving distinct source positions within the cortical
surface and under different sensor noise impairment levels.
The popular techniques VB, MNE and sLoreta were not
able to reconstruct the sources correctly for the simplest
scenario of connected two-dipoles. The sLoreta technique
finds a weaker connection at the wrong position and VB

062415-8



BACKWARD RENORMALIZATION-GROUP INFERENCE OF . . . PHYSICAL REVIEW E 95, 062415 (2017)

FIG. 7. Connectivity plots between sources reconstructed using BRG-VB for the two three-dipole scenarios in Figs. 2(c) and 2(d). Top:
Connectivity plots of Fig. 6(d) using both estimated signal and position for source 1 (reconstructed correctly) and (a) using the original source 5
position and (b) its estimated position (reconstructed at a wrong position). Bottom (c): Connectivity corresponding to Fig. 6(c) with its correctly
reconstructed source positions for RNSR = 0.1 for plot conventions as in Fig. 5.
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FIG. 8. Connectivity plots on sources estimated by the BRG-VB for artificial data with five interconnected dipoles corrupted with
(a) practically noiseless (RNSR = 0.001); (b) RNSR = 0.01; (c) RNSR = 0.1; and (d) RNSR = 0.25. Lines are as described in Fig. 5.

identifies a nonexisting backward connection from 5 to 1.
Most importantly, our results showed that (i) the inverse
problem solution does not affect the direction of the flow
of information when the dipole sources are found correctly
and (ii) even though BRG-VB managed to detect active
faces on the cortical surface close to the imposed ones at
all noise levels, when excessive noise was present the locally

FIG. 9. Top: Original positions for the five-dipole scenario
[Fig. 2(a)]. Arrows represent the simulated connections across
sources. Bottom: BRG-VB reconstruction results under increasing
noise levels (a) practically noiseless (RNSR = 0.001), (b) RNSR =
0.01, (c) RNSR = 0.1, and (d) RNSR = 0.25. Reconstructed sources (in
red) were overlaid onto the cortical surface at a representative sample
point, where the estimated current is maximum at that point. Arrows
represent the estimated connections across sources with significant
PDC above 0.2.

reconstructed signal became degraded to the point of clearly
hindering adequate connectivity inference. Furthermore, the
source position affected the reconstruction indicating that
the cortical surface geometry impacts localization accuracy.
This confirms previous studies that showed that both the
forward model and the spatial resolution are crucial for correct
reconstruction [45–48].

Here, we have performed a systematic simulation to
examine the impact of interconnected sources on inverse
problem solutions in the EEG context. An interesting study,
in the MEG context, has been performed by Sekihara et al.
[49], in which they investigated MEG adaptive beam-former
techniques under the effects of two significantly correlated
sources observing major inferred signal-intensity reductions
and distortions in the estimated time signals.

Some works [47,49] have examined source reconstruction
methods for deep source localization whose adequate attain-
ment has proved challenging. This has been observed in our
results, when sources were simulated at the temporal lobe (here
represented by source 5). The use of multimodal information
[50,51], combining fMRI-EEG-MEG data has been suggested
as an alternative that needs to be examined via the present
systematic methodology.

The present paper confirms the feasibility of accurate
connectivity analysis based on reducing the dimensionality
of the problem to the dipole source space provided that an
accurate ROI determination algorithm is used under favorable
NSR conditions. This conclusion calls for further research
given the observed potentially deleterious effect of dipole
placement and the amount of added noise. The use of more
realistic artificial data with distributed source and existence of
correlated noise must also be investigated. A research program
to probe further into these effects in the BRG-VB context is a
topic for future research.
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FIG. 10. Significant PDC maximum peak as a function of added electrode noise level (NSR) for sources estimated by the BRG-VB for the
five-dipole scenario. The x axis represents (a) RNSR = 0.001; (b)RNSR = 0.01; (c)RNSR = 0.1; and (d)RNSR = 0.25. The plotted boxes indicate
the minimum and maximum significant PDC for 100 simulated trials. The percentage on each box indicates the portion of significant PDC
values for all trials for each NSR.
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APPENDIX A: MAXIMIZATION OF THE ENTROPY

The variational problem is to obtain the maximum argument
of

S[P ||Q]

= −
∫

P (Jd,Jd−1,V ) ln
P (Jd,Jd−1,V )

Q(Jd,Jd−1,V )

+
∫

λ(V )

(∫
P (Jd,Jd−1,V )dJdJd−1 − δ(V − v′)

)
dV

+ λ0

(∫
P (Jd,Jd−1,V )dJdJd−1dV − 1

)
× dJddJd−1dV (A1)

when the information comes in form of data and we follow
the result in Ref. [41]. Note that there is a Lagrange multiplier
for each value of V . Not all constraints come in the form of

expected values. The fact that P (V ) = δ(V − v′) means that
the variations are not general but only P (Jd,Jd−1|V ) can be
varied. The advantage of Lagrange multipliers is that we can
go ahead without worrying and then impose the constraints.
The solution is

P (Jd,Jd−1,V ) = Q(Jd,Jd−1,V )
eλ(V )

Z
(A2)

for an appropriate normalization Z. The set of Lagrange
multipliers is obtained by imposing the constraints, such that
the marginal posterior of V is given by∫

P (Jd,Jd−1,V )dJdJd−1 =
∫

Q(Jd,Jd−1,V )
eλ(V )

Z
dJdJd−1.

