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Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic
stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such
as sinusoidal waves and amplitude modulated sounds can lead to various forms of n : m mode-locked states,
in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the
Izhikevich neurons, a reduced model of the Hodgkin–Huxley neurons. The Izhikevich model is much simpler
in terms of the dimension of the coupled nonlinear differential equations compared with other existing models,
but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions
of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for
the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking
behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons
in both deterministic and noisy regimes.
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I. INTRODUCTION

Mode locking is a ubiquitous phenomenon in the auditory
system. Recent research has uncovered evidence of mode
locking in single-unit extracellular chopper and onset cells
of guinea pigs [1,2], in the auditory midbrain of the fish
Pollimyrus in response to acoustic signals [3,4] and in saccular
hair bundle cells when exposed to periodic mechanical
deflections [5]. To study the mode-locking behavior of a
single neuron one must focus on the periodic external forcing
(input) and the resulting neuronal spike pattern (output).
In the aforementioned studies sinusoidal stimuli were used;
therefore, in order to address the phase relations seen in these
experiments, one can use sinusoidal current injections into
the model neuron and then measure mode-locking behavior
by utilizing an Arnold tongue analysis [6,7]. The analysis
strategy presented here is tested on the data set that contains the
responses of an inferior colliculus neuron in the awake rabbit in
response to sinusoidally amplitude modulated (SAM) stimuli
across a range of amplitudes and frequencies [8]. This data
set was recorded as part of a study to determine physiological
responses to SAM stimuli, in which the methods are described
in detail [9].

A neuron is said to be n : m mode locked to a periodic
stimulus if it fires n action potentials in m cycles of the
stimulus, where n and m are positive integers. Phase locking is
defined as 1 : 1 mode locking. For two mode-locked oscillators
the locking condition is as follows [10,11]:

|φn,m| < const., (1)

where φn,m(t) = nφ1(t) − mφ2(t) and φn,m is the generalized
phase difference also known as the relative phase. It is clear that
in the case when n = m = 1 Eq. (1) becomes |φ1(t) − φ2(t)| <

const. This behavior is indicative of constant phase shift, or
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phase locking, which is generally considered the simplest way
to describe synchronization [11].

To analyze the synchronization of such an oscillator
undergoing external forcing, it is constructive to obtain a global
map of synchronization regions. Synchronization between a
neuron’s action potentials or spike trains and an external input
depends on both amplitude and frequency of the input. Hence,
one can obtain regions on the amplitude-frequency plane
that are indicative of mode locking and synchronization of
the two signals, i.e., synchronization of the injected periodic
signal and the neuronal output. Within these regions, which
are commonly referred to as Arnold tongues [11], Eq. (1)
holds.

Arnold tongue diagrams have been produced for the
Hodgkin–Huxley model [12], oscillators in the canonical
model [13], and leaky integrate and fire (LIF) neurons [2].
The analysis of mode-locking for nonlinear oscillators (such
as Hodgkin–Huxley) with nonlinear stimuli has been a difficult
task [14] and investigators provided the Arnold tongues
for such models numerically [12]. Nevertheless, analytical
calculation of Arnold tongues have already been done for a
simple integrate and fire model [14,15] by using the Poincaré
map. We compute the Arnold tongues for the Izhikevich model
numerically and present the stability analysis by studying the
bifurcations.

This paper utilizes and reports Arnold tongue diagrams
for single Izhikevich neurons in both deterministic and
stochastic situations. In the presence of noise, synchronization
still occurs. However, in order to measure the stability of
synchronized states one must introduce a measure. This can
be done by using vector strength (VS) so that synchronization
can be measured both with and without the presence of noise
in this model. VS takes a value of unity if all spikes occur
at one precise point and zero for a uniform distribution of
phases across the stimulus cycle. VS gives a good indication
as to whether a phase preference exists in the data both with
and without noise [2]. There have been studies to measure the
stability of mode-locked patterns by using different neuronal
models, such as Morris–Lecar [16] and LIF neurons [17]. Here
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we measure the stability of different mode-locked states by
using the Izhikevich model.

