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Universal lower bound on the free-energy cost of molecular measurements
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The living cell uses a variety of molecular receptors to read and process chemical signals that vary in space and
time. We model the dynamics of such molecular level measurements as Markov processes in steady state, with a
coupling between the receptor and the signal. We prove exactly that, when the signal dynamics is not perturbed by
the receptors, the free energy consumed by the measurement process is lower bounded by a quantity proportional
to the mutual information. Our result is completely independent of the receptor architecture and dependent on
signal properties alone, and therefore holds as a general principle for molecular information processing.
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I. INTRODUCTION

Sensing and processing information about the environment
and the internal state is essential for the growth and sustenance
of living cells. In this cellular context, information is chemical
(in the form of ligands) and is sensed by molecular receptors
at the cell surface. Examples of information processing arise
in antigen-TCR [1], ECM-integrin [2,3], pathogen-antibody
[4,5] interactions, and a variety of other contexts [6–8]. Given
the limited supply of resources, we expect this sensing and
information transmission to be efficient in an appropriate sense.
Understanding the fundamental limits on sensing is relevant
not only for understanding biochemical sensors in the cellular
context, but also for engineering low power nanosensors
[9]. Drawing on the connections between information and
thermodynamics, several groups have considered the intrinsic
costs associated with sensing.

Shannon [10] provided the foundation for the theory
of information and communication. This theory was con-
cerned with sensing an input random variable X via an
information channel with the output being a random vari-
able Y . Shannon quantified the information in X by the
entropy H (X) = −∑

x p(x) ln p(x), which is precisely the
generalized nonequilibrium entropy of a nonequilibrium
system described by X. The average uncertainty in X

given the observation Y is quantified by the conditional en-
tropy H (X|Y ) = −∑

xy p(x,y) ln p(x|y), and the difference
I (X,Y ) = H (X) − H (X|Y ) is called the mutual information.

The thermodynamics of information processing [6,11–18]
seeks to understand the relationship between information,
energy flow, and useful work. A bipartite Markov chain model
involving two coupled random variables (X,Y ) has emerged
as the canonical model for studying the thermodynamics
of information [13,14]. For such systems, information flow
[13,15] or learning rate �Y [14] has been proposed as a metric
for the performance of the sensor Y . Introducing learning
rate �Y allows one to write a more general form of the
second law of stochastic thermodynamics, which explains the
entropy production by Maxwell’s demon without introducing
“erasures.” Further, since learning rate �Y is bounded by the
rate of entropy production at the sensor, it appears to be an
appropriate thermodynamic quantity for measuring sensing
quality.

However, a recent paper [18] argues that the learning
rate �Y is not a good substitute of mutual information, nor
does it necessarily capture the essential qualities of sensor
performance. In [18] it is shown that the learning rate �Y

quantifies the rate at which Y learns about the current value
of X as time progresses; specifically �Y = d

dτ
I (Xt,Yt+τ )|τ=0.

Consequently, �Y is not necessarily closely related to the
steady state information I (X; Y ). For two-state networks, the
learning rate and mutual information behave in a similar
manner. However, in complex networks, the similarity between
learning rate and mutual information breaks down. In [18] the
authors discuss a specific example of a unidirectional network
where the mutual information saturates to a finite value but the
learning rate vanishes in the limit of a large number of states.
In steady state, information flow is perhaps best interpreted as
the rate of transitions in the sensor state needed to maintain
a certain level of mutual information, and not necessarily
as a measure of the quality of sensor performance [18]. To
summarize, while the learning rate �Y is clearly related to a
thermodynamic quantity, its usefulness in quantifying sensor
efficiency is unclear.

