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Coexisting origins of subdiffusion in internal dynamics of proteins
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Subdiffusion in conformational dynamics of proteins is observed both experimentally and in simulations.
Although its origin has been attributed to multiple mechanisms, including trapping on a rugged energy landscape,
fractional Brownian noise, or a fractal topology of the energy landscape, it is unclear which of these, if any, is
most relevant. To obtain insights into the actual mechanism, we introduce an analytically tractable hierarchical
trapping model and apply it to molecular dynamics simulation trajectories of three proteins in solution. The
analysis of the simulations introduces a subdiffusive exponent that varies with time and associates plateaus in
the mean-squared displacement with traps on the energy landscape. This analysis permits us to separate the
component of subdiffusion due to a trapping mechanism from that due to an underlying fluctuating process,
such as fractional Brownian motion. The present results thus provide insights concerning the physical origin of
subdiffusion in the dynamics of proteins.
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Proteins are dynamic structures [1,2] whose internal mo-
tions evolve on a rugged potential energy surface, with minima
separated by barriers of varying heights [3]. The conforma-
tional dynamics are subdiffusive, characterized by the slow
nonexponential relaxation of dynamical observables such as
IR spectra [4], fluorescence fluctuations [5], and principal
component displacements computed from molecular dynamics
(MD) simulations [6]. The mean-squared displacement (MSD)
of a subdiffusive process evolves sublinearly in time,

〈r2(t)〉 ≡ 〈|r(t) − r(0)|2〉 ∼ tα, 0 < α < 1, (1)

in contrast to normal diffusion for which α = 1. Here 〈·〉
denotes either an ensemble or a temporal average, and r
represents the system coordinates. Protein dynamics have been
found to exhibit values of α in the range of 0.1–0.4 [7,8].
Although it is generally agreed that subdiffusion can arise from
the ruggedness of the protein energy landscape [1–3,6], the
high dimensionality of the latter (3N − 6 degrees of freedom
for a protein with N atoms) makes its detailed characterization
difficult [5–10]. Conceptual models of protein subdiffusion
generally fall into two categories. The first involves trapping
on a rugged energy landscape [5,6,10,11], and the second
includes models that are fractal in nature, such as fractional
noise [12–16] or a fractal topology of the energy landscape
[17,18]; in the second category, trapping per se does not play
a role.

The motivation behind trapping models dates back to the
studies of Frauenfelder and co-workers [9] on the rebinding
of CO to myoglobin (Mb) at low temperatures. Based on their
experiments, the authors proposed that Mb is organized into
conformational macrostates composed of clustered substates
and postulated that the energy landscape is organized into a hi-
erarchy of tiers, i.e., valleys separated by progressively higher
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barriers. Further support for the hierarchical landscape model
was provided by subsequent analyses of MD simulations using
principal components [22], inherent structural basins obtained
from quenching of trajectories [10], and conformational transi-
tion networks [17,18]. It has been argued that trapping models
are not fully consistent with existing observations of protein
dynamics under equilibrium conditions, and nonequilibrium
behavior has been proposed [18]. In this paper, we first
consider the properties of hierarchical trapping models and
then relate the analysis to molecular dynamics simulations
of proteins. The results are used to determine whether the
observed subdiffusive behavior requires an intrinsic, possibly
fractal mechanism, in addition to trapping.

We performed 1-μs-long MD simulations of three proteins
to analyze their dynamics. Figures 1(a)–1(c) illustrate the
range of coordinates observed for the three proteins considered
here. To make the analysis of MD trajectory data tractable
without losing essential details, the evolution of 3N atomic
positions is projected onto the first two principal components
(PCs), which contain most of the slow diffusive dynamics;
higher modes tend to correspond to harmonic motions [22–24]
and are not treated explicitly [25]. The projected trajectory
of the Fre-FAD complex in Fig. 2(a) illustrates trapping on
the energy landscape. The dynamics are transiently confined
to different configurational regions with different sizes. The
associated 2D free energy landscape in Fig. 2(b) displays four
main minima, which enclose smaller-sized nested minima.