In this study, we first explain the neuronal model (Izhike-
vich 2003) that will be utilized. We then present a brief
description of class-1 and class-2 excitable neurons with their
corresponding bifurcations. Then we compute the Arnold
tongues for the deterministic case and show examples of
mode locking. The formation of harmonics and subharmonics
in the frequency response of the neuron are then analyzed
for some example points in the mode-locking regions. Next,
we consider mode-locking in the presence of noise, which
more accurately simulates biological conditions. This is done
by computing the vector strength to measure the stability of
mode-locked regions. The computational tools and analytical
methods developed here can also be applied to physiological
spike trains for any type or class of neuron.

II. MODEL AND METHODOLOGY

A. Izhikevich model

One of the most significant and influential models in com-
putational neuroscience is the Hodgkin–Huxley model of the
squid giant axon [18]. This model captures the generation of
action potentials by modeling the inward and outward currents
into a neuron through voltage-gated ion channels. In general
it consists of four coupled nonlinear differential equations and
many parameters that depend on the electrophysiology of the
neuron under study. These parameters are usually obtained by
experiment.

The spiking model of Izhikevich is a canonical model based
on the Hodgkin–Huxley model, with reduced dimensionality.
This simple model consists of two coupled nonlinear differen-
tial equations that give the time evolution of the components
of the system in phase space [18,19]:

Cv̇ = k(v − vr )(v − vt ) − u + I (t),

u̇ = a[b(v − vr ) − u],

if v � vpeak then v ←− c, u ←− u + d, (2)

where v is the membrane potential, u is the membrane recovery
variable which accounts for the activation of K+ ionic currents
and inactivation of Na+. u provides negative feedback to v. In
this model, C presents the membrane capacitance (in nF),
vr is the resting membrane potential, vt is the instantaneous
threshold potential, and vpeak is the spike cutoff value. a is the
recovery constant, c is the voltage reset value, and d is the
parameter that describes the total flow of ionic current during
the spike and affects the after-spike behavior [18]. I (t) is the
time-dependent injected current to the neuron that includes a
constant part IDC, and an alternating one, IAC = A sin(ωt):

I (t) = IDC + IAC = IDC + A sin (ωt), (3)

where A is the periodic stimulus amplitude and ω = 2πf with
f as the periodic forcing frequency in Hz.

The coefficients are chosen such that both membrane
potential v and t are represented in millivolts and milliseconds,
respectively. Different values of the parameters a, b, c, d in the
model correspond to known types of neurons. This reduced
model is derived based on an approximation of Hodgkin–
Huxley model nullclines. The Izhikevich model is simple yet

FIG. 1. F-I curves for (a) class-1 and (b) class-2 neurons with
parameters given in the text.

incredibly precise and has broad applications to almost all
types of neurons. It exhibits firing patterns of all known types
and is efficient in large-scale simulation of cortical networks
[19].

As introduced by Izhikevich [18], the sum of all slow
currents that modulate the spike generation mechanism is
represented by the phenomenological variable u. Depending
on the sign of b, u is either an amplifying (for b � 0)
or resonating (for b � 0) variable that defines the class of
excitability.

B. Different classes of neurons

A simple but useful criterion for classifying neuronal
excitability was suggested by Hodgkin [20]. He discovered by
stimulating a cell by applying currents of various strength that
when the current was weak the cell was quiet, conversely when
the current became strong the cell began to fire repeatedly.
Thus, he divided neurons into two classes according to the
frequency of emerging firing: class-1 neural excitability, in
which action potentials can be generated with arbitrarily
low frequency that increases in accordance with the applied
current, and class-2 neural excitability, where action potentials
are generated in a certain frequency band that is relatively
insensitive to changes in the strength of the applied current.
These two classes are reproduced by changing the parameters
of Izhikevich model, Eqs. (2), in Fig. 1. For both classes of
neurons in Fig. 1, C = 100 nF, vpeak = 35 mV, and k = 0.7.
For the class-1 neuron with the F-I curve illustrated in Fig. 1(a),
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a = 0.03, b = −2, c = −50, d = 80, vt = −45 mV, and
vr = −64 mV. For the class-2 neuron with the F-I curve shown
in Fig. 1(b), a = 0.1, b = 2, c = −30, d = 100, vt = −40 mV,
and vr = −60 mV.

As described earlier, the sign of b determines the neuron’s
excitability class, i.e., one can convert from a class-1 model
neuron to a class 2 by changing the sign of b. For class-1
neurons, such as the regular spiking cortical pyramidal cells,
the resting state disappears through a saddle node on an
invariant circle (SNIC) bifurcation. Conversely, for class-2
neurons, such as the fast spiking cortical interneurons, the
resting state loses stability via either a saddle node or a
subcritical or supercritical Andronov–Hopf bifurcation. One
of the reasons for using this classification is its importance
and usefulness to understanding the emergence of frequency
components of neuronal output (harmonics and subharmonics)
which are computed in Sec. III.