Thus, in order to understand the fundamental limits on
information and sensing, we need to relate the “cost” of
generating steady state mutual information I (X,Y ) to relevant
thermodynamic quantities. Free-energy consumption appears
a natural candidate for such a cost, as has been established
in specific models of ligand-receptor binding involved in
simplified signaling cascades [19]. But does this extend to
arbitrary complex signaling networks? Indeed, what are the
conditions under which such a general proposition might hold?
We show that in unidirectional bipartite Markov chain models
of signaling, i.e., models where the signal is unperturbed
by the receptor, the free-energy consumption in the sensors
is bounded below by a term proportional to the product of
mutual information and a time scale of signal dynamics. Thus,
it follows that it is impossible to have signal reception when
the free-energy consumption rate is zero. Further, for a class of
signal network topologies called one-hop networks, we prove
a tighter lower bound. This is a first step toward establishing
a thermodynamic metric for the physical cost of information
processing. We also discuss information processing using a
time series of receptor states. We show that in order to account
for the free-energy cost of the information in a time series of re-
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ceptor states, one must account for both the cost of information
acquisition and the cost of maintaining memory. Disregarding
the cost of memory leads to the erroneous conclusion that
information can be obtained at zero entropy rate.

II. THE MODEL

Let Xn denote the location and concentration of all ligands
(signals), and Yn, the internal states of all receptors at time
instants n. We assume that the {(Xn,Yn) : n � 1} is a time-
stationary bipartite Markov process [13,14,16,20], i.e., the
individual processes X = {Xn : n � 1} and Y = {Yn : n � 1}
do not change state simultaneously. The absolute time between
epochs is considered to be so short that the probability of
simultaneous transitions is negligible.

The transition rates from state (α,i) to (β,j )

w
αβ

ij = P(Xt+1 = β,Yt+1 = j | Xt = α,Yt = i)

are given by

w
αβ

ij = wαβ if i = j and α �= β

= wα
ij if i �= j and α = β

= 0 if i �= j and α �= β

= w̄α
i if α = β and i = j . (1)

Note that w̄α
i = 1 − ∑

β �=α wαβ − ∑
j �=i wα

ij . Our results re-
main valid in the continuous time limit when the rates are
scaled as wτ with τ → 0.

The bipartite Markov chain defined in (1) is unidirectional,
where the transitions of the signal state X do not depend on the
receptor state Y ; however, the transitions of the receptor state
Y do depend on the signal state X. This is a natural model
for measurement—the external signal remains unperturbed
by the measurement. The underlying assumption here is that
the signal and receptor are embedded in different physical
environments (Fig. 1), and that their transition probabilities
are not governed by a joint Hamiltonian. Let

P α
i = P(Xt = α,Yt = i) (2)

denote the steady state probability distribution of the Markov
process (X,Y ). Then the steady state mutual information Iss

between the signal X and the receptor Y [21] is defined as

Iss =
∑
α,i

P α
i log

(
P α

i

P αPi

)
, (3)

where P α
i denotes the stationary distribution of the bipartite

Markov chain (X,Y), P α = ∑
i P

α
i is the marginal distribution

of the signal state, and Pi = ∑
α P α

i is the marginal distribution
of the receptor state. We use the natural logarithm here and
elsewhere in the article. Note that Iss = 0 if, and only if, the
signal state Xt is independent of the receptor state Yt in steady
state, i.e., P α

i = P αPi . In this work we seek to establish a lower
bound on the free-energy consumption in the sensors in terms
of the steady state mutual information Iss. We focus on the
steady state mutual information, since otherwise, there could
be entropy generation independent of information sensing.
Note that the quantity of interest in [13–15] is the information
flow or learning rate which was shown in [18] to be related to
the rate at which the information in Y grows, and as such is
not the same as the steady state mutual information.

FIG. 1. The signal and receptor state spaces are embedded in
their physical environments (upper and lower boxes, respectively).
The signal transition rates wα,β are independent of the receptor, while
the receptor transition rates wα

i,j depend on the current signal state.

We establish a lower bound on the free-energy consumption
in terms of the mutual information Iss and a quantity that is
a function of a graph associated with signal dynamics. Let N

denote the cardinality of the set {α : P α > 0} of signal states
with positive steady state probability. Define a graph N on N

nodes as follows: For all α �= β ∈ {1, . . . ,N}, add a directed
arc (α,β) from α to β if wα,β > 0. Let wmin = min{wαβ :
(α,β) ∈ N }, wmax = max{wαβ}, P min = minα{P α} and dmax

is the largest out-degree of N . For nodes α �= β, let lαβ denote
the length of the shortest directed path from α to β, and let
� = maxα,β{lαβ} denote the diameter of N .

