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We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the
sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One
of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness
hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral,
and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for
the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants
in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population
size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is
at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes
it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however,
the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero
selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time
via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach
is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
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I. INTRODUCTION

The statistical physics approach to biological evolution has
attracted much attention in recent decades. Important problems
in such study include the origin of life [1,2], punctuated
equilibrium [3,4], the dynamics and phase diagrams of
quasispecies models with a mutator gene [5–7], and the effect
of finite population size or system size [8–11].

New genes arise due to mutations and evolution works
through mutation, selection, and random drift (random sam-
pling due to the finite size of the population) [8–10]. Tran-
sitions between adaptive sets of traits may involve multiple
mutations separated by neutral or intermediate states with low
fitness. This process is also known as crossing a fitness valley
and is assumed to be relevant to evolution [12–18]. Here we
consider the case of deep valleys, the fitness canyons.

We consider the Wright-Fisher model of the finite popula-
tion evolution [10,19–22]. In a simplified version of the fitness
landscape, only a few m + 1 replicator types are considered
and the mathematical problem is to find the first arrival time of
new mutants with mutation rates μ and the population size N .
We can look at a path of mutations; at the start, we have only
replicators without mutations and we are looking for the time
when the mth mutant appears in the finite population. The
sequences with less than the maximal number of mutations
are referred to as intermediate states. While talking about
the fitness difference, we mean the difference of the fitness
compared with the first mutant. The crossing a fitness valley
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phenomenon plays an important role in the theory of evolution
[9,13] and it has been applied to cancer biology [14]. It is
especially interesting to calculate the mean first arrival time
of double mutants as the simplest nontrivial case and this
topic has attracted a great deal of attention in the literature
[12,15,16,18,23,24].

The evolution of several genome types has the same level of
dynamics complexity as many-body interactions in classical
mechanics and few results are available for the simple case
of metadynamics (e.g., the succession mutation regime, where
the mutations are rare and the majority of individuals belong to
a single type) [25]. The problem of finding the first arrival time
of multiple mutants can be simplified for the zero selection,
which removes most of the interactions in the system, and we
are able to solve exactly some aspects of the original n-body
problem. The first exact expression for a neutral version of
the double-mutant problem was derived in [12]. In [15,16],
exact results for the mean first arrival time of multiple mutants
without selection were derived. In [18], a Moran model was
considered, which is related to the neutral network fitness
models [26–28], and some exact results have been obtained
for intermediate neutral mutants (all the sequences along the
sequence path have the same fitness).

The more difficult question is how to find the first arrival
time for multiple mutants with a nonzero selection for the
intermediate number of mutations and the valley crossing
time for the whole population, even when the intermediate
sequences on the path of sequences are neutral. In [24], the
mean first arrival time problem for double mutants was solved
exactly for any selection type of the intermediate mutant. In
[17], several phases were derived with different scalings for
the valley crossing time of the whole population.
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Taking into account that the solution of the finite population
dynamics is too complicated, we will look at a specific case
of the simple fitness landscape: All the intermediate mutations
are neutral except for the one with either very low (a fitness
canyon) or very high (a fitness hill) fitness. The absolute value
of the fitness difference r is much larger than the inverse of
the population size 1/N . The population dynamics strongly
depends on the location of the hill or canyon on the mutation
path. We investigate the mean first arrival time of multiple
mutants, which is easier to solve than the problem of the fitness
valley crossing by the population. We can assume that the
last mutant has much higher fitness than all the intermediate
sequences and the mean first arrival time in such a case could
be close to the fixation time. We assume that fitness canyons
extend the time periods similarly in both cases (the first arrival
time of the mutant or the fixation time of the mutant) and
our numerics support this point of view for the fitness canyon
crossing of the population.