III. RESULTS AND ANALYSIS

To study mode-locking we inject the neuron with an
external stimulus I (t) = IDC + A sin(ωt), as described in
Sec. II A. IDC is present to ensure that the neuron spikes. Thus,
the value of IDC should be determined by referring to Fig. 1;
i.e., it should be selected such that the neuron is in the firing
state.

A. Arnold tongue diagram for class-1 neuron

Figure 2 shows the regions of amplitude-frequency plane
where different mode-locking ratios can be observed for the
class-1 neuron. We computed n : m mode-locked regions
for n,m ∈ {1,2,3,4,5}. This plot represents the mode-locked
regions as a function of the amplitude and frequency of
the sinusoidal forcing, with the direct current of IDC =
62 μA/cm2. Note that the 1 : 1 tongue starts off the x axis
at f = 9 Hz, the inherent frequency of the class-1 neuron,
shown in Fig. 1(a).

As mentioned previously, the n : m ratio is indicative of a
mode-locked state. For example, for stimulus amplitudes and
frequencies corresponding to the orange region, the neuron
exhibits 3 : 1 mode locking.

FIG. 2. Arnold tongue diagram for a class-1 Izhikevich neuron
with the F-I curve shown in Fig. 1(a), driven by an external sinusoidal
forcing. The DC current is 62 μA/cm2.

FIG. 3. First example: 3 : 2 mode-locked pattern.(a) Time series
diagram of a sinusoidal stimulus with amplitude of A = 45 μA/cm2

and frequency of f = 7.5 Hz (blue) and the corresponding spike
pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase-
space diagram.

For each element of the amplitude-frequency matrix that
forms the plane, we simulated the model for 10 s. Then in order
to have a stable firing pattern of the neuron, the last 5 s of the
spiking pattern and corresponding stimulus were considered.
If Eq. (1) is satisfied, this particular element takes the value
of n : m, otherwise it takes zero. The same procedure is done
to find the other elements of the matrix and form the whole
plane in Figs. 2 and 5. Note that using Eq. (1) in a computer
code requires defining a tolerance zone, i.e., the constant value
defined on the right-hand side (RHS) can be any number less
than a tolerance zone defined by the user.

We demonstrated the time series of the spiking pattern plus
the frequency spectrum of the spike trains for the two different
points of this diagram which, as previously mentioned,
correspond to two different amplitudes and frequencies of
the stimulus. For A = 45 μA/cm2 and f = 7.5 Hz, we have
3 : 2 mode locking that is presented in Fig. 3(a). For the
corresponding values of A and f , the frequency spectrum
of the output has been computed by a Fourier transform and
presented in Fig. 3(b) as well. The sharp peak observable in
Fig. 3(b) corresponds to the driving frequency of the neuron,
i.e., 7.5 Hz. There are peaks as multiples of this driving
frequency, which present the input harmonics. Also, there
is a smaller ratio of the driving frequency that corresponds
to a subharmonic of the input. This example of a 3 : 2
mode-locking state has a subharmonic frequency of 3.75 Hz
which was calculated by dividing the deriving frequency by
two (the denominator of the mode-locked state). Figure 3(c)
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FIG. 4. Second example: 2 : 1 mode-locked pattern. (a) Time
series diagram of a sinusoidal stimulus with amplitude of
A = 20 μA/cm2 and frequency of f = 5 Hz (blue) and the
corresponding spike pattern (red). (b) Frequency spectrum of the
spike pattern. (c) Phase-space diagram.

shows phase-space trajectories of the system for the above
selection of A and f .

Another example is A = 20 μA/cm2 and f = 5 Hz.
The corresponding input-output time series and frequency
spectrum of the output can be seen in Fig. 4. The formation
of harmonics can be observed in Fig. 4(b). However, there
are no subharmonics observed here since the denominator of
the mode-locked state is unity. Figure 4(c) shows phase-space
trajectories of the system for this particular example.