So far, we have only described the signal and receptor in
purely mathematical terms. However, these signal and receptor
processes are embedded in their respective physical environ-
ments, where states correspond to positional or conformational
states of molecules, or concentrations. From the Schnakenberg
network theory [22], it follows that the thermodynamic entropy
rate σ̇ of these mesoscopic thermal systems is given by

σ̇ =
∑
αβ

P αwαβ log
wαβ

wβα︸ ︷︷ ︸
σ̇x

+
∑
αij

P α
i wα

ij log
wα

ij

wα
ji︸ ︷︷ ︸

σ̇y

, (4)

where σ̇x is the steady state entropy rate of the physically
independent signal process, and is thus the free energy
consumed in generating the signal alone. The second term
σ̇y is the rate of free-energy consumption associated with the
measurement process.

III. UNIVERSAL ENTROPY BOUND
ON MUTUAL INFORMATION

Our main result is as follows.
Theorem 1. For arbitrary signal and network topologies,

Iss � cσ̇y/w
min, (5)
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where c = 4� log(2)N2( dmaxwmax

wmin )2� is a constant that only
depends on signal parameters, and is independent of receptor
parameters.

While our results seem superficially analogous to the
results in [23], we address a very distinct problem here.
Unlike [23], we are interested in the entropy production
associated with dynamics that do not change the joint
distribution—the free-energy consumption is associated with
the fact that receptors are able to infer the microscopic signal
states, without affecting it.

To establish our result, we first prove the following lemmas,
which we will combine finally to prove Eq. (5).

Lemma 1.

σ̇y � P minwmin
∑

(α,β)∈N
D(P (·|α)‖P (·|β)). (6)

Proof: We start our proof by noting that∑
αij

P α
i wα

ij log
P α

i wα
ij

P α
j wα

ji

= 1

2

∑
ijα

(
P α

i wα
ij − P α

j wα
ji

)
log

P α
i wα

ij

P α
j wα

ji

� 0. (7)

Then,

σ̇y =
∑
αij

P α
i wα

ij log
wα

ij

wα
ji

� −
∑
αij

P α
i wα

ij log
P α

i

P α
j

(8a)

=
∑
αβi

P α
i wαβ log

P α
i

P
β

i

(8b)

=
∑
αβ

wαβ
∑

i

P α
i log

P α
i

P
β

i

=
∑
α,β

P αwα,β
∑

i

P (i|α) log
P (i|α)

P (i|β)
(8c)

� P minwmin
∑

(αβ)∈N
D(P (·|α)‖P (·|β)), (8d)

where (8a) follows from (7), (8b) follows from the fact that
the Shannon entropy of the whole system is constant, (8c)
follows from the fact that

∑
Pαwα,β log P α

P β = 0 because the
signal is in steady state, (8d) follows the definition of wmin,

and D(p‖q) denotes the Kullback-Leibler divergence between
p and q [21]. The expression on the right side of (8a) has been
defined as the learning rate �Y in some previous works [13–15].
Our main result (5) gives, as a corollary, a lower bound on �Y

in terms of the mutual information Iss.
We now introduce new notation to improve the clarity

of our exposition. Let πα(·) = P (·|α) denote the conditional
distribution of the receptor state i given that the signal state
is α. We remove from consideration any signal state i such
that Pi = ∑

α P απα(i) = 0 since the conditional probability
πα(i) = 0 for all α, and thus, state i is not informative about the

signal state. Define the norm ‖x‖ =
√∑

i x
2
i /Pi . In Lemma 2

we establish that∑
(α,β)∈N

D(πα‖πβ) � P min

2

∑
(α,β)∈N+

‖πα − πβ‖2,

and in Lemma 3 we establish that

Iss � 2 log(2)�
∑

(α,β)∈N
‖πα − πβ‖2.