I. HIERARCHICAL TRAPPING MODEL

To model the influence of trapping on the dynamics, we
begin by introducing a hierarchy of tiers. The ith tier is
composed of valleys with a characteristic size Li separated by
energy barriers with a characteristic value Ei . These valleys
in turn contain smaller valleys that belong to tier i − 1,
with Li−1 < Li , separated by lower characteristic barriers
Ei−1 < Ei , and so on. L1 and E1 represent the lowest tiers. For
simplicity, the potential energy is set to zero everywhere except
at the barriers. Because dynamical memory effects are known
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FIG. 1. Illustration of MD trajectories of the proteins considered in this study: (a) protein G [19] modeled in α-helical conformation;
(b) Rab11a [20]; (c) Fre-FAD complex [21]. Initial structures are shown in ribbon representation, and backbone structures sampled from MD
simulations every 1 ns are overlaid as cyan traces.

to vary between proteins, the dynamics on the landscape are
left unspecified at this stage. They will be identified from
fitting the model to MD simulation data [26]. For illustration,
a Brownian dynamics simulation over a two-tier hierarchy with
square valleys is presented in Fig. 3.

To show how such a hierarchy can lead to effective
subdiffusion, we first consider the case of a single tier
with L1 = L and E1 = E. The protein trajectory is assumed
to be a random walk (RW) initiated somewhere in the
valley, undergoing unhindered diffusion until it reaches the
barrier after some characteristic valley crossing time τ c. The
(Arrhenius) probability of crossing the barrier is p ∝ exp[−E]
(E is nondimensional in units of kBT , where kB is Boltzmann’s
constant and T the temperature). At some characteristic escape
time τ e, the RW overcomes the barrier and crosses to a
neighboring valley. Assuming that successive escape attempts
are uncorrelated, τ e is approximately

τ e � 1

p
τc. (2)

For times in the range τ c < t < τe the RW is effectively
confined to the valley, and the MSD is at a plateau, the value
of which is proportional to the square of the valley size L;

〈r2〉plt ∝ L2, (3)

with a proportionality constant that depends on the geometry
and dimensionality of the system. In the case of a 2D
square lattice, shown in Fig. 3, we have 〈r2〉plt ≡ 1

L4

∫ |x2 −
x1|2dx1dx2 = L2/3, which is a Boltzmann average over the
valley x1,x2 ∈ [0,L] × [0,L] (recall that the energy in the
valley is assumed to be constant). We note that the relation
is independent of the nature of the dynamics within the valley;
i.e., Eq. (3) is a purely thermodynamic relation.

To relate the temporal scales τ to the spatial scale L, we first
recall that for any purely diffusing system, the average length
lc of a classical RW trajectory from entry to first exit for an
arbitrary spatial domain of dimensionality d depends only on
the ratio of the domain volume Ld and the enclosing surface
Ld−1 [27]; i.e., lc = CL, where C is a geometry-dependent
constant. In the special case of a RW on a square system
with isotropic incidence, C = π/4 [27]. Assuming an average

velocity v, the average crossing time is τ c = lc/v = Cv−1L.
For this single-tier case, the dynamics within the domain
will be diffusive unless the underlying dynamical process is
intrinsically subdiffusive, e.g., due to a fractal nature of the bath
[14,15]. In the latter case, we would have 〈r2(t)〉 ∼ tαf , with
αf < 1, and the relation between time and space is effectively
rescaled, so that

τ c = C

v
L1/αf . (4)

Note that the relation corresponding to normal diffusion is
recovered with αf = 1. To ensure dimensional consistency, a
generalized velocity with fractional distance units is used, i.e.,
v ∼ δr1/αf /δt .

Having determined the basic scaling relations, we consider
a multi-tiered hierarchical landscape. The hierarchy assump-
tion (i.e., Ei > Ei−1; Li > Li−1) requires only that E increase
monotonically with L, but does not provide the functional
relation between Ei and Li . However, the relation can
be determined from the MD simulations. To compute the
subdiffusional exponent of the MSD, we recall that each tier
in the hierarchy will have a characteristic escape time τ e

i

determined by Li and Ei = − log pi . Combining Eqs. (2),
(3), and (4) we obtain

〈r2(τ e
i )〉 � C2

(
τ e
i pi

)2αf
. (5)

The reason that Eq. (5) holds approximately for each tier i,
independently of the inner tier structure, is that the inner tier
structure does not significantly impact the average number
of barrier crossing attempts. The essential effect of the inner
barrier hierarchy is to slow the diffusion within the outer
valley, which does not change the probability of being located
near the outer boundary or the average outward flux across
this boundary. Equations (2) and (3) yield values for Li and
pi (and therefore Ei) provided that 〈r2(τ e

i )〉, τ c
i , and τ e

i are
known. These are obtained from MD simulations using a
trajectory postprocessing analysis (see Hierarchical Plateau
Analysis heading in the Computational Methods section). We
find that the relation Ei vs Li is logarithmic [see Fig. 4(b) in
Results]; i.e.,