B. Arnold tongue diagram for class-2 neuron

Next, we compute Arnold tongues for the class-2 neuron;
Fig. 5. Note that the 1 : 1 tongue initiates at f = 120 Hz from
the x axis, the inherent frequency of the class-2 neuron [refer to
Fig. 1(b)]. In class-2 neurons, action potentials are generated
in a certain frequency band, which are not highly dependent on
the applied current [Fig. 1(b)]. Hence, the tongues in Fig. 5 are
not tilted as much as those in Fig. 2. Furthermore, the tongues
occur at relatively higher frequencies (refer to x axis) than the
for the class-1 neuron. This is consistent with the fast spiking
behavior of class-2 neurons; Fig. 1(b).

Again we consider two example points of this diagram in
order to visualize the mode-locked behavior. The correspond-
ing time series and frequency spectra along with phase-space
diagrams are given in Figs. 6 and 7.

Note the formation of harmonics and subharmonics again.
The amplitude of subharmonics are much greater and more

FIG. 5. Arnold tongues diagram for a class-2 Izhikevich neuron
driven by an external sinusoidal forcing that corresponds to the neuron
with the F-I curve and parameters shown in Fig. 1(b). The DC current
is 120 μA/cm2.

dominant than those seen in class-1 neurons. In Fig. 6(b)
we have a subharmonic of the driving frequency 37.5 Hz,
which corresponds to 75/2 (driving frequency divided by the
denominator of the mode-locked state). In the case of Fig. 7(b),
which depicts the mode-locked region of 2 : 3 (smaller than 1),
subharmonic construction is even more dominant than in the
case of Fig. 6(b); additionally it is also greater in amplitude

FIG. 6. First example: 3 : 2 mode-locked pattern.(a) Time series
diagram of a sinusoidal stimulus with amplitude of A = 110 μA/cm2

and frequency of f = 75 Hz (blue) and the corresponding spike
pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase-
space diagram.
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FIG. 7. Second example: 2 : 3 mode-locked pattern. (a) Time
series diagram of a sinusoidal stimulus with amplitude of
A = 120 μA/cm2 and frequency of f = 180 Hz (blue) and the
corresponding spike pattern (red). (b) Frequency spectrum of the
spike pattern. (c) Phase-space diagram.

than the subsequent harmonics. In Fig. 7(b) we have two
observed subharmonics at 60 and 120 Hz. The first one is
the driving frequency divided by 3 (180/3 = 60 Hz) and the
second one is 2×60 = 120 Hz, since the numerator of the
mode-locked state is two.

As has been previously studied [18,21,22], class-1 and
class-2 neurons differ in the way they respond to input. In
class-1 neurons, whose quiescent state disappears through
a SNIC bifurcation, the neuron can fire with an arbitrarily
low frequency. Conversely, in class-2 neurons the resting
potential loses stability via either a saddle node or a subcritical
or supercritical Andronov–Hopf bifurcation; i.e., the neuron
acts similarly to a bandpass filter in that it extracts the
frequencies which correspond to resonant frequencies. This
information can be related to our observations and help
explain why subharmonics formation in class-2 neurons can be
more dominant than in class-1 neurons. The small amplitude
oscillations make the neurons to resonate to the driving
frequency. The firing frequencies given in F-I curves (Fig. 1)
depend on factors beside the type of bifurcation of the resting
state [18].

At Arnold tongues boundaries, our system undergoes a state
transition at a slight change of amplitude or frequency of the
periodic stimulus. Plotting phase-space trajectories helps us
understand the transient oscillations of the system between
these regions.

FIG. 8. (a) Time series and (b) phase-space diagram of the system
corresponding to A = 110 μA/cm2 and f = 36 Hz in the class-2
neuron. Referring to Fig. 5 shows this selection of stimulus parameters
leads to 3 : 1 mode locking. This can be seen also in the solution and
formation of limit cycle here.

As an example, we select A = 110 μA/cm2 and f = 36 Hz
in Fig. 5 that corresponds to 3 : 1 mode locking. Figure 8
shows solutions of the system in time domain and phase
space at this particular state. Mode-locking corresponds to
stable solutions that are also true for the next successive
periods. Now we slightly displace the system from this stable
solution by changing the stimulus frequency to 35 Hz. The
solutions in time domain and phase space are shown in
Fig. 9. This solution is not stable anymore, which leads to
disappearance of mode locking. The phase-space diagrams
suggest an unstable limit cycle with spiral focus that leads
to transient oscillations in class-2 neuron and explains the
formation of strong subharmonics.