The result follows by establishing a bound on P min.
Lemma 2. The sum∑

(α,β)∈N
D(πα‖πβ) � P min

2

∑
(α,β)∈N+

‖πα − πβ‖2. (9)

Proof. We first establish that γmax = maxαi
|πα(i)−Pi |

Pi
�

1
P min − 1. Note that P min � 1

2 , therefore 1
P min − 1 � 1.

Also, Pi = ∑
β P βπβ(i) � P απα(i) � P minπα(i) implies that

πα(i)/Pi � 1
P min . Thus, it follows that

|πα(i) − Pi |
Pi

� max

{
1 − πα(i)

Pi

,
πα(i)

Pi

− 1

}

� max

{
1,

1

P min
− 1

}
= 1

P min
− 1.

From Theorem 3 in [24] we have

1

2

∞∑
ν=1

∑
i

(pi − qi)2

pi + (2ν − 1)qi

� D(P ‖Q)

� log(2)
∞∑

ν=1

∑
i

(pi − qi)2

pi + (2ν − 1)qi

. (10)

Now turning to the sum of relative entropy across arcs in the
graph N ,

∑
(α,β)∈N+

D(πα‖πβ) � 1

2

∑
(α,β)∈N+

∑
i

∑
ν�1

(πα,i − πβ,i)2

πα,i + (2ν − 1)πβ,i

= 1

2

∑
(α,β)∈N+

∑
i

∑
ν�1

(πα,i − πβ,i)2

2νPi + [
(πα,i − Pi) + (2ν − 1)(πβ,i − Pi)

]
= 1

2

∑
(α,β)∈N+

∑
i

∑
ν�1

2−ν(πα,i − πβ,i)2

Pi

1

1 +
[
2−ν (πα,i−Pi )

Pi
+ (1 − 2−ν) (πβ,i−Pi )

Pi

]
� 1

2(1 + γmax)

∑
(α,β)∈N+

∑
i

(πα,i − πβ,i)2

Pi

∑
ν�1

2−ν � P min

2

∑
(α,β)∈N+

‖πα − πβ‖2, (11)
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where the second inequality follows from the fact that
(πα,i−Pi )

Pi
� |πα,i−Pi |

Pi
� γmax, and the last inequality from

γ max � 1/P min + 1, as proved above. �
Lemma 3. The steady state mutual information is as fol-

lows:

Iss � 2 log(2)�
∑

(α,β)∈N
‖πα − πβ‖2. (12)

Proof. Let π = ∑
α P απα denote the marginal distribution

of the receptor states. Then we have that

Iss =
∑

α

P α
∑

i

P (i‖α) log
P (i‖α)

Pi

=
∑

α

P αD(πα‖π )

� log(2)
∑

α

P α
∑

i

∑
ν�1

[πα(i) − π (i)]2

πα(i) + (2ν − 1)π (i)

� log(2)
∑

α

P α
∑

i

[πα(i) − π (i)]2

Pi

∑
ν�1

1

2ν − 1

� log(2)
∑

α

P α
∑

i

[πα(i) − π (i)]2

π (i)

⎛
⎝1 +

∑
ν�1

2−ν

⎞
⎠

= 2 log(2)
∑

α

P α
∑

i

[πα(i) − π (i)]2

π (i)

= 2 log(2)
∑

α

P α‖πα − π‖2,

� 2 log(2)
∑
αβ

P αP β‖πα − πβ‖2

� 2 log(2) max
αβ

‖πα − πβ‖2,

where the first inequality follows from the second inequality in
(10), the third inequality follows from 1

2ν+1−1 < 2−ν for ν � 1,
and the fourth inequality from the convexity of the square of a
norm, and the fact that π = ∑

β P βπβ .
Fix α and β. Let (α1 = α, . . . ,αm = β) denote a directed

path connecting α and β in N . By triangle inequality and the
convexity of the norm it follows that

‖παm
− πα1‖2 �

(
m−1∑
k=1

‖παk
− παk+1‖

)2

� (m − 1)
∑

1�k�m

‖παk
− παk+1‖2

< �
∑

(α,β)∈N
‖πα − πβ‖2. (13)

�
The last step in the proof is to establish a bound on P min in
terms of the signal network parameters.

