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Fluctuation relations between hierarchical kinetically equivalent networks with Arrhenius-type
transitions and their roles in systems and structural biology
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The legality of using simple kinetic schemes to determine the stochastic properties of a complex system
depends on whether the fluctuations generated from hierarchical equivalent schemes are consistent with one
another. To analyze this consistency, we perform lumping processes on the stochastic differential equations and
the generalized fluctuation-dissipation theorem and apply them to networks with the frequently encountered
Arrhenius-type transition rates. The explicit Langevin force derived from those networks enables us to calculate
the state fluctuations caused by the intrinsic and extrinsic noises on the free energy surface and deduce their
relations between kinetically equivalent networks. In addition to its applicability to wide classes of network
related systems, such as those in structural and systems biology, the result sheds light on the fluctuation relations
for general physical variables in Keizer’s canonical theory.
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I. INTRODUCTION

Two contraction theories aimed at exploring hierarchical
kinetic schemes in biological systems have recently been
rather active. In systems biology (SYB), the attempt to extract
the key dynamics of complex networks has boosted the
study of lumping analysis (LA) originating in the petroleum
industry [1–6]. In structural biology (STB), the quest to
identify metastable states of macromolecules has given birth
to methods like geometric clustering [7,8], kinetic cluster-
ing [9,10], and automatic algorithms for the discovery of
kinetically metastable states [11,12]. Although the system
scales and the objects to contract (biochemical species versus
molecular metastable states) in those two fields are far apart
from each other, the mathematics and strategies adopted are
similar. For instance, the transition matrix T used in STB is
related to the rate constant matrix M of the rate equation
[see (1) below] in SYB by T(τ ) = eMτ with a short time
span τ [13]. The kinetic clustering in STB may contract
geometrically dissimilar conformational states into a merged
state [10], just as the approximate lumping in SYB may unify
physically unrelated states into a lumped one [14]. When
the contraction is based on temporal difference, separating
states by time scale in the lumping process in SYB [6] is
analogous to clustering metastable states via the eigenvectors
of T in the Perron cluster analysis method in STB [15]. The
theories and algorithms independently developed in these two
fields have collected fruitful information for understanding the
relations between hierarchical dynamics, however, solely on
the level of averaged behavior. On the level of fluctuations,
Keizer pointed out some relation [16], which nevertheless is
restricted to hierarchical dynamics connected by invertible
transformations. For noninvertible lumping processes, such
as those used in the above biochemical problems, it lacked
a systematic study until the recently developed stochastic
lumping analysis (SLA) [17].

A low-dimensional network prevalently used for account-
ing for the experimental data of a complex system can usually
be coarse grained from other higher-dimensional networks.
If two networks are equally good at describing those data,
they are often anticipated to be kinetically equivalent (KE)

to each other, which is the core condition for establishing
the theory of LA. Under this condition, the mean dynamics
of two networks are “indistinguishable,” in that they exhibit
identical deterministic dynamics after being projected to a
desired reduced space. The traditional LA has succeeded in
revealing a variety of relations between the mean dynamics
of KE networks, which, however, evoke further questions
about the relations between their fluctuations. Issues related
to these questions include the possibility of resolving hidden
network structures by fluctuations, the criteria for consistent
fluctuations during model selection, and whether and when
hierarchical KE models give the same conclusion to a
fluctuation related system property. One step to clarify these
questions has been achieved by the SLA, which has unraveled
the duality of indistinguishability in the mean dynamics
and fluctuations of KE networks under intrinsic noises and
derived various fluctuation relations between those networks
for extrinsic noises [18]. These results are attributed to the
introduction of the lumping concept from the rate equation in
the traditional LA into the chemical master equation and the
stochastic differential equation. When fluctuations are small,
the noise effects from the latter two equations can be unified
in a Langevin formalism with a hierarchical stochastic force.
Despite the generality of that formalism, the challenge of
obtaining concrete Langevin forces from real systems makes
it difficult to see how this abstract theory works in practice.