II. WRIGHT-FISHER MODEL

A. Known results for the mean first arrival time
of neutral mutants

We consider the Wright-Fisher model [9,19–22] for m + 1
sequences. The model studied in [22] corresponds to the case
m = 1. There are unidirectional mutations from the lth mutant
to the (l + 1)th mutant with a probability bl/N . The current
state of the system is described by the set of integers i0, . . . ,im
that show the numbers of mutants of different types and there
is a fixed population size

∑m
l=0 il = N . We replace all the

population via sampling with the parameters ηl to be defined
below. They are chosen to have a proper infinite population
limit as a discrete-time Eigen model [21], thus the sampling
is related to both selection and mutation. In principle, we can
do a sampling just after the selection and before the mutation,
but such a model will not have a proper infinite population
limit like a discrete-time Eigen model or a continuous-time
Crow-Kimura model.

We define the parameters of the sampling ηl , 0 � l � m,

ηl = il(1 + Sl)(1 − ul) + il−1(1 + Sl−1)ul−1∑
n(1 + Sl)in

, (1)

where 1 + Sl denotes the fitness (we take S0 = 0) and ul are the
mutation probabilities. The parameters ηl are slightly modified
at the borders. For l = 0 we omit the term ul−1, while for l = m

we omit the term ul . Equation (1) assumes a directed mutation
scheme for increasing l. We consider mainly the scaling

ul = bl

N
. (2)

The probability of a transition to a new set of integers (from
one generation to the next) î0, . . . ,îm is given by the expression

(η0)î0 · · · (ηm)îm

î0! · · · îm!
N !. (3)

The procedure to carry out the simulation is described in the
Fig. 2 caption with the initial condition that all population are
in the wild type.

Consider the mean first arrival time of the mth mutant, when
we have the same mutation rate u for all the mutants and Sl = 0
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FIG. 1. Fitness along the path of mutations for three intermediate
sequences with m = 3. For the lth mutant we take 1 + Sl at the point
l + 0.5 on our graphics. The fitness of the end-point mutant is always
much higher than that of the intermediate mutants. (a) Population
climbing the fitness hill. (b) Population crosses the fitness canyon.

(neutral case). In [15,16], the following scaling was derived
for the mean first appearance time T of the first individual with
the final mutation in the case of the scaling in Eq. (2),

T ∼ Nn(m), n(m) = 1 − 1

2m−1
. (4)

Let us give the key idea of their derivation, also following
[14]. Consider the Moran model (see [10] and the Appendix),
where the mutation events are N times slower than in the
Wright-Fisher model. We look at the first arrival of the mth
mutant from the original population with pure zeroth-type
mutants. We replace the model by the branching process
with dividing and dying equal rates and some probability
rate ul for the birth of mth mutants from the (m-1)th mutant
during the life period. We distinguish the m-type mutants,
born immediately from the m − 1 types (the founder of the
families), and those that are offsprings of m-type mutants. If
at some moment of time t the zeroth class gives M1 ∼ Ntu0

first type mutants (the founders of the families), every mutant
gives its own offsprings. The total number of such progenies
is ∼ (M1)2 ∼ (Nu0t)2 (this is the key point of the derivation
in [16]). These first type of mutants creates the second type of
mutants with the rate u1. Therefore, at time t there should be
(M1)2u1 second-type mutants and T2 ∼ 1

Nu0
√

u1
, which gives

the scaling in Eq. (4) for our case by Eq. (2).
Consider the time t > T2. We obtain the total number of

progeny of the second type of mutants as M2 ∼ (M1)2u1. The
first third-type mutant arises when M2u2

1u2 ∼ 1, which gives
the result in Eq. (4) for the scaling (2) and m = 3.

We should verify how the scaling in Eq. (4) is modified in
the case of the selection. We will derive the scaling of T when
some |Sl| are large compared with the inverse of the population
size 1/N as well as in the limiting case when |Sl| ∼ 1. We
consider the case of the fitness hill and the case of the fitness
canyon in Figs. 1(a) and 1(b), respectively.

B. First arrival time of double mutants

Let us suppose that we have three different types of mutants:
A, B, and C. Type A can mutate to B with a probability u and
type B mutates to C with probability u and the first type of
mutant has a fitness S1.