Lemma 4. The minimum probability P min of any signal
state satisfies

1

P min
� N

(
dmaxwmax

wmin

)�

.

Proof. Let αmax denote a state such that P αmax = maxα{P α}.
Then P αmax � 1

N
, where N denotes the number of signal states;

thus, 1/P αmax � N . Fix a state β. Let (α1 = αmax,α2, . . . ,αm =
β) denote the shortest path from α∗ to β. Such a path always
exists, because the diameter � < ∞.

From the current balance for the state α1, we have

1

P αm
=

∑
γ wαmγ∑

γ ′ P γ ′
wγ ′αm

� dmaxwmax

P αm−1wαm−1,αm

� dmaxwmax

wmin

1

P αm−1
�

(
dmaxwmax

wmin

)� 1

P max
(14)

� N

(
dmaxwmax

wmin

)�

, (15)

where the first inequality follows from the fact
that

∑
γ wαmγ � dmaxwmax, and that

∑
γ ′ P γ ′

wγ ′αm �
P αm−1wαm−1αm , the second inequality follows from the fact
that wmin � wαm−1αm , (14) follows from iterating the inequality
until we reach α1 = α∗, and the fact that m − 1 � �, and the
last inequality follows from 1

P max � N . �
Theorem 1 implies several corollaries.
Corollary 1. (a) Suppose the receptor entropy rate σ̇y = 0.

Then the steady state mutual information Iss = 0.
(b) The receptor entropy rate σ̇y = 0 if, and only if, the

conditional detailed balance

P α
i

P α
j

= wα
j,i

wα
i,j

(16)

holds, i.e., the ratio of the forward and backward transition
rates of the receptor are unaffected by the signal; the signal
dynamics affects only the absolute time scale of the receptor
[16].

Proof. (a) follows 0 = σ̇y � 1
c
Iss � 0. (b) is established

as follows. σ̇y = Iss = 0 implies that (8a) has to be an
equality. Thus, (16) holds. Since σ̇y = 1

2

∑
i,j,α(P α

i wα
i,j −

P α
j wα

j,i) log
wα

i,j

wα
j,i

, (16) implies that σ̇y = 0. �
When Iss = 0, Xt is independent of Yt for all n. However,

Yt may still have information about the past or future signal
states Xm, m �= n. In the following section, we show that when
σ̇y = 0, the entire set of variables {Xnk

: k = 1, . . . ,K � 0} is
independent of Yt for any choice of K and nk � 0. This shows
that when the receptor does not perturb the signal, the receptor
system must produce entropy in order to get any information
about the signal.

In the rest of this section, we establish an additive bound
for the entropy rate. We call C a cover of N , if for all α there
exists βα ∈ C such that (α,βα) ∈ N .

Theorem 2. Let nc denote the size of any minimum cover
for the graph N . Then

Iss � σ̇y

wmin
+ log(nc). (17)
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Proof. Mutual information Iss �
∑

α,i P α
i log (P (i|α)

Qi
) for

any distribution Q [21]. Define Q = 1
nc

∑
β∈Cmin

P (·|β), where
Cmin is any minimum cover for N . Then

Iss �
∑
α,i

P (i|α) log
P (i|α)∑

β∈Cmin

P (i|β)
nc

=
∑
α,i

P (i|α) log
P (i|α)∑

β∈Cmin
P (i|β)

+ log(nc)

�
∑

α

P α
∑

i

P (i|α) log
P (i|α)

P (i|βα)
+ log(nc)

=
∑

α

P αD(P (·|α)||P (·|βα)) + log(nc)

� max
α,β∈N

D(P (·|α)||P (·|β)) + log(nc)

� σ̇y

wmin
+ log(nc),

where βα ∈ Cmin is any state such that (α,βα) ∈ N . The last
inequality follows from (8c). �

Thus, it follows that Iss � min {c σ̇y

wmin ,
σy

wmin + log(nc)}. It
is clear that c > 1/wmin, and grows exponentially with the
diameter �. Thus, when log(nc) is small compared to σ̇y

wmin ,
the second bound is tighter. In particular, for networks where
there exists a state which can be reached from any other state
in one hop, nc = 1; thus, the second bound is always smaller
than the first one, and Iss � σ̇y

wmin . A fully connected network
is an example of a one-hop network.