Ei = E0 + γ log(Li/L0), (6)
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FIG. 2. (a) Evolution of the 1-μs MD trajectory of Fre-FAD
complex projected onto the first two PCs (see text). The vertical
axis corresponds to time, with the markers colored chronologically
from blue to red. (b) Free energy landscape of the Fre-FAD complex
computed from the last 500 ns of the projected MD trajectory shown
in Fig. 1(c) as E/kBT = − log H + c, where kBT is the thermal
energy, H (r) is 2D histogram of trajectory values, and c is an
arbitrary constant chosen so that min{E} = 0. The contours are drawn
corresponding to eight equispaced energy values, at 0.6kBT , 1.2kBT ,
1.8kBT , 2.4kBT , 3.0kBT , 3.6kBT , 4.2kBT , and 4.8kBT ).

with the hierarchy parameter γ ∼ 2–4.5 [28]. To compute the
subdiffusional exponent of the MSD, we use Eqs. (2), (4), and
(6) and write pi in Eq. (5) as a function of τ e

i , i.e., pi =
C3(τ e

i )−γαf /(1+γαf ). This leads to the effective subdiffusive
power-law, as also verified in Brownian simulations shown
in Fig. 6 in Appendix A,

〈r2(t)〉 ∝ t
2

1/αf +γ = tα, (7)

where we have defined the effective subdiffusive exponent
α = 2/(αf

−1 + γ ) and replaced τ e with t (i.e., interpolating
the power law between the discrete times τ e

i ). In the special
case of normal diffusion, where αf = 1, the model predicts

FIG. 3. Brownian dynamics simulations on a model two-
tier energy landscape (inset); L1 = 4, L2 = 16, p1 = 0.01, and
p2 = 0.0001, where pi = exp(−Ei); (black line) MSD of a random
walk simulation, exhibiting two plateaus associated with each tier;
(blue line) MSD for a single tier with valleys of size L2 (e.g.
with p1 = 1); (dotted plots) variable exponent α(t) computed using
finite differences of � log 〈r2(t)〉/� log t whose minima identify the
plateaus. Plateau intervals τ c < t < τe predicted from random walk
theory and identified from simulations (see Computational Methods)
are highlighted in bold. The theoretical plateau location for second
tier (L2

2/3 � 85; see text) is drawn as a dashed line.

the subdiffusive exponent due to trapping alone with

αt ≡ 2/(1 + γ ). (8)

We note that the derivation of Eq. (7) requires the existence of
well-defined plateaus [so that Eq. (2) is valid], which in turn
implies the existence of significant energy barriers (Ei 	 0).
For this reason, setting γ = 0 is not permissible in Eq. (7)
and does not lead to the correct scaling for normal diffusion
in Eq. (7). Numerical tests of Eq. (7) on model hierarchical
landscapes (see Fig. 6 in Appendix A) show that Eq. (7) is
accurate for γ > 1. Additional subdiffusion arising from the
effects of the bath, reflected in αf , will act to decrease the
subdiffusive exponent.

II. APPLICATION TO PROTEINS

We use the hierarchical trapping model to interpret MD
trajectories of three proteins of varying size and complex-
ity (see Fig. 1): a 16-amino-acid fragment of protein G
[19] (247 atoms), a signaling protein from the Ras family
Rab11 [20] (2725 atoms), and the flavin reductase enzyme
(Fre) complexed with flavin adenine dinucleotide (FAD)
[21] studied previously [5,6] (4064 atoms). The simulations
are summarized under Computational Methods and in the
Appendix C.

We apply the hierarchical plateau analysis to MD sim-
ulations extracting the quantities 〈r2〉plt

i , τ c
i , and τ e

i , and
apply Eqs. (2), (3), and (4) to compute estimates for the
characteristic valley sizes Li , the energy barriers Ei , and the
subdiffusion exponent intrinsic to the dynamics, αf (see Fig. 4
and Table II in Appendix B). The barrier energies are in the
range ∼2kBT –5kBT , and the valley sizes shown are between

062403-3



YASMINE MEROZ, VICTOR OVCHINNIKOV, AND MARTIN KARPLUS PHYSICAL REVIEW E 95, 062403 (2017)