(A3)

It follows that

eλ(V )

Z
= δ(V − v′)

Q(V )
(A4)

and the joint posterior

P (Jd,Jd−1,V ) = Q(Jd,Jd−1,V )
δ(V − v′)

Q(V )
. (A5)

Marginalizing with respect to V gives

P (Jd,Jd−1) = Q(Jd,Jd−1,v
′)

Q(v′)
= Q(Jd,Jd−1|v′) (A6)
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and further marginalization over Jd−1 gives

P (Jd ) = Q(Jd,v
′)

Q(v′)
= Q(Jd |v′)

= Q(Jd )
Q(v′|Jd )

Q(v′)
. (A7)

This is just the expression of Bayes theorem. This is a deep
result. If Bayes inversion formula is a theorem then it is not
clear why it should be the basis for doing inference. What this
development shows is that doing inference using entropy and
of course the rules of probability, with the constraint imposed
by measured data, is equivalent to the direct use of Bayes
theorem to do inference. It proves Bayesian inference is just
a particular case of entropic inference when the informational
constraints come in the form of data. It also proves that the
justification for doing Bayesian inference is the same as for
entropic inference. Further note that Eqs. (8) and (9) connect
the prior at resolution d to the posterior at the previous coarser
scale.

APPENDIX B: RENORMALIZATION

The simplest possible renormalization can be performed by
summing n variables at a finer scale d with indices i ∈ I :

P (Jd−1,I |{Jd,i}) = δ

(
Jd−1,I − 1

n1/a

n∑
i=1

Jd,i

)
,

where we can choose a below. Then

P (Jd−1,I ) =
∫

δ

(
Jd−1,I − 1

n1/a

n∑
i=1

Jd,i

)∏
i

P (Jd,i |α̂i ,γi).

If the Jd variables are distributed according to a Student t
distribution, Eq. (4), then Eq. (9) leads to a convolution of
Student t distributions. The characteristic function or Fourier
transform of the Student t distribution is given, in terms of the
modified Bessel function of the second kind by

J (k) = �(γ )2γ−1Kγ

(√
2γ

α̂
|k|

)[√
2γ

α̂
|k|

]γ

. (B1)

For small |k| is of the form

J (k) = exp

[
− γ a

( |k|√
α̂

)a]
, (B2)

where a ≈ 2γ for 0 < γ � 1 and a = 2 for γ � 1. It follows
that

Jd−1,I
(k) =

∏
i∈I

Jd,i

( |k|
n1/a

)
, (B3)

and Jd−1,I
(k) = Jd,i

(k) if the parameters of the distributions
in the finer scale are homogeneous. Therefore, as a good
starting point to determine the prior, we can consider this
function to be stable under addition, and hence the parameters
of the prior distributions can be inherited from the posterior at
the coarser scale.

APPENDIX C: CONNECTIVITY, GRANGER CAUSALITY,
AND PDC

The most popular approach to describing the connectivity
between the dynamics of two time series is cross-correlation
analysis (and its frequency domain counterpart: coherence)
[52] despite several limitations [53]. An alternative description
of connectivity is via the notion of Granger causality (GC),
whose presence cannot be rejected whenever the inclusion
of past observations of a time series xj (n) is significantly
helpful in improving the predictability of another series xi(n)
[19]. Granger causality’s main property is lack of reciprocity,
i.e., if xj (n) Granger causes xi(n) it does not necessarily
follow that xi(n) Granger causes xj (n) in marked contrast
to using correlation coefficients between time series, which
are reciprocal. This feature allows exposing the direction of
information flow between xi(n) and xj (n).

The most popular way of checking for the presence of
Granger causality is by fitting vector autoregressive models
[54] like that in Eq. (16) so that GC cannot be rejected if its
estimated aij (r) model coefficients that represent the influence
of xj (n − r) over xi(n) turn out to be significantly different
from zero [54,55]. This interaction is readily representable
in the frequency domain by taking the discrete Fourier
transform of each aij (r), r = 1, . . . ,p sequence as in Eq. (15)
leading to the definition of PDC in one possible normalized
representation [Eq. (14)] of the interaction from the observed
xj (n) to xi(n). Direct frequency domain inference of Eq. (15)
connectivity is possible [43] and its performance can be
shown to be independent from the Eq. (15) normalization.
Furthermore, one may also show that PDC reflects a frequency
domain mutual information rate decomposition linking xj (n)
to xi(n) [56]. A recent panorama of neural connectivity issues
is provided in Ref. [57].
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