IV. INFORMATION TRANSMISSION
AT ZERO ENTROPY RATE

We have established that σ̇y = 0 implies that Iss = 0, and
consequently, P α

i = P αPi . In this section, we establish the
following more general result.

Theorem 3. Suppose σ̇y = 0. Let T = {tk : k = 1, . . . ,K}
denote any finite set of time epochs, XT = {Xtk : k =
1, . . . ,K}, and t an arbitrary time epoch. Then

I (XT ; Yt ) = 0. (18)

Proof. We first prove that P(Xt−1 = α,Yt = i) = P αPi ,
i.e., Xt−1 and Yt are independent. Recall that Iss = 0 implies
that P(Xs = α,Ys = i) = P αPi for all s. Thus, the Markov
property implies that

P(Xt−1 = α,Yt = i)

=
∑
j �=i

P(Yt−1 = j,Xt−1 = α)wα
ji

+
∑
β �=α

P(Yt−1 = i,Xt−1 = β)wβα

+P(Yt−1 = i,Xt−1 = α)w̄α
i

= P α
∑
j �=i

Pjw
α
ji + Pi

∑
β �=α

P βwβα + P αPiw̄
α
i .

Next, we use the fact that Iss = 0 implies conditional detailed
balance (16), i.e., P α

i wα
ij = P α

j wα
ji , and the X Markov chain is

in steady state, i.e.,
∑

β �=α P βwβα = ∑
β �=α P αwαβ to rewrite

the first two terms as follows:

P(Xt−1 = α,Yt = i)

= P α
∑
j �=i

Piw
α
ij + Pi

∑
β �=α

P αwαβ + Piw̄
α
i

= P αPi

⎛
⎝∑

j �=
wα

i,j δ +
∑

β

Piw
α,βδ + Piw̄

α
i

⎞
⎠

= P αPi

⎛
⎝∑

j

wα
i,j +

∑
β

wα,β + w̄α
i

⎞
⎠

= P αPi.

Define u = min {{tk : k = 1, . . . ,K},t}, v = max {{tk :
k = 1, . . . ,K},t}. We abbreviate the sequence of random
variables (Xu,Xu+1, . . . ,Xv) as Xv

u, the sequence of values
(αu,αu+1, . . . ,αv) as αv

u, and the probability P[(Xv
u,Yt ) =

(αv
u,it )] = P(αv

u,it ). Then the Markov property implies that

P
(
αv

u,it
) = P

(
αv

t+1|αt

)
P
(
αt

u,it
)

= P
(
αv

t+1|αt

) ∑
iu,...it−1

P
(
αt

u,i
t
u

)
,

= P
(
αv

t+1|αt

)
×

∑
iu,...it−1

P(αu,iu)
t∏

s=u+1

P(αs,is | αs−1,is−1).

From the structure of the bipartite Markov chain
(X,Y) it follows that P(αs+1|αs,is) = P(αs+1|αs), and
P(is+1|αs,is,αs+1) = P(αs+1|αs,is). Moreover, Xs is indepen-
dent of Ys , and Xs+1 is independent of Ys , and it follows that
P(is,αs) = P(is)P(αs) and P(is+1,αs) = P(is+1)P(αs). Isolat-
ing the terms involving iu we get∑

iu

P(αu)P(iu)P(αu+1,iu+1|αu,iu)

= P(αu)
∑
iu

P(iu)P(αu+1|αu,iu)P(iu+1|αu,iu)

= P(αu)P(αu+1|αu)
∑
iu

P(iu)P(αu+1|αu,iu)

= P(αu+1,αu)P(iu+1|αu)

= P(αu|αu+1)P(αu+1)P(iu+1).