FIG. 4. (a) Illustration of hierachical plateau analysis applied to the Fre-FAD complex (see Fig. 8 for plots corresponding to Rab11a and
protein G). (Black solid line) MSD for the projected trajectory; (black dashed line) fit to a constant power law as in Eq. (1), with α = 0.24;
the standard deviation of the MSD is shown in light gray; (dotted blue curve) the time-varying exponent α(t) = d log 〈r2(t)〉/d log t (see
Computational Methods); plateaus extracted from the MSD curve (see Computational Methods) are highlighted in light blue. (b) Characteristic
energy barriers Ei (units of kBT ) vs Li fitted to Eq. (6), yielding the corresponding values for γ . (c) Average crossing time τ c

i vs valley size Li

fit to Eq. (4), yielding the corresponding values for the exponent αf .

∼4 and ∼11 Å [Fig. 4(b)]. The model estimates are in rough
accord with the free energy landscape in [Fig. 2(b)] for the
Fre-FAD complex. Further, Rab11a and Fre-FAD have higher
barriers and smaller valley sizes compared to protein G. This
is consistent with a visual examination of the MD trajectories,
which show that protein G appears more flexible than Rab11a
and Fre-FAD (see Fig. 1), and with the average RMS deviations
of the protein backbones from the average MD simulation
structures, which were 2.32, 0.97, and 0.98 Å for protein G,
Rab11a, and Fre-FAD, respectively; in part, the larger apparent
flexibility of protein G arises from the unfolding of the helix
at the termini [Fig. 1(a)].

The plot of Ei vs Li [Fig. 4(b)] shows the extracted
values for the hierarchy parameter γ in Eq. (6), obtained
from a least-squares fit to the data for protein G, Rab11a, and
Fre-FAD. Substituting γ into Eq. (8) yields αt , the subdiffusive
exponent resulting from the contribution of trapping alone; i.e.,
the exponent that would be observed if the underlying diffusive
process were Brownian. The values for the different proteins
can be compared to the subdiffusive exponents αfit, obtained
by a least-squares fit to the MSDs (Table I). αt is significantly
larger than αfit in all three cases, indicating that trapping
alone cannot account fully for the observed subdiffusion.
Figure 4(c) confirms the power-law relation between τ c

i and Li

in Eq. (4) and provides values for αf , the subdiffusive exponent
corresponding to the inherent dynamics. It is noteworthy that
αf < 1 for all three proteins, indicating that the inherent
dynamical process is not Brownian, but rather subdiffusive.
Further, αf is also significantly larger than αfit, indicating that

TABLE I. Model predictions of the subdiffusive exponents
representing, from left to right: (i) the contribution due to trapping
alone, αt in Eq. (8); (ii) the underlying fluctuations alone, αf ;
(iii) the combined contribution of both mechanisms α in Eq. (7).
For comparison, the subdiffusive exponent αfit is computed by the
least-squares fit to the MSD.

αt = 2
1+γ

αf α = 2
1/αf +γ

αfit

Protein G 0.58 0.26 0.31 0.30
Rab11a 0.60 0.18 0.25 0.25
Fre-FAD 0.37 0.21 0.22 0.24

neither can the inherent process alone account for the measured
subdiffusion, as found for the trapping mechanism. Only the
effective exponent α brought in Eq. (7), which combines
the two sources of subdiffusion, shows excellent agreement
with αfit, demonstrating that both mechanisms are critical for
explaining the subdiffusive dynamics.

III. DISCUSSION

We present an analytically tractable hierarchical trapping
model, consistent with the postulates of Frauenfelder et al.
[9], which shows how a particular hierarchical structure of
the energy landscape provides a source of subdiffusion due to
trapping. The model is general with respect to the geometry of
the energy wells and dimensionality of the energy landscape,
which influence the proportionality constants but not the
functional form of the derived subdiffusive power law [Eq. (7)].
An important distinction between this model and traditional
continuous-time random walk (CTRW) models is that the
subdiffusion is not due to aging, which is essentially the lack
of ergodicity in the dynamics [18]. In the present model, the
subdiffusion arises naturally in the ergodic setting from the
hierarchical arrangement of energy wells and barriers.