In this study, we derived that force from the free energy fluc-
tuations for networks whose states undergo an Arrhenius-type
transition, which is fundamentally rooted in statistical physics
and appears widely in nature [16]. With this explicit force
form, we extracted several fluctuation relations between KE
networks. To give a concrete illustration, these relations were
elucidated on the example of the conformational change of
proteins, such as biological receptors. Fluctuation issues are of
special interest for this kind of protein because they are crucial
for the reliability of biological information processing [19–23].
These fluctuations can arise from the small copy number
of a protein on a cell membrane (intrinsic noises) or the
environmental stochasticity originating in the electrolyte so-
lution (extrinsic noises) [18]. Theoretically, we proved several
equalities and inequalities for hierarchical fluctuations caused
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by different types of noise within the framework of Langevin
formalism and the generalized fluctuation-dissipation theorem
(FDT) [16], and provided various biological examples for
these relations. Numerically, we carried out simulations in
the equilibrium and nonequilibrium regimes of fluctuation
distribution to confirm the analytically derived relations and
explore further relations beyond them. On the one hand, the
results unveil how fluctuations of different levels of contracted
KE systems are or should be related, which gives a theoretical
basis for the consistency of using kinetic schemes. On the other
hand, they serve as a prototype example for understanding the
fluctuation relations between hierarchical dynamics of general
physical variables in Keizer’s canonical theory. The evolution
of fluctuations in that theory is determined by the linearized
rate equations associated with an Arrhenius-type transition
between states, which has the same mathematical structure as
those discussed in Sec. II C below.

This work is structured as follows: For the theoretical part,
in Sec. II A we discuss the relations between the covariances
of driving and response in a single network subject to a noise.
In Sec. II B these relations are proved to be structurally the
same as those for judging the distinguishability between two
networks. In Sec. II C we derive the Langevin force for rate
equations whose rate constants have an Arrhenius form. In
Sec. II D the SLA is used to exploit the fluctuation relations
for KE networks whose states undergo the above Arrhenius-
type transition. In Sec. II E these relations and the effective
strengths of Langevin forces are investigated for several basic
kinds of stochastic driving, including coherent, incoherent, and
anticoherent free energy variations. For the numerical part, in
Sec. III simulations are performed to demonstrate the above
theoretical predictions. At the end we give a discussion in
Sec. IV and a conclusion in Sec. V.

II. THEORY

A. Fluctuations in stochastic differential equations

Let kinetic scheme A be an n-dimensional network in which
the evolution of states is governed by the rate equation

dN
dt

= MN or
dNi

dt
=

n∑
j=1

kjiNj − kijNi. (1)

Here Ni is the population of the ith state, kij denotes the rate
constant from state i to j, kii ≡ 0 for all i, and M represents an
indecomposable rate constant matrix with the entries Mij ≡
kji − ∑n

k=1 kikδij , where δij is a Kronecker δ, which is 1 for
i = j and 0 elsewhere. The total population,

∑n
i=1 Ni , in (1) is

conserved, and M is a noninvertible matrix of rank n − 1. If the
system is subject to noises, the sure variable N will be replaced
by a random variable N̂ = N + δN with the fluctuation δN
around the mean dynamics N, where N̂ obeys the stochastic
differential equation

dN̂
dt

= MN̂ + f, (2)

with a stochastic force f. Suppose this force is a Gaussian
white noise obeying

〈f(t)〉 = 0 and 〈f(t ′)fT(t)〉 = �δ(t − t ′), (3)

with a symmetric, positive semidefinite, and generally time-
dependent covariance matrix �. Then the conditional covari-
ance of δN is [17]

σ ≡ 〈δNδNT〉 =
∫ t

0
eMτ�(eMτ )T dτ, (4)

where (eMτ )
T

denotes the transpose of eMτ and σ and �

stand for σ (t) and �(t − τ ), respectively. For simplicity,
the time argument is not explicitly given in most variables
throughout this paper, unless it could cause confusion, such
as the time difference τ between σ (t) and �(t − τ ) in the
same equation (4). As � is symmetric, the integral in (4) gives
a symmetric σ . Since f and subsequently δN are Gaussian
random variables, their second moments, � and σ , are proper
candidates for characterizing the fluctuations of driving source
and response, respectively.

Taking the time derivative of σ in (4), it yields

dσ

dt
= Mσ + σMT + �, (5)

where σ ≡ σ (t) and � ≡ �(t) do not have a time difference
as those in (4). If dσ/dt = 0, (5) is reduced to

Mσ + σMT = −�. (6)

If the � in (5) varies with time, (6) can be used to calculate the
equilibrium covariance, to which the σ in (5) will converge
when � is frozen at an instantaneous time point t . At different
t , (6) has different � and σ . That time-dependent σ derived
from (6) is distinct from the evolution of σ calculated from
(5). Their deviation will be small, when the � in (5) varies
slowly with time in comparison with the relaxation caused by
M, so that the dynamics is close to an adiabatic process. The
deviation is a consequence of the fact that the σ in (4) and (5)
depends on the history of �, while that in (6) is merely the
outcome of an instantaneous �. Specifically, if the � in (5) is
time independent, (6) is known as the generalized FDT at the
equilibrium state of (1) [16] or the Lyapunov equation in the
control theory. A time-independent � is the prerequisite for
the N̂ in (2), or δN, to have an equilibrium distribution.