In [24] we calculated the mean first arrival time of double
mutants as an integral of the hypergeometric functions. In the
Appendix we derive the following expression for the mean
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first arrival time of double mutants:

T = 2
√

N
�[A] 2F1[A,a,A + 1,1 − 1

1−k
]

�[A + 1](1 − k)ah
, (5)

where � is the Euler Gamma function, 2F1 is a hypergeometric
function, and

a = 2uN, h =
√

S2
1 + 2u2N,

k = 1

2

⎛
⎝1 + S1√

S2
1 + 2u

⎞
⎠,

A =
⎛
⎝1 + S1√

S2
1 + 2u

⎞
⎠uN. (6)

Consider a large value
√

NS1 � 1. We are interested in T1,
the mean first appearance time of the last mutant with a small
difference of the fitness S1

√
N ∼ 1, as well as the mean first

appearance time of the last mutant T2 in the case of S1 ∼ 11.
Following [29], we obtain in Eq. (A2) the asymptotic behavior
of Eq. (5):

T1 ∼ 1/S1, T2 ∼ 1. (7)

Consider the case of a negative S1. Following [29], we
derive the following asymptotic expressions:

T1 = |S1|/(Nu2), T2 ∼ 1/(Nu2). (8)

Figure 2(a) illustrates the accuracy of our asymptotic
expressions. We performed the numerical calculations for the
valley crossing time by half of the population. Figure 2(b)
illustrates that the mean first arrival period grows propor-
tionally to c defined in the Fig. 2 caption. All the numerical
calculations were done by applying the multimodal sampling
to solve Eqs. (1) and (3).
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FIG. 2. We generate the random number with a binomial dis-
tribution with a probability parameter η0 and a number of trials N

to get î0. Then we repeat this procedure for the next mutant type
with a probability parameter η1 with the number of trials N − î0

to get i1. We continue this procedure until the mutant type m − 1
to get im−1 and then we get the number of replicators with the last
type îm = N − ∑m−1

l=0 îl . (a) The mean first arrival time T ≡ T1 for
a double mutant is m = 2, N = 10 000, S0 = 0, and S1 = −c/

√
N .

The solid line is given from our analytical formula (5) and the dots are
obtained from the numerics. (b) The mean first arrival time T ≡ T1 for
half of the population is m = 2, N = 10 000, S0 = 0, S1 = −c/

√
N ,

and S2 = 1/
√

N . The solid line shows a linear function that fits the
numerical data and the dots correspond to the numerical data.
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FIG. 3. (a) Mean first arrival time T ≡ T1 for m = 3, N =
10 000, S0 = 0, S1 = −c/N 3/4, and S2 = 0. The solid line is the
fit of numerics for the linear function and the dots correspond
to the numerics. (b) Mean first arrival time T ≡ T1 for m = 3,
N = 10 000, S0 = 0, S1 = 0, and S2 = −c/N 1/4. The solid line is
the fit of numerics for the linear function and the dots correspond to
the numerics.

In the case of a fitness canyon, the mean first arrival time
grows proportionally to the fitness depth. We will verify that
this effect is also valid for more than two mutants.

Increasing the fitness hill shortens the mean arrival time;
this effect works for the general m case as well, when the hill
is near the end of the mutation path. Below we consider only
the case when bl = 1.

C. First arrival time on the path with fitness canyon and m = 3

Consider the situation when the canyon is located at the
first sequence as shown in Fig. 1(a). Using Eq. (4) [15,16],
we have for the mean number of the first type of mutants at
the time periods like the mean first arrival time period of the
neutral case 〈i1〉 ∼ N3/4. From the definition of η1, we find
that the selection term starts to work when 〈i1〉S1 ∼ 1, thus
Ŝ1 = N−3/4 is the typical scale for S1. For the smaller values
of S1, we have the neutral case result by Eq. (4). Then for
the large S1 � 1/N3/4 the mean first arrival period becomes
|S1−S0|