While the model uses a single value for the energy and
length scales in each tier of the hierarchy, Ei and Li , realistic
energy landscapes are expected to exhibit distributions of
energy barriers and valley sizes. However, our finding of
distinct plateaus in the MSD computed from the protein
simulations suggests that the distributions of the energy
barriers and the valley sizes are relatively compact. Other-
wise, the plateaus would be smeared out by the temporal
averaging inherent in the MSD computation. The identified
plateau regions were robust with respect to the choice of
the threshold ε (see Fig. 9 in Appendix B), projecting the
dynamics onto different combinations of principal component
vectors (see Fig. 10 in Appendix B), as well as to repeating
the calculation with nonoverlapping trajectory segments (see
Fig. 11 in Appendix B), indicating that they are not artifacts of
dimensionality reduction [29] or noise. These results permit
us to conclude that the distributions of energies and length
scales can be characterized by single values Ei and Li for
each tier i, representing the most probable or average values.
The logarithmic relationship between energy barrier heights
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FIG. 5. Conformational ensembles corresponding to the dominant free energy minima obtained from principal component analysis of (a)
Rab11a [30], (b) Fre [21], and (c) Fre (side view). The ensembles are drawn for Fre in red, green, and blue, in the order of increasing free
energy. For clarity, only two ensembles are shown for Rab11a in red and green. In (a), NBP is the nucleotide binding pocket, which contains
GTP [see Fig. 1(a)].

and valley sizes found for all three proteins considered here,
as described in Eq. (6), provides evidence that the energy
landscape is, in fact, hierarchical.

The dominant conformational macrostates of the larger
proteins, Rab11a and Fre, are shown by clustering the MD
trajectories on the basis of the free energy landscape of the
first three PCs (see Fig. 5). The macrostates are seen to
differ mainly in the conformations of flexible loop regions
Figs. 5(a) and 5(b)] and in the relative positions of secondary
structure motifs, primarily α helices, which do not undergo
significant internal structural changes [Fig. 5(c)] [31]. For the
flavin reductase, the differences between the clusters appear
largest in the vicinity of the FAD binding pocket [Figs. 5(b)
and 5(c)]. These differences could explain the experimental
observation of dynamic disorder in the distance between
the isoalloxazine moiety of FAD and the active site residue
Tyr35 found by Yang et al. [5], since transitions between
the macrostates affect the position of the isoalloxazine ring,
as was suggested on the basis of short MD simulations [6].
Further, if the rates of the flavin reduction reaction by Fre are
substantially different for each macrostate, one would expect
to see dynamic disorder of reaction rates and nonexponential
relaxation of dynamical observables, as described by Frauen-
felder et al. [9] for the rebinding of CO to myoglobin or by
Lu et al. [32] for enzymatic turnovers of cholesterol oxidase
molecules.

We emphasize the conclusion that hierarchical trapping
alone cannot account fully for the observed subdiffusion.
We have consistently found that parametrizing the trapping
model from MD simulation data predicts subdiffusion that is
faster than what is observed by fitting the calculated MSD
directly. For example, projecting the MD trajectory data onto
different principal components (see Fig. 10 in Appendix B)
did not change significantly the value of the trapping exponent.
Further, we found that the size of the valley L does not scale
linearly with the time needed to cross it τc, as would be
expected for Brownian diffusion. This nonlinear scaling law is
consistent across all tiers, for all three proteins. We therefore
assumed that the fluctuating process itself (i.e., independently

of energy barriers) is itself subdiffusive, as captured by the
parameter αf in Eq. (4).

The origin of the inherent subdiffusion could be the
fractal topology of proteins, fractional noise of the unresolved
(“bath”) degrees of freedom, or another, as yet unspecified,
source. This finding is also consistent with the fact that
observations from both experiments and simulations show that
autocorrelation functions calculated for protein dynamics typ-
ically exhibit slow power-law decay [4–6], whereas trapping
models with a truncated distribution of finite energy barriers
lead to a truncated distribution of waiting times, producing
exponentially decaying autocorrelation functions [33].

The present study thus demonstrates that subdiffusion in
protein dynamics originates from multiple physical phenom-
ena. Given that internal protein motions are intimately related
to biological function, the results are expected to be of general
interest in the study of proteins.

IV. COMPUTATIONAL METHODS

Molecular dynamics simulations. The protein structures
for protein G, Rab11, and Fre were obtained from Protein
Data Bank (PDB) files 1GB1, 1YZK, and 1QFJ, respectively.
Unresolved protein coordinates were modeled using the the
program CHARMM [34], and coordinates for the FAD ligand
were taken from the active site of flavodoxin reductase/FAD
complex (PDB ID 1FDR), which is structurally homologous
to Fre. MD simulations in the canonical ensemble were
performed with the program ACEMD [35] for 1 μs for the three
proteins, using the CHARMM energy function [36–38].