C. Computing Arnold tongues based on vector strength

The methods used to compute Arnold tongues in Figs. 2 and
5 work well for the deterministic model [system of Eqs. (2)].
However, they begin to break down when noise is applied
to the model. We use the spiking model of Izhikevich with
the additive white Gaussian noise η(t), which has a normal
distribution with zero mean μ = 0, and the variance σ 2:

Cv̇ = k(v − vr )(v − vt ) − u + I (t) + η(t),

u̇ = a[b(v − vr ) − u],

if v � vpeak then v ←− c, u ←− u + d.

The level of noise in our following simulations is varied by
changing the value of σ 2, which consequently creates different
noisy regimes of the system under study.
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FIG. 9. (a) Time series and (b) phase-space diagram of the
system corresponding to A = 110 μA/cm2 and f = 35 Hz in the
class-2 neuron. The solution is not stable any more, which leads to
disappearance of mode-locking and periodic decay in phase space.

In addressing this more realistic situation we consider
vector strength (VS). As mentioned previously, VS takes on a
value near unity when the neuronal spike events always occur
at the same phase of the stimulus and vanishes for equally
distributed spike times.

FIG. 10. (a) Spike trains of a 1 : 1 mode-locked state without
noise and (b) the corresponding ISIs. (c) After adding the white
Gaussian noise with μ = 0 and σ 2 = 5, the mode-locking pattern
becomes less stable and (d) the corresponding ISIs no longer overlap
on a well-defined point.

FIG. 11. (a) Spike trains of a 2 : 1 mode-locked state without
noise and (b) the corresponding ISIs. (c) After adding the white
Gaussian noise with μ = 0 and σ 2 = 5, the mode-locking pattern
becomes less stable and (d) the corresponding ISIs no longer overlap
on two well-defined points.

Vector strength quantifies the amount of periodicity in the
neuronal response to a given periodic signal. The neural re-
sponse is denoted by a sequence of spike times {t1,t2, . . . ,tn}
where in general n � 1. tj is defined for 1 � j � n. VS is the
length of the synchrony vector [23]:

VS = 1

n

∣∣∣∣∣∣

n∑

j=1

e−iωtj

∣∣∣∣∣∣
. (4)

Here, ω = 2π
T

denotes an angular frequency for some period T .
Equation (4) transforms the spike times tj or, more precisely,
the dimensionless times tj /T , onto a circle with radius 1.

The advantage of using VS-based Arnold tongues is that
it can be used for the noisy model. However, there exists the
fundamental problem that VS can only be used to analyze
1 : 1 mode locking [10]. Nevertheless, we suggest an idea
that lets us extend this method to all mode-locked states

FIG. 12. The unit circle that is used to find the smallest phase φ.
The window δφ is defined by the user and indicates the radius of the
cluster under study in the ISIs; Fig. 11(d).
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FIG. 13. VS-based Arnold tongue diagram of the class-1 neuron
in the presence of noise with different strengths (a) μ = 0, σ 2 = 2
and (b) μ = 0, σ 2 = 5. Time step for computing the Izhikevich model
is 0.05 ms. The color code represents the amount of vector strength.
Note how the different mode-locked states lose their stabilities with
the addition of noise compared with Fig. 2.

by considering the pattern existence, i.e., to use Eq. (4) by
substituting the time of the first spike per period. Using VS
in this way is akin to 1 : 1 mode-locking analysis and can be
done by looking at the interspike intervals.

Interspike intervals (ISI = tj+1 − tj ) can be plotted
successively so that they form ISI return maps. Figures 10
and 11 show some examples of these maps for different
mode-locked states and their corresponding spike trains. If
the model is deterministic (no noise), the clusters shrink to
the number of points corresponding to the denominator of the
mode-locking ratio, m periods of stimulus. In the presence
of noise, however, there tends to be clusters of points bound
in regions around the deterministic points. The boundaries
around these points can be defined in a way that yields the
area of clusters depending on the level of noise. This allows
us to compute the mode-locked regions in the presence of

FIG. 14. VS-based Arnold tongue diagram of the class-2 neuron
in the presence of noise with different strengths (a) μ = 0, σ 2 = 2
and (b) μ = 0, σ 2 = 5. Time step for computing the Izhikevich model
is 0.05 ms. The color code represents the amount of vector strength.
Note how the different mode-locked states lose their stabilities with
the addition of noise compared with Fig. 5.

noise. Smaller clusters result in bigger VS and consequently,
the stability of the mode-locked state is higher.