One can now combine the term P(αu+1)P(iu+1) with the term
P(αu+2,iu+2|αu+1,iu+1), and sum over the index iu+1, to get
P(αu+1|αu+2)P(αu+2)P(iu+2). The procedure can be repeated
to show that

P
(
αv

u,it
) = P(it )P

(
αv

t+1|αt

)
P(αt )

t−1∏
s=u

P(αs |αs+1).

Next, since X is a Markov chain, it follows that for all t

and k,

P(αt | αt+1, . . . ,αt+k) = P(αt |αt+1).
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Thus, it follows that

P(αt )
t−1∏
s=u

P(αs | αs+1)

= P(αt )
t−1∏
s=u

P(αs | αs+1, . . . αt )

= P(αt
u).

Again, using the Markov property for X, we get

P(αv
u,it ) = P(it )P

(
αv

t+1|αt

)
P(αt )

t−1∏
s=u

P(αs |αs+1)

= P(it )P
(
αv

t+1|αt

)
P(αt

u)

= P(it )P(αv
u).

Thus, it follows that I (Xv
u; Yt ) = 0. Since 0 � I (XT ,Yt ) �

I (Xv
u; Yt ) = 0, we have that

I (XT ,Yt ) = 0.

�
Given this result, it would be natural to ask whether I (Xt,YT )
is also zero for all T = {tk : k = 1, . . . ,K} when σ̇y = 0.
However, we argue that the roles of X and Y are not symmetric.
This is because for I (Xt,YT ) to be relevant, one must have a
perfect memory of the receptor states YT , and maintaining this
memory consumes free energy.

Consider the four-state model described in Fig. 2 where
Xt ∈ {0,1} and Yt ∈ {0,1}, with

w0
0,1

w0
1,0

= w1
0,1

w1
1,0

= c, (19)

i.e., the transition rate of the receptor from 0 to 1 is always c

times greater than the transition rate from 1 to 0, irrespective
of the signal value. From Corollary 1 (b) it follows that
σ̇y = 0, and consequently, Iss = 0. Suppose w0

1,0 	 w1
1,0, and

consequently, w0
0,1 	 w1

0,1, i.e., the rate of change of the
receptor state between 0 and 1 is extremely fast when the
signal state is 0, and very slow when the signal state is 1. Thus,
if one has access to not just the receptor state Yt at a single time
instant but over a time series YT , fast jumps will indicate that
the signal is 0, and vice versa. Thus, the mutual information
I (Xt,YT ) > 0.

Does this example violate the principle that no information
is possible without free-energy consumption? In fact, not.
Access to the time series YT implies perfect memory. Suppose
a two-state receptor keeps a two-period memory. Then the
(Yt−1,Yt ) = (0,1) can transition to the state (1,1) and (1,0);
however, when memory is perfect, the state (1,1) can never
transition to the state (0,1). Thus, the Schnackenberg network
theory [22] implies that the free energy consumed for main-
taining perfect memory is infinite. Our results will continue to
apply if one were to redefine the receptor state Ŷt = (Yt−1,Yt ),
and set up the corresponding Markov chain. In this case, σ̇y

will account for both the free-energy consumption for sensing
and maintaining memory.

10 20 30wm

1

2

3

I ss
/lo

g(
2)

Iss (ws=0.1)
upper bound
Iss (ws=1.0)
upper bound

(b)

(a)

FIG. 2. (a) Single ligand-receptor binding model, with states
(α,i), where the first entry represents the absence (·) or presence
(•) of a ligand, and the second entry represents whether the receptor
is unbound (∪) or bound. The arrows represent transitions with the
rates written alongside. (b) For this model we have generated the data
by numerically diagonalizing the transition matrix. The logarithm is
in natural base. The parameters are wu = 1, we = 0.01. The dotted
lines are the analytical bounds from (5), which are clearly validated.
The triangles represent σ̇y , which diverge with increasing wm, as
opposed to Iss (boxes) which saturate at large wm.