Ŝ1
times larger, similar to the m = 2 case. Eventually, we

obtain

S1 � 1/N3/4, T1 ∼ N3/2|S1|, T2 ∼ N3/2. (9)

The numerics support these findings [see Fig. 3(a)].
Now let us put the canyon just before the end point of

the path. As the mean arrival time scales N3/4 and it can be
estimated as 1/(〈i2〉/N ), we get i〈i2〉 ∼ N1/4. Then we get
the scale of the selection at the second sequence Ŝ2 ∼ 1/N1/4.
The numerics [see Fig. 3(b)] support the following scalings for
the mean first arrival times for the given S2:

|S2| � 1/N1/4, T1 ∼ N |S2|, T2 ∼ N. (10)

Here we denote the mean first arrival time for the case T2 by
|S2| ∼ 1.

D. Climbing the fitness hill

Consider now a fitness hill located at the first sequence on
the path. With a growing height of the fitness hill, the mean
first arrival time T begins by decreasing and then it grows (see
Fig. 4). The maximal value of the acceleration A (compared
with the neutral case) grows as a logarithm of N (see Fig. 5).
For the larger values of S1, we found that T grows, and for
S1 ∼ 1 there is an N1/4 time increase of the arrival time T ,
which is much smaller than the increase due to the fitness

062405-3



SAAKIAN, BRATUS, AND HU PHYSICAL REVIEW E 95, 062405 (2017)

0 50 100 150 200c
8. 102

1.2 103

1.6 103

2. 103

2.4 103

T

FIG. 4. Mean first arrival time for m = 3, N = 10 000, S0 = 0,
S1 = c/N 3/4, and S2 = 0.

canyon (N3/2). Locating the fitness hill near the end point of
the mutation path again leads to the scaling of the m − 1 = 2
case.

E. Crossing of a fitness canyon for the general m case

In the case of the fitness canyon at the first sequence, we
simply generalize the results of the m = 3 case for the mean
first arrival time,

T1 ∼ N2n(m)|S1|, T2 ∼ N2n(m), (11)

where n(m) is given in Eq. (4). We also investigated the
location of the canyon just before the end point of the
path. We measured also the fixation time of the mth mutant.
Figure 6 illustrates that this time period grows ∼ |S0 − S1|.
The numerics are consistent with the last scaling in Eq. (10).

F. Climbing of the fitness hill for the general m case

If we put a high fitness hill near the end point of the sequence
chain, then the mean first arrival time is shortened to the value
of the m − 1 case. The interesting thing is the acceleration
of the mth mutant arrival due to intermediate mutants with a

4000 6000 8000 10 000
N

1.8

2.0

2.2

2.4

2.6

2.8
A

FIG. 5. Here A is the maximal acceleration of the mean first
arrival due to the intermediate high fitness at the position for m = 3,
S0 = 0, S2 = 0, and S1 > 0 and N is the population size. We are
choosing the value of S1 giving the maximal acceleration (A times)
compared with the neutral case N1 = 1. The solid line is the fit of the
data via logarithmic function and dots correspond to data. In addition,
m = 3, N = 10 000, S0 = 0, S1 = c/N 3/4, and S2 = 0.
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FIG. 6. Mean time of fixation for the third mutant for m = 3,
N = 1000, S0 = 0, S2 = 10, S1 = −c/N 0.75, and S3 = 10/N .

slightly positive difference of Sl , 0 < l < m − 1. As a very
high value of Sl prolongs the mean arrival time, there is
some optimal set of the fitness values, maximally accelerating
the mean first arrival time. It is an interesting problem to
estimate how this acceleration scales with N . We assume a
logarithmic acceleration of the first arrival, as in the m = 3
case. A close problem, the optimization of the fitness values
along the evolutionary dynamic path, was considered in [30].
They considered the case of very small mutation rates, less
than 1/N2.