The number of clusters tells us the denominator of the
mode-locking ratio. We chose only one of the clusters, and then
measured VS over the whole time of recording only for that
cluster. The method to choose the preferred cluster in ISI return
maps is analogous to selecting the preferred phase around a
mean value on a circle defined by a radius that has a magnitude
equal to VS. Figure 12 shows the phase analog of the ISIs in
Fig. 11(d). We find the mean value of the smaller angle φ,
which corresponds to the center of one of the clusters by
φ = ωt and choose a window δφ that is defined by the user.
This δφ is related to the radius of the already-chosen cluster
by δφ = ωδt . Note that we are allowed to do this since
the relationship between the angle φ and time t is linear.
In this case, even under noisy conditions there will still be
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FIG. 15. (a) Arnold tongues for the noisy class-2 neuron in a
broader range of amplitude and frequency of periodic stimulus.
(b) Zoomed-in region on the left side of panel (a) shown with a
red rectangle. The tongues are entangled at high amplitudes. (c)
Zoomed-in part of 1 : 2 tongue shown with a red rectangle in panel (a).

synchronization, albeit with less stability than the deterministic
model.

Figure 13 illustrates the evaluated Arnold tongues based on
the VS concept for the noisy class-1 neuron in two different
noise regimes. In the same fashion we obtained VS-based
Arnold tongues for the noisy class-2 neuron in Fig. 14. In the
presence of noise (Figs. 13 and 14), it is observed that the
tongue edges (boundaries) become less distinct and some of
the tongues (e.g., 5 : 4) completely disappear. In this process it
appears that the tongues corresponding to n : m mode-locked
states with n > m are more stable than those with n < m.

Figure 15(a) represents Arnold tongues for the noisy class-2
neuron as in Fig. 14(a) but with the broader range of amplitude
and frequency of the periodic external forcing.

Arnold tongues on the left-hand side of the diagram that are
shown with the red rectangle, entangle for higher amplitudes.
A zoomed-in map is presented in Fig. 15(b). The entanglement
of these tongues leads to chaotic behavior of the neuron.

It appears that the mode-locked region boundaries harbor a
fine structure. A more detailed structure of the 1 : 2 tongue is
shown in Fig. 15(c). Also, there are substructures within the
2 : 1 tongue and similarly for other tongues. The stability and
creation of substructures within the boundary depends on the
amount of noise.

IV. CONCLUSION

Computational techniques used to investigate mode locking
have become an important tool in the analysis of synchroniza-
tion. Recent investigations into periodic forcing have provided
a wealth of information regarding the processing of temporal
information and the characteristics of synchronization [12,24].
Arnold tongues and other bifurcation structures in phase space
can help us explain the neuronal behavior seen in auditory
signal processing neurons such as those in the cochlear nucleus
(CN) [2] and inferior colliculus (IC) [8].

By using Izhikevich neurons, we constructed a determinis-
tic model which simulates the mode locking of a single neuron
to external sinusoidal forcing. However, real neurons have
noisy responses. Traditional approaches cannot be directly
applied here, so we slightly adjusted the vector strength
method in order to account for the stochastic nature of the
system. By employing this method, we constructed Arnold
tongue diagrams for a stochastic system in which we examined
how the presence of noise influenced the degree to which
mode-locking was observed. This is of importance because
neural encoding in the auditory system is inherently noisy
[3,7,25]. Inner hair cell (IHC) receptor potentials follow
oscillatory motion but are low-pass filtered [5,25]. There is
stochastic neurotransmitter release between IHC and auditory
nerve (AN) fibers and the resulting action potentials reflect
the time-varying nature of IHC membrane oscillations. AN
fibers project to CN of the brainstem. The stellate cells in CN
include choppers and onsets which differ in timing of the firing
in response to periodic stimuli. This sensory coding includes
the mode-locking phenomenon and is also observable in higher
levels of the auditory system such as the IC [8,9].

To understand and address these complex interactions,
Arnold tongue diagrams of the aforementioned cells give us
a global map in parameter space that could be used to justify
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the observations. We have specifically utilized Arnold tongue
diagrams for the Izhikevich model presented in this study to
help in the understanding of the organization of the responses
to SAM tones across a range of amplitudes and frequencies
[8], for a given set of data that is recorded from the IC cells of
an awake rabbit [9].
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