To check that the data selected for analysis were equi-
librated, the trajectories were divided into four consecutive
segments of 250 ns, and the subdiffusive exponent was
calculated for each segment. The exponent started from higher
values and relaxed to a constant value in less than 500 ns for
all proteins. Therefore, we parametrized the trapping model
using only the final 500 ns of the MD.

Principal component analysis. The coordinates of the Cα

atoms were extracted from the MD simulation trajectories at
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1-ps intervals. Principal components (PCs) were computed us-
ing the program CARMA [39]. To obtain the coordinates used in
the hierarchical model, the original coordinates were projected
into the first three PCs. Because similar plateau parameters
were obtained using projections on various combinations of
PCs (see Fig. 10 in Appendix B), the main results are presented
in the 2D space of PC1 and PC2 to facilitate visualization of
the corresponding free energy landscape in Figs. 1(d) and 1(e).

Hierarchical plateau analysis. Working in projected coor-
dinates, we calculate the MSD using a moving average,

〈r2(t)〉 = 1

T − t

∫ T −t

0
|r(τ + t) − r(τ )|2dτ, (9)

where T is the trajectory length. For t → T sampling becomes
poor, and thus we only consider the range t < 0.1T ). The
MSDs were fit to a power law as in Eq. (1), using least
squares to obtain the overall exponent αfit, displayed in Table I.
More generally, we consider the exponent α as variable in
time and compute it using a finite-difference approximation
to α(t) = d log 〈r2(t)〉/d log t . MSD plateaus are identified
as local minima of α(t). The onset (τ c

i ) and end (τ e
i ) of the

plateaus, highlighted in Fig. 4(a), are related to the first time
point for which dα(t)/dt < −ε, and the last point for which
dα(t)/dt > ε, respectively, where ε is en empirically tuned
constant, which we set to 0.015. Additional details are given
in Appendix B.
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APPENDIX A: TRAPPING ON A MODEL HIERARCHICAL
ENERGY LANDSCAPE

In this section we illustrate subdiffusion caused by trapping
in a hierarchical structure with an underlying Brownian
process, i.e., with αf = 1. We use a model 2D landscape,
similar to the one in Fig. 3. We consider a maximum of six
tiers, with the valley sizes corresponding to each tier indicated
in Fig. 6 (see legend). The hierarchy is specified using Eq. (6)
with different values for the parameter γ . To generate the
simulation trajectories, we use a discrete 2D random walk
on a square lattice, with stepping probabilities of 0.25 in
each of the four available directions (left, up, right, down).
Figure 6 shows that the agreement between model predictions
and direct calculations is very good. For comparison with a
nonhierarchical case, a simulation with a single tier (L1 = 16,
p1 = 0.000 01) is used, which results in Brownian diffusion
before and after the single plateau.

APPENDIX B: HIERARCHICAL PLATEAU
ANALYSIS (HPA)

Computing crossing times (τ c
i ) and escape times (τ e

i ) in a
multitier hierarchy. The validity of Eq. (5) rests on the fact that

r
2
(t

)

t

FIG. 6. Evolution of the MSD of a Brownian random walker
for 2D landscapes with different hierarchies. The dashed lines
corresponds to the power law 〈r〉 ∝ tαt predicted by Eq. (9) in
the main text, i.e., αt = 2/(1 + γ ), yielding αt = 0.376, 0.463, and
0.602. Horizontal dotted lines indicate theoretical plateau locations
〈r〉plt as calculated from Eq. (3) for L = 16 and L = 32. Brownian
diffusion law 〈r2〉 ∝ t is shown as a dash-dotted line in the case of
a single tier (blue triangles). The MSDs were computed from RW
simulations with 4 × 107 Monte Carlo steps; time t corresponds to
the number of steps. E = ∞ corresponds to an impenetrable barrier.

the time to escape from a valley of size Li is not changed sig-
nificantly by the presence of smaller inner valleys with lower
barriers inside Li . This can be easily seen from a transition-
state theory argument, whereby the ratio of the partition
function of the outer barrier (assuming a small finite barrier
width) to that of the enclosed valley changes only slightly
with the addition of inner barriers, provided that the widths
of the inner barriers are not too large relative to the valleys.
However, the inner barriers affect significantly the kinetics
of motion within the outer valley, and in particular, the time
required to cross the outer valley, which is needed to extract
the valley sizes from the MSD, via Eq. (4).