V. NUMERICAL RESULTS

We illustrate our result with a simple model of receptor-
ligand binding. The signal X ∈ {0,1} corresponds to the
absence or presence of a ligand at the receptor site, with
w01 = w10 = ws . The receptor state Y ∈ {0,1} corresponds to
its unbound and bound configurations. The unbound receptor
in the presence of a ligand, i.e., X = 1, binds at the rate
w1

0,1 = wm, and for thermodynamic consistency, the rate of
conformation change into the bound configuration in the
absence of ligand, w0

0,1 = we > 0. A bound receptor unbinds
at the rate w1

1,0 = w0
1,0 = wu. As we see in Fig. 2, the bound

is numerically validated. The upper bound is approached only
close to σ̇y = 0. This is not surprising since our bound (5)
reduces to an equality only if conditional detailed balance is
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satisfied, i.e., the entropy rate is zero. Thus at finite entropy
rates, the inequality is strict. This is true for both the bounds.

The mutual information increases with wm but quickly
saturates since it cannot exceed log(2), the Shannon entropy
of the signal, whereas the entropy rate continues to grow. Iss

is closer to the bound for the higher signal transition rate.
Note that in our analysis we did not consider the mutual

information rate between Y and X because one then has
to account for the free energy associated with maintaining
memory.

VI. SUMMARY OF THEOREMS AND COROLLARIES

Sections III and IV contains a number of theorems and
corollaries, which are the major results in this article. In
this section, we summarize the key results. Definitions of all
quantities are given in Sec. II.

Theorem 1.

Iss � cσ̇y/w
min,

where the constant c depends on signal parameters alone
[Eq. (5) in the main text].

Corollaries. (a) Suppose the receptor entropy rate σ̇y = 0.
Then the steady state mutual information Iss = 0. (b) The
receptor entropy rate σ̇y = 0 if, and only if, the conditional
detailed balance

P α
i

P α
j

= wα
j,i

wα
i,j

holds, i.e., the ratio of the forward and backward transition
rates of the receptor are unaffected by the signal.

Theorem 2.

Iss � σ̇y

wmin
+ log(nc), (20)

where nc is the size of the smallest subset of signal states that
have incoming arcs from all signal states [Eq. (17) in the main
text]. For networks with nc = 1 (for example, a network which
has a “reset” state where any state can collapse to), we have
the tight bound Iss � σ̇y

wmin .
Theorem 3. Suppose σ̇y = 0. Let T = {tk : k = 1, . . . ,K}

denote any finite set of time epochs, XT ={Xtk :k=1, . . . ,K},

and t an arbitrary time epoch. Then

I (XT ; Yt ) = 0,

i.e., the receptor at any instant has no knowledge of the
signal value at any set of points in time—past, present,
or future. [Eq. (18) in main text]. This establishes that for
unidirectionally coupled systems, there is no measurement
without free-energy consumption.

VII. DISCUSSION

We consider the generic dynamics of how chemical in-
formation (ligand) represented as a Markov chain is read by
sensors embedded, for instance, in the physical milieu of the
cell. We focus on the setting where the signal and receptors are
embedded in different physical environments, and therefore,
the receptors cannot affect the signal dynamics. We show that
the free-energy consumption rate of the receptors is bounded
below by the mutual information times a constant (5) that
depends only on properties of the signal dynamics, and is
independent of receptor architecture.

Our results do not contradict the results of Bennett and
others [25] that all computation can be done in a reversible
manner (i.e., without generating entropy). This is because
these computation models require intermediate steps where
the input is first overwritten and then reconstructed [25],
violating our assumption that the signal dynamics is unaffected
by the receptor. In fact, we establish that information at zero
entropy production is only possible if the receptors perturb the
signal. This observation should be relevant to discussions on
Maxwell’s demon [26].

Our study is relevant to a variety of contexts of cellular
information processing involving the ligand-receptor
interactions. Importantly, our work provides a metric for the
cost of dynamics and implies that under the assumptions listed
above, the dynamics of signal measurement should involve
free-energy consumption at the scale of the measuring device,
consistent with the proposal of active mechanics of signal
processing [17].
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