Whether � and σ can be inferred from each other depends
on their temporal properties. According to (6), if � is
time independent and M were invertible, � and σ would
determine each other (see Appendix A). Since the M in (1)
is noninvertible, the σ in (6) can uniquely decide �, but not
vice versa (see Appendix A). According to (4) and (5), given a
time t , “�(t ′) = 0 for all t ′ ∈ [0,t]” implies “σ (t ′) = 0 for all
t ′ ∈ [0,t]” and vice versa (see Appendix A). For simplicity, it
will be briefly expressed as

� = 0 ⇔ σ = 0. (7)

Here and throughout this paper, the symbol “0” denotes a null
matrix. Relation (7) means that if the stochastic force is absent,
an ensemble of systems governed by (2) and starting with
an identical initial state will have zero fluctuations, and vice
versa. Notice that (7) has t ′ ∈ [0,t] individually on the both
sides of the implication “⇔.” It is not a pointwise relation, and
thus cannot be understood as “�(t ′) = 0 ⇔ σ (t ′) = 0” at any
given t ′ ∈ [0,t], because an instantaneous σ depends on the
history of �.
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If only the variance of fluctuations is of concern, one can
consider a diagonal matrix V which has the same diagonal
entries as σ . Since the transformation (4) from � to σ is linear,
there exists a simple ordering relation (Appendix A),

� �� 0 ⇒ σ �� 0 ⇒ V �� 0. (8)

Therein, the symbol �� can be one of the following relations:
“>” (positive definite), “<” (negative definite), “�” (posi-
tive semidefinite), “�” (negative semidefinite), or “=” (null
matrix). As in (7), each �� in (8) holds individually for all
t ′ ∈ [0,t]. Notably, the � in (7) and (8) are not restricted to the
positive definite condition in (4), because they will be used to
derive other similar relations in (18), (19), and (40) later.

B. Stochastic lumping analysis on stochastic
differential equations

Let kinetic scheme A′ be another network, which is n′-
dimensional (n′ � n) and whose rate equation and stochastic
differential equation are

dN′

dt
= M′N′ or

dN ′
a

dt
=

n′∑
b=1

k′
baN

′
b − k′

abN
′
a, (9)

dN̂′

dt
= M′N̂′ + f′, (10)

respectively, with a sure variable N′, a random variable N̂′ =
N′ + δN′, and an indecomposable rate constant matrix M′.
Here, δN′ is the fluctuation of N̂′ around N′ and f′ is again a
Gaussian white noise with the covariance �′, which generates
a conditional covariance σ ′, as the � in (3) generates the σ in
(4).

If there exists an n′ × n lumping matrix U which can merge
states in A into states in A′, such that M and M′ obey

UM = M′U, (11)

we say A is (exactly) lumpable and can be lumped into A′
(Appendix B) [1,17]. Under condition (11), A and A′ are KE
to each other, in that the contracted dynamics, UN, of (1)
is identical with the dynamics, N′, of the contracted system
(9). With this property, the dynamics N and N′ are called
“indistinguishable.” In terms of the rate constants in M and
M′, the KE condition (11) can alternatively be expressed as
(B1) in Appendix B. For the problems considered below, it is
sufficient to focus our discussion on the proper lumping, for
which each column of U is a standard unit vector [see example
(B2) in Appendix B].

The KE condition (11) only gives a constraint between
the mean dynamics (1) and (9), but not between the stochastic
forces f in (2) and f′ in (10). Thus, how this condition affects the
fluctuations of UN̂ and N̂′ is unclear from the traditional LA.
The difference between these fluctuations can be quantified
by [17]

σ diff ≡ 〈δN′δN′T〉 − 〈δ(UN)δ(UN)T〉

= σ ′ − UσUT =
∫ t

0
eM′τ�diff(e

M′τ )T dτ, (12)

where σ diff and �diff denote σ diff(t) and �diff(t − τ ), respec-
tively, with a time difference τ as that between the σ and � in

(4). Therein, the generally time-dependent symmetric matrices

�diff ≡ �′ − U�UT (13)

and σ diff stand for the differences of driving and response,
respectively, between two KE systems. The simple integral
form in (12) is valid only for comparing two KE networks,
because condition (11) has been used in the last equality of
(12) [17].