To apply Eq. (4) to the MSD in the presence of the multitier
hierarchy, we coarse grain the spatial dynamics inside Li .
Specifically, we define a (possibly fractional) coarse-grained
velocity vi , consistent with the units of Eq. (4), as

vi = L
1/αf

i−1 /τ e
i−1, (B1)

and use it in Eq. (4) to define a coarse-grained crossing time
τ̂ c
i as

τ̂ c
i = C

vi

L
1/αf

i = Cτe
i

(
Li

Li−1

)1/αf

= Cτe
i

τ c
i

τ c
i−1

, (B2)

where in the second step we used Eq. (4) to eliminate Li

and Li−1. The only difference between Eqs. (4) and (B2)
is the velocity. Clearly, the inner barriers imply that v 	 vi

(and therefore τ̂ c
i 	 τ c

i ); in fact, the main effect of using vi

instead of v is to remove the relatively faster equilibration of
trajectories within the inner valleys. Otherwise, the apparent
valley crossing time τ c would appear too low. More specif-
ically, it would be “contaminated” by frequent encounters
with the same boundary due to transient confinement near
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FIG. 7. Application of plateau identification to Brownian motion
simulations in a single tier L = 4 and p = exp(−E) = 0.01. The
identified plateau is marked in a light blue block, and the theoretical
value for the plateau escape time τ e is ∼ L/p = 40.

the tier-i boundary by the inner barriers, which would prevent
estimating Li from the MSD. This effect is seen in Fig. 3,
where, for the two-tier case, the second plateau appears two
orders of magnitude later in time than the plateau in the
single-tier case. Solving Eq. (B2) for τ c we obtain

τ c
i = 1

C
τ̂ c
i

τ c
i−1

τ e
i−1

. (B3)

τ̂ c
i is obtained directly from the MSD by analyzing its temporal

finite differences, as described below. In practice, Eq. (B3) is
applied recursively for each tier i, starting at tier 1, for which
τ̂ c

1 = τ c
1 .

The onset (τ̂ c
i ) and end of the plateaus (τ e

i ) in the MSD are
identified as the first point at which �α(t)

�t
< −ε and the last

point at which �α(t)
�t

> ε, respectively, where ε is an empirical
threshold, taken here to be 0.015, and �’s indicate that a
finite difference approximation to the derivative was used. This
method of locating plateaus in the MSD curves was validated
by applying it to 2D model potentials (see Fig. 7).

HPA applied to Rab11 and protein G. Figure 8 shows the
plateaus identified from the MSD curves of proteins Rab11a

(a)

(b)

FIG. 8. Illustration of hierarchical plateau analysis applied to (a)
Rab11a and (b) protein G; black solid line, MSD for the projected
trajectory; black dashed line, fit to a constant power law with α =
0.25 and 0.30 for Rab11a and protein G, respectively; the standard
deviation of the MSD is shown in light gray; blue, the time-varying
exponent α(t) (see Computational Methods); plateaus extracted from
the MSD curve (see Computational Methods) are highlighted in light
blue.

and protein G using hierarchical plateau analysis, marked with
light blue blocks. The results of HPA applied to each of the
three proteins are summarized in Table II.

Sensitivity of HPA to ε. To evaluate the sensitivity of HPA
on the choice of plateau threshold parameter ε, we performed
HPA on the Fre-FAD complex using five values of ε in the

TABLE II. Tier values extracted via hierarchical plateau analysis of the MSDs calculated for the projected MD trajectories for protein G,
Rab11a, and the Fre-FAD complex. Tier i = 1 corresponds to the first plateau in the MSD.

Protein G Rab11a Fre-FAD
247 atoms 2725 atoms 4064 atoms

i τ c
i τ e

i Ei Li τ c
i τ e

i Ei Li τ c
i τ e

i Ei Li

(ps) (ps) (kBT ) (Å) (ps) (ps) (kBT ) (Å) (ps) (ps) (kBT ) (Å)

1 9.0 125 2.63 5.43 9.0 350 3.66 4.55 9.0 325 3.59 4.54
2 32.1 625 2.97 6.95 12.3 525 3.76 5.00 13.2 625 3.86 5.02
3 50.7 925 2.91 7.67 16.4 725 3.79 5.19 17.5 950 3.99 5.20
4 66.2 2250 3.53 8.47 25.2 1250 3.91 5.50 22.3 2250 4.61 5.53
5 84.3 5250 4.13 9.77 38.5 3000 4.36 6.05 34.7 4500 4.87 6.09
6 77.5 7000 4.50 6.78 46.6 7000 5.01 6.42
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FIG. 9. Barrier energies and valley sizes (Ei vs Li) for the Fre-
FAD complex obtained from HPA using different values of parameter
ε (see text). The trapping exponent αt was computed from Eqs. (6)
and (8).

range [0.01,0.03]. Figure 9 shows that the corresponding val-
ues of αt are essentially unchanged, indicating the robustness
of the obtained exponents.

