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Apex predator and the cyclic competition in a rock-paper-scissors game of three species
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This work deals with the effects of an apex predator on the cyclic competition among three distinct species
that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations
but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species
in a system that contains three species that evolve following the standard rules of migration, reproduction, and
predation, and study how the system evolves in this new environment, in comparison with the case in the absence
of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the
lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the
clusters of the species that compete cyclically.

DOI: 10.1103/PhysRevE.95.062411

I. INTRODUCTION

An intriguing problem in biology concerns the understand-
ing of how distinct species interact to maintain the mechanisms
underlying biodiversity in nature. Several models focusing on
the competing relations among species have been proposed
and studied in the last few decades [1–3]. In the simple case
where the species compete for a single and restricted resource,
their abilities appear to be hierarchical, involving a transitive
relationship. In this case, one expects a winner species, leading
all the other species to extinction [4,5]. However, there are
other possibilities, and when the resource is abundant one
may observe intransitive competing relationship, as happens
if one uses the rules of the rock-paper-scissors (rps) game,
for instance. In this case, when one considers the system
with three species, individuals of the species A predate those
of the species B, B predates C, and C predates A in a
cyclic competition environment. In this rps dynamics, all the
species are treated equally and the system is known to lead to
biodiversity [6–11].

On the other hand, apex predators are being described as
highly interactive from the biological point of view, and their
importance in the ecological environment has been the focus of
several investigations [11–15]. The presence of an apex preda-
tor in a given ecosystem may favor coexistence of species,
since it can diminish the process of competitive exclusion,
imposing its own order to the set of species. This is known
as predator-mediated coexistence [16] and has been identified
in several distinct settings, such as coral reef communities
[17–19], communities of birds [20], vegetationally diverse
environments [21–23], and other scenarios.

Recent works also emphasize the use of the apex predator
to restore ecosystems [24] that have been weakened due
to distinct causes and motivations. In particular, studies
have identified secondary threatened species that could be
maintained or restored in order to minimize damage or improve
performance, as in the cases of invasion of non-native species
[25,26], the transmission of diseases [27], or the effects of
climate changes on the dynamics of the species [28]. Such
effects, which are triggered by the presence or action of the
apex predator and may influence other levels of the chain,
contribute to the so-called trophic cascade [29]. Distinct

factors, such as changes in prey cascade behavior as a survival
strategy and predation that decreases the abundance of specific
prey and interfere at distinct levels of the chain, may induce
the occurrence of the trophic cascade.

In this work we investigate systems with three and four
species and select three systems: one with three species that
compete cyclically, one with four species competing cyclically,
and the other with the fourth species representing the apex
predator, which predates all the other three species and is not
predated by any of them. We focus mainly on the behavior
of the apex predator and how it changes the behavior of the
other species in the stochastic evolutions in the square lattice
which we consider below. As we have commented above, the
apex predator has been studied in several distinct scenarios,
but the idea to be pursued in this work is of current interest.
It develops standard stochastic simulations and was motivated
by the recent work in Ref. [30], which makes use of the density
of maxima related to the abundance of the species, and by the
algorithm developed in Ref. [31], which enables us to explore
the clustering of species in a square lattice.

The work is organized as follows. In the next section we
introduce four systems and study some specific time evolutions
to show how they evolve under the rules there discussed.
We move on and in Sec. III we select and investigates three
distinct systems, with the results of the stochastic simulations
contributing to the current understanding of the behavior of
the apex predator and how it changes the behavior of the other
three species that compete cyclically. We end the work in
Sec. IV, where we include some comments and conclusions.

II. THE MODELS

In this work we investigate systems described by three
and four species. Figure 1 illustrates the systems and the
interactions among the species, with the arrows going from
the predator to the prey. Figure 1(a) shows three distinct
species that compete cyclically, as in the rock-paper-scissors
game. This is the system X3, and several studies have already
been implemented; see, e.g., Refs. [32–36]. Among several
interesting characteristics, one notes the presence of spiral
patterns. Figure 1(b) shows another system with four distinct
species that also interact cyclically, but in this case the fourth
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FIG. 1. In the left panel the diagrams show how predation works
for three and four species. The black arrows indicate unidirectional
predation and the gray dashed arrows indicate bidirectional predation.
In the right panel are typical snapshots of stochastic simulations that
run for 104 generations. Panel (d) shows the system where the fourth
species constitutes the apex predator.

species adds the next-to-next neighbor which does not compete
and so forms partnerships. This and other similar cases were
studied in [37–41] and may generate patterns such as the one
shown in the figure, with two subsets of two partner species. In
Figs. 1(c) and 1(d) show the systems X4 and SX3, respectively.
They have all the four species interacting, but in (c) they are all
equivalent, and in (d) we select the yellow species to represent
the apex predator.