A more serious problem is the extension of the mean arrival
time due to the fitness hill at the first sequence. In the case
of infinite populations, the probability of far mutants has a
small factor ∼1/|S1|m−2 [31]; then we get an extension of
the arrival time, proportional to the inverse of this probability.
The numerics for the m = 3 case showed that the arrival time
scales about |S1|1.3. According to our numerics, the fitness hill
extends the arrival time much more than the fitness canyon. For
S1 = 1 the mean first arrival time scales as T2 ∼ N2, versus
N7/8 for the neutral case for our scaling by Eq. (2).

III. ALTERNATIVE SCALINGS

While looking at the mean first arrival for the m > 2 case,
we used the scaling in Eq. (4). In general, for the neutral case,
4m − 3 different scalings were found in [15].

A. Rare mutations

The rare mutations correspond to the case

u � 1/N2, T0 ∼ 1/u, (12)

where T0 is the mean arrival time of the (m + 1)th mutant
in the neutral case. We numerically found that the existence
of the canyon drastically (stronger than linearly in the degree
of the height of the canyon) prolongs the mean arrival time in
this case for both the mean first arrival and fixation times (see
Fig. 7).

B. Fast mutations

According to [15], the neutral mutations are fast when

u � 1/N2/m. (13)

In such a case we can apply the infinite population results [see
Eq. (A2)]. We verified that for m > 2 the mean first arrival
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FIG. 7. Mean first arrival time for the third mutant (solid line) and
the fixation time (dashed line) versus the canyon depth k for m = 3,
S0 = 0, S1 = −k/N , S2 = 0, S3 = 0, and u = 1/N2.

time grows with the canyon depth less than linearly:

T ∼ s1/(m−1)

(Num)1/(m−1)
. (14)

IV. DISCUSSION

In this paper we gave a simple formula for the mean first
arrival time of double mutants in the case of double mutants
with selection, using just a hypergeometric function, versus an
integral expression in [24]. We got the asymptotic expression
of a large intermediate selection from our exact result for the
two-mutant case; we then performed an extensive numerical
calculation for the multiple-mutant arrival problem. For the
case of multiple sequences m > 2, we investigated the mean
first arrival time for the path of mutations; when all the
mutations are neutral besides the single one and the absolute
fitness difference of the latter is much larger than the inverse
population size, the difference is either a positive number
(fitness hill) or negative (the fitness canyon). We investigated
the mean first arrival time T . The location of the fitness canyon
(hill) is crucial for the prolongation of T . When the canyon
is located near the original sequence, the T is rather strongly
affected; in the limiting case of fitness difference, T becomes
the square of the neutral case; when the canyon is located
near the last sequence, T is only slightly changed. We gave
analytical formulas for the scaling of the first arrival time when
the canyon is located either at the first sequence of the mutation
path or near the end point.

When there is a high fitness hill Sm−1 ∼ 1 near the end point
of the sequence path, the mean first arrival time is shortened
until the value of the m − 1 case. The situation with a mean
first arrival time is more interesting when there is a fitness hill
just after the original sequence. For the small height of the hill,
T decreases several times, while with a further growth of the
hill’s height T grows much faster than in the case of the fitness
canyon. In the case of the first arrival of the fourth mutant T

is about the square of population size, thus there is an about
N9/8 times acceleration compared with the neutral case. This
acceleration is even higher for the farther mutants.

We also looked at the optimization of the mean first arrival
time, investigated before for the weaker mutation case in [30].
In this work we mainly focused on the first arrival time of a
new mutant, while more relevant for virology and oncology
is the crossing time by the whole population. We assume
that our results are qualitatively correct for the latter case as

well. The fixation time will grow proportionally to the large
fitness difference at intermediate sequences, as it is illustrated
in Figs. 2(b) and 3(a). Much more dramatic is the hill climbing
time, when the hill is located at the beginning of the path.
We assume that our findings together with the results known
about neutral case [16] give the scaling of the mean first arrival
time problem. We have done some numerical calculations for
the fixation, deducing how the time scales with the depth of
the canyon [Figs. 2(b), 6, and 7]. While the most of our
results have been related to the scaling of the mutation
rates proportional to the inverse of population size, we also
considered the case of rare and fast mutations. We verified
that in the case of rare mutations the existence of the canyon
drastically prolongs the mean first arrival time, while the latter
is only slightly affected by the existence of a canyon in the
case of fast mutations. The mean first arrival time, considered
in our article, is a much simpler problem than the calculation
of the finite population size corrections to the mean fitness
[31,32] or the clonal interference phenomenon [33–36].
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APPENDIX: MEAN FIRST ARRIVAL TIME FOR A
DOUBLE MUTANT