Sensitivity of HPA to the choice of principal components.
To assess the sensitivity of HPA to the choice of the principal
component vectors (PCVs), we repeated the analysis of the
Fre-FAD complex MD trajectories using the three possible
pairs of PCVs from the set of the three PCVs corresponding
to the largest eigenvalues. HPA was performed on each
projection, and the values for Ei and Li were extracted at
each tier i. The corresponding trapping exponents αt , shown
in Fig. 10, do not vary significantly across the three PCV
projections and suggest that the conclusions are robust.

Convergence of simulations. To assess the convergence of
the results, we split the equilibrated MD trajectory of the
Fre-FAD complex into two subtrajectories of equal lengths,
and computed α(t) and the tier values Ei and Li for each
subtrajectory (see Fig. 11). The resulting plateaus were similar
and lead to essentially the same scaling constants.

un
it

s 
of

FIG. 10. HPA of Fre-FAD complex simulations projected onto
three 2D principal component eigenvector (PCV) spaces, 1–2, 2–3,
and 1–3, with the PCVs numbered in the order of decreasing
eigenvalue. Barrier energies and valley sizes (Ei vs Li) are plotted
for the different projections, and αt is computed from Eqs. (6)
and (8).

FIG. 11. Analysis of Fre-FAD complex simulation for two
consecutive subtrajectories of 250 ns each. (Top) α(t) (the time-
dependent subdiffusive exponent of the MSD) calculated for the first
and second half of the full trajectory, exhibiting similar behavior;
(bottom) plateau values (Ei vs Li) extracted from HPA analysis run
on the two subtrajectories. Both trajectories exhibit a similar power
relation.

APPENDIX C: DETAILS OF MD SIMULATIONS

Protonation states of titratable residues were assigned using
the program PROPKA [40]. The resulting protonation states
were the same as those in pH-neutral solution. The structures
were immersed in preequilibrated cubic boxes with TIP3 water
molecules, ensuring an environment of solvent molecules
between the protein and the nearest box boundary of at
least 11 Å. From the set of water molecules that were at
least 5 Å away from the proteins, some were replaced with
Na+ and Cl− ions to achieve a charge-neutral system with a
concentration of about 100 mM. The CHARMM22 force field
with CMAP correction [36] was used for all simulations. Initial
force-field parameters for FAD ligand were obtained from the
http://www.paramchem.org server using CGENFF tools [37],
and refined using the FFTK software [41] for visual molecular
dynamics [42]. Each solvated system was equilibrated in the
NPT ensemble at 300 K and 1 atm for 1 ns with weak
harmonic positional restraints acting on the heavy protein
atoms, to allow the solvent atoms to relax around the protein,
and to adjust the system volume to the imposed pressure.
An additional 1 ns of equilibration was performed without
harmonic restraints. For these (equilibration) and for all
subsequent (production) simulations, the Langevin thermostat
with a small friction coefficient of 0.1/ps was used. Such
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a small value ensures that the protein dynamics are only
slightly perturbed by the thermostat, while still maintaining
a prescribed temperature. The barostat was then turned off (to
increase simulation speed), and the systems were simulated
in the canonical ensemble for 1000 ns for protein G, Rab11,
and Fre-FAD. For these production simulations, the following
long-range force options were used. The cutoff for the van
der Waals (VDW) and short-range electrostatic interactions
was 9 Å, and the VDW interactions were smoothly scaled to
zero for interatom distances in the range 7.5–9 Å using the

CHARMM cutoff function [34]. Long-range electrostatics were
reevaluated at every other simulation step using PME with
a multiple-step RESPA integrator. The masses of hydrogen
atoms were increased to 4 amu; the masses of the atoms
bonded to the hydrogens were decreased to keep the total mass
unchanged; all bonds involving hydrogens were constrained
using the SHAKE/RATTLE algorithms [43]. These adjustments
allow the simulation step to be increased to 4 fs. Each
simulation required about 5 days on a workstation equipped
with a NVIDIA GTX780 graphical processor.
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