In order to implement the stochastic simulations, we
consider a square lattice with N = L2 sites and use periodic

boundary conditions. We take L = 512, so we deal with a
square lattice of 512 × 512 sites. Each site in the lattice is
occupied by one of the species A (red), B (green), C (blue),
or D (yellow), or is empty E (black). The interactions follows
the rules [8,9]

AB
σ−→ AE, BC

σ−→ BE, CA
σ−→ CE, (1)

AE
μ−→ AA, BE

μ−→ BB, CE
μ−→ CC, (2)

A� ε−→ �A, B� ε−→ �B, C� ε−→ �C, (3)

where � represents a site that can be empty or occupied by
any individual. The relations in (1) describe predation, which
is characterized by the σ parameter that shows the cyclic
interactions. The relations in (2) and (3) show reproduction
and migration, whose occurrence is controlled by the μ and ε

parameters, respectively.
In the last system in Fig. 1(d), the D or yellow species

interacts obeying the following rules:

DX
γ−→ DD, (4)

D � β−→ E �, (5)

D � ε−→ �D, (6)

where X represents one among the three species A, B, or C

that compete cyclically. These rules show that the D or yellow
species represents the apex predator. The relation (4) ensures
that it can reproduces after predating any of the three species
under the same ratio γ , and the relations (5) and (6) describe
death and migration, which are controlled by the parameters
β and ε, respectively.

Before starting the simulation one prepares the initial state,
in which all the species and empty sites are evenly distributed
in the square lattice with the same probability. Each time step
randomly selects a site and one of its four nearest neighbors,
and for each selected pair, the random process continues using
the normalized ratios controlled by σ , μ, ε, γ , β, and ε, as
described by the above processes (1)–(6). To describe the time
evolution of the system, we use a generation, which is the time
spent to account for N time steps.

In the right panels in Figs. 1(a) and 1(c), one sees the
appearance of spiral patterns, which is typical of the cyclic
evolutions that follow the rules of the rock-paper-scissors
game. However, in Fig. 1(d) one notices the absence of
spirals and the diminishing sizes of the clusters of species
that evolve in cyclic competition. This behavior is due to
the presence of the apex predator, and we study it below,
showing that, although the apex predator does not destroy
biodiversity, it diminishes the average size of the clusters
of species that compete cyclically. We have added in the
Supplemental Material [42] three videos to illustrate how
the three systems X3, X4, and SX3 evolve in time under
the stochastic simulations.

III. RESULTS

Let us now implement the stochastic simulations, taking
the parameters for predation, reproduction, and migration in
Figs. 1(a) and 1(c) as σ = 0.25, μ = 0.25, and ε = 0.50,
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FIG. 2. Density of species as a function of time. The colored
curves represent the respective species, and the black curve stands
for the empty sites. The (a) and (b) panels represent the X3 and X4
systems, and the (c) panel stands for the last system, SX3, which
contains the apex predator. The long-time evolution shows that all the
systems evolve ensuring coexistence of species.

respectively. For the system with the apex predator which
appears in Fig. 1(d), we use σ = 0.30, μ = 0.30, ε = 0.40,
γ = 0.25, β = 0.15, and ε = 0.60. We have checked that the
results in this work are robust against changes in the values
of the parameters, if they are chosen in a way that maintains
coexistence among the species. The main focus of the current
work is to investigate the systems shown in Figs. 1(a), 1(c),
and 1(d), which we refer to as X3, X4, and SX3, respectively.

Figure 2 displays the density of species, ρx(t), with x ∈
{A,B,C,D}, as a function of the generation time. The colored
curves represent the corresponding species, and the black curve
identifies the empty sites. The cases displayed in Figs. 2(a),
2(b), and 2(c) represent the systems X3, X4, and SX3
respectively, and one notices that after a transient time interval,
all the systems evolve maintaining coexistence of the species.

One sees that in the absence of the apex predator, the density
of empty sites diminishes rapidly. This happens because the
initial density of species and empty sites favors reproduction,
since the species can frequently meet empty sites. In the
presence of the apex predator, the density of empty sites
increases before diminishing rapidly, and now the reason is
that the presence of empty sites contributes to the death of
the apex predators, before they starts to increase to reach an
equilibrium state that oscillates around a given average.