1. Derivation of Eq. (5)

In [24], the diffusion approximation was applied to derive
the differential equation for the mean first arrival time of the
double mutant. We looked the Wright-Fisher model with the
parameters

u0 = b/2N, b1 = a/2N, S1 = c/2
√

N. (A1)

We denote by Ti the mean first arrival time when at the start
there are IBi-type alleles. We can write a differential equation
for Ti , following [10]. We introduce

x = i√
N

, Ti = 2
√

Ny(x). (A2)

Then, in [24], the following expression was derived:

y(0) = M(A,b,0)
∫ ∞

0

dzekz

zM(A,b,z)h
(

U ′(A,b,z)
U (A,b,z) − M ′(A,b,z)

M(A,b,z)

) ,

(A3)

where M(A,b,z),U (A,b,z) are Kummer functions and the
parameters are defined as

h =
√

c2 + 4a, k =
(

1 + c√
c2 + 4a

)
1

2
, A = kb.

(A4)
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Consider now the alternative expression using the expression
for the Wronskian (13.2.34) in [29]:

M(A,b,x)U ′(A,b,x) − M ′(A,b,x)U ′(A,b,x) = ex�(b)

xb�(A)
.

(A5)

We used the relation that the Kummer function M equals �(b)
times the Oliver function M . We obtain

y(0) = �(A)

h�(b)

∫ ∞

0
dz

e−(1−k)zU (A,b,z)

zb
. (A6)

Then, using the known expression for the integral (13.10.7)
[taking into account the difference between hypergeometric
functions 2F1 and 2F1; we use the latter, F = F/�(c)],∫ ∞

0
dz t e−ztU (A,B,t)tb−1

= �(b)�(b − B + 1)

�(c)

× z−b
2F1

(
A,b; A + b − B + 1; 1 − 1

z

)
, (A7)

we get eventually

y(0; a,b,c) = �[A] 2F1
[
A,b,A + 1,1 − 1

z

])
�[A + 1]hzb

. (A8)

For the asymptotic behavior of F (a; b; c; z) as z → ∞ with a,
b, and c fixed, we combine (15.2.2) with (15.8.2) or (15.8.8)
of [29].

2. Relation to the infinite population models

Consider the following system of equations for the growing
population with the relative probabilities x1 and x2 for the
first and second mutants, respectively. We drop the population
dilution terms in the equation. First we consider the canyon

case
dx1

dt
= u − Sx1,

dx2

dt
= ux. (A9)

We have also the initial condition x1(0) = 0. We obtain

x1(t) = u

S
(1 − e−St ). (A10)

We calculate the mean first arrival time using the condition
Nx2(T ) = 1, where N is the population size. Then we obtained

x2 = Nu2

(
1

S
T − 1

S2
(1 − e−ST )

)
. (A11)

Holding only the first nonzero term, we derive

N
u2

S
T = 1 (A12)

and Eq. (8) for the mean first arrival time for the canyon with
the depth S.

Considering now the case of the fitness hill S, we get the
equation

N

(
− u

S
T + u

S2
(eST − 1)

)
= 1. (A13)

The principal term is u
S2 e

ST , which gives

T ∼ 1

S
ln

S

Nu2
, (A14)

which is consistent with Eq. (7).
Consider now the canyon crossing with m + 1 mutant types,

where the canyon is again for the first type of mutant case. Now
we obtain an equation similar to Eq. (A12),

N
umT (m−1)

S
∼ 1, (A15)

or Eq. (14).
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