In all the above cases, the density of species oscillates
around an average value. This behavior is expected, since the
systems are similar to the famous predator-prey model of Lotka
and Volterra [43,44]; see, e.g., Fig. 6 of Ref. [45], which shows
similar mean field and stochastic network simulations in a five-
species model in the absence of the apex predator. However,
in the presence of the apex predator, which we investigate in
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FIG. 3. The black dots represent the histograms of the number of
maxima in the interval of 103 generations and the red dashed lines
show the fits as Gaussian curves. The cases (a) and (b) represent
the systems X3 and X4, in which all the species compete cyclically.
Panel (c) is for the three species A, B, and C of the system SX3, and
the case (d) represents the species D, the apex predator.

the current work, the frequency of oscillation of the density
of species increases with decreasing amplitude. This occurs
because the apex predator acts uniformly in the square lattice,
and is expected to equally suppress all the species. The average
value of the density of species depends on the values used for
the parameters that we consider in each case; for instance,
the value obtained for the X3 system was ρx = 0.301 with
σx = 0.012, where σx is the standard deviation, and, for the
system X4, ρx = 0.225 with σx = 0.018. For the system SX3,
we obtained ρx = 0.226 with σx = 0.006 for the three species
A,B,C that evolve in cyclic competition, and ρd = 0.142 with
σd = 0.001, for the apex predator.

We provided 3 × 103 realizations for the systems X3 and
X4, and 3 × 104 for the system SX3, in order to obtain
the average density of maxima 〈ρt 〉 in the interval of 103

generations. Figure 3 shows the histogram normalized for the
number of maxima in the interval of 103 generations (black
dots) and Table I shows the values for the average density of
maxima and its standard deviations. We use the average and
standard deviations values in Table I to fit a Gaussian curve,
as can be seen by the red dashed line in Fig. 3. Note that the
peak distributions have a Gaussian behavior.

In order to get further information concerning the dynami-
cal evolution of the systems, we computed the autocorrelation

TABLE I. Average number of maxima in the interval of 103

generations. In the systems X3 and X4 all the species evolve in
cyclic competition, while in the system SX3 the species D represents
the apex predator.

System

X3 X4 SX3 SX3

Species A,B,C A,B,C,D A,B,C D

〈ρt 〉 6.858 5.544 6.625 16.496
σt 0.862 1.052 1.222 1.807
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FIG. 4. The autocorrelation functions for the systems X3 (a), X4
(b), and SX3 (c). The colors identify the species, and the black dotted
curves stand for the empty sites. In (c) the three species compete
cyclically in the presence of an apex predator, represented by yellow.

function, which is defined by

Cxx(t,t ′) ≡ 1

σ 2
〈x(t)x(t ′)〉 − 1

σ 2
〈x(t)〉〈x(t ′)〉, (7)

where x ∈ A,B,C,D, σ 2 = 〈x(t)2〉 − 〈x(t)〉2, and 〈· · · 〉 is to
be understood as an average in the ensemble. In Ref. [46], the
authors have shown (in a different context) that the density
of maxima of an observable that fluctuates can be obtained
from its correlation function. This result was recently used
[30] to provide a way to connect the density of maxima with
the correlation length of the density of species. The result is
obtained with the use of the maximum entropy principle and
can be written in the form [30,46]

〈ρt 〉 = 1

2π

√
−T4

T2
, Tj ≡ dj

d(δt)j
C(δt)

∣∣∣∣
δt=0

. (8)

We then develop stochastic simulations in the square lattice
for the three systems X3, X4, and SX3 and show in Fig. 4 the
autocorrelation function for each system, there represented by
the curves shown in the panels (a), (b), and (c), respectively.
The black dotted curves stand for the empty sites, and the
colored curves represent the species with their respective
colors. One notices that there is strong accord among the
results for the species that evolve in cyclic competition, with
an oscillating behavior similar to the one found in Ref. [30].

Let us now focus on the species that compete cyclically.
One notices from Fig. 4 that for t near the origin, it is possible
to map the data of the autocorrelation with

C(t) = cos(ωt + φ), (9)

where ω and φ are real parameters. Thus, one uses Eq. (8) to
write the average density of maxima for species that evolve
under cyclic competition in the form

〈ρt 〉 = ω

2π
. (10)
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FIG. 5. The autocorrelation function for the systems X3 (red
curve), X4 (green curve), and SX3 (blue and yellow curves). The
yellow curve represents the apex predator. The inset shows perfect
agreement between the numerical simulation and the approximations
used to fit the curves, shown as the empty-circle curves.

However, for the apex predator the initial form of its autocor-
relation function can be described by

C(t) = exp(a0t)
n∑

n=1

ant
n, (11)

where a0,a1,a2, . . . , are real parameters. Since the data are
strongly correlated for n � 3, we used n = 4 to get the density
of maxima for the apex predator. It gives

〈ρt 〉 = 1

2π

√
−a0

4 + 4a0
3a1 + 12a0

2a2 + 24a0a3 + 24a4

a0
2 + 2a0a1 + 2a2

.

(12)

Figure 5 depicts the autocorrelation functions for the
three distinct systems X3, X4, and SX3, with the red curve
representing the X3 system, the green curve the X4 system,
and the blue and yellow curves one of the three competing
species and the apex predator of the SX3 system, respectively.
Also, the inset displays the same curves together with the
corresponding fitting functions as the empty-circle curves that
show excellent accord with the colored curves. One recalls
that the colored curves result from the stochastic simulations,
and the empty-circle curves come from the approximations (9)
and (11) used above to fit the colored curves. The numerical
values are shown in Table II.

In the systems X3, X4, and SX3 that we have studied, we
noticed that species in cyclic competition appear to have the
tendency to clusters or agglomerate, as a mechanism to survive
in the competing environment. However, the apex predator
behaves differently, tending to spread uniformly in the lattice,

TABLE II. Average number of maxima in a interval of 103

generations, obtained from the relation (8).

System

X3 X4 SX3 SX3

Species A,B,C A,B,C,D A,B,C D

〈ρt 〉 6.081 4.402 5.802 16.537
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FIG. 6. Average number of clusters 〈N (t)〉 as a function of
time. The red, green, and blue lines represent the species in cyclic
competition in the systems X3, X4, and SX3, respectively. The
yellow curve stands for the apex predator.

as shown in the right panel of Fig. 1(d). In order to quantify
this behavior, one should investigate the number and size of the
clusters of the species. To implement this possibility, we used
the Hoshen-Kopelman algorithm [31] to compute the average
number of clusters ns(t) of size s as a function of time. This
allows us to introduce the quantities

N (t) =
∑

s

ns(t), (13)

S(t) =
∑

s s2 ns(t)∑
s s ns(t)

, (14)

which represent the number of clusters and the average size of
the clusters, respectively.

We display the results in Figs. 6 and 7, which show the
average of the number of clusters and the average size of such
clusters, respectively, as a function of time in the case of 128
realizations. The results show that the presence of the apex
predator contributes to diminish the size of the clusters of the
species that compete cyclically, increasing its number. Also,
the tendency of the apex predator to spread uniformly in the
lattice is kept; as we see from Fig. 7, the average size of the
group of apex predators is very small, being three individuals
in the simulations shown in the figure.
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FIG. 7. The mono-log behavior of the average size of the clusters
〈S(t)〉 as a function of time. The colors are as in Fig. 6.

IV. COMMENTS AND CONCLUSIONS

In this work we studied the presence of an apex predator in a
system composed of three distinct species that compete cycli-
cally following the standard rules of reproduction, migration,
and predation, where predation controlled as in the paper-rock-
scissors game. The apex predator is a superpredator, since it
predates all the other species and is not predated by any of
them. The population of the apex predator does not increase
indefinitely because it dies with the ratio controlled by β, as
suggested by the rule (5).

We studied the system X3, which is composed of three
distinct species that evolve in cyclic competition, and then
two systems of four species: one, the system X4, where
all the species compete among themselves and have similar
behavior, and the other, SX3, where three species compete
cyclically and the other one represents the apex predator. We
followed ideas developed before in the works [30,31] to show
that when the species evolve under cyclic competition, the
abundance or density of species oscillates around an average
value, producing maxima and minima. Also, we computed the
average number of maxima for the three models and related it
to the correlation length of the abundance of species. We also
noticed that the presence of the apex predator decreases the
amplitude of oscillation of the three species.

Other results indicated that the autocorrelation function for
the abundance of species that evolve under cyclic competition
presents a sinusoidal behavior, but for the apex predator
the behavior is exponential. It was also noticed that while
the species that compete cyclically tend to cluster and form
spiral patterns to survive, the presence of the apex predator
diminishes the average size of these clusters, increasing their
number in a way that contributes to destroying the spiral
patterns without jeopardizing biodiversity. We also found that
the apex predator does not form large clusters, preferring to
spread out uniformly into the lattice.

The model for the apex predator studied in this work
does not account for several aspects such as the interference
among individuals of the same species in the search for the
corresponding prey, the conversion of successful predator-prey
hunts into new predators, the age of the predators, which may
interfere in the predation ratio, and so on. The addition of
new rules with focus on specific scenarios is a challenging
task that may appear as natural extensions of the current work.
Despite the simplicity of the systems studied, the results of this
work are of current interest and suggest the need of new, more
detailed investigations on the behavior of the apex predator
and how it may change basic aspects of an environment
that favors biodiversity. Other areas of investigation are
heterogeneous systems and complex networks, the predator-
prey Lotka-Volterra mean field theory in the presence of an
apex predator, and also Monte Carlo simulations of n-state
Potts models and other complex fluid models in statistical
physics [47]. We hope to further report on this in the near
future.
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