Applying U and UT to the left and right hand sides of (5)
and making use of (11) yields the lumped fluctuation equation
of A,

dUσUT

dt
= M′UσUT + UσUTM′T + U�UT. (14)

In analogy to (5) of A, the σ ′ of A′ follows

dσ ′

dt
= M′σ ′ + σ ′M′T + �′. (15)

Subtracting (14) from (15), one obtains

dσ diff

dt
= M′σ diff + σ diffM′T + �diff, (16)

which, under the condition dσ diff/dt = 0, is reduced to

M′σ diff + σ diffM′T = −�diff . (17)

Although M is not explicitly seen in (12), (16), and (17), this
matrix does affect those equations, because some parts of them
can be reexpressed as M by using (11).

Equations (12), (16), and (17), for comparing the fluctua-
tions between two systems, have exactly the same structures
as (4)–(6), for describing the fluctuations of a single system.
Hence, one has

�diff = 0 ⇔ σ diff = 0, (18)

in analogy to (7), where �diff = 0 and σ diff = 0 hold indi-
vidually for all t ′ ∈ [0,t]. Despite that analogy, the meanings
of (18) and (7) are rather different. The equality � = 0 in
(7) represents the absence of a stochastic force in a single
system. By contrast, the equality �diff = 0 in (18) refers to the
indistinguishability between the covariances � and �′ of two
systems, whose stochastic forces are generally nonzero and can
even be time dependent. To obtain equilibrium fluctuations, �

and �′, rather than �diff , must be constant in time. Let Vdiff

be a diagonal matrix whose diagonal entries are the same as
those of σ diff . With the same argument as that for (8), one has

�diff �� 0 ⇒ σ diff �� 0 ⇒ Vdiff �� 0, (19)

where each �� holds individually for all t ′ ∈ [0,t].
As in general contraction theories, a lumping process will

cause information loss, because U is not an invertible transfor-
mation. Given a low-dimensional M′, there are infinitely many
U and M which satisfy (11). Even when U has been selected,
there still exist infinitely many M which can be lumped into
that M′ by the same U. That is because condition (11) does
not give a constraint to all rate constants in M, as easily seen
from its equivalent expression (B1). Likewise, for a given �′,
infinitely many U and � can fulfill �diff = 0. Even when both
�′ and U are known, � cannot be uniquely pinned down from
�diff = 0.
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FIG. 1. A schematic free energy landscape has two minima,
which may represent two conformations of a protein, such as the
bound and the unbound state of a biological receptor or the open
and the closed state of an ion channel. The transition dynamics
between these two states can be described by a two-dimensional
kinetic scheme, whose rate constants kij are related to the activation
energies Eij by the Arrhenius equation (21).

The theory discussed so far has focused on closed systems
(1), which have a conserved total population. However, the
formalism also applies to open systems which have some time-
independent Ni in (1) and thus violate that conservation law.
For open systems, the equilibrium states in the above derivation
should be replaced by steady states. If � and �′ vary with
time, (2) and (10) are time-dependent Ornstein-Uhlenbeck
stochastic processes, which are not stationary. If they are
constant in time, these two equations describe the commonly
known Ornstein-Uhlenbeck processes. In the following, we
consider an Ornstein-Uhlenbeck process in a closed network
system.

C. Langevin formalism for networks with an Arrhenius-type
transition rate

A protein is often regarded as an n-state system, when its
free energy surface can effectively be envisioned as having
n minima (see an example for n = 2 in Fig. 1). Let Ei be
the free energy of the ith state and suppose the transition
between different states obey a rate equation as (1). Here, it is
convenient to interpret the Ni in (1) as the probability of finding
the protein in its ith state. If the free energies at these states vary
stochastically, the energy vector E = [E1, E2, . . . , En]T will
fluctuate around its mean by δE = [δE1,δE2, . . . ,δEn]T. It
leads to the fluctuations of the rate constants between different
states, which has a similar effect as the fluctuations in potential
barriers [24–26] and dynamical disorder [27,28], caused
either by thermal noises or general stochastic processes. The
energy fluctuations δE will then lead to the state fluctuations,
δN = [δN1,δN2, . . . ,δNn]T, around the ensemble mean, N =
[N1, N2, . . . , Nn]T.

To find a connection between δE and δN, let us replace
the mean values Ni and kij in (1) by N̂i = Ni + δNi and
k̂ij = kij + δkij , respectively. In the first-order perturbation
around the equilibrium states N e

i of Ni , the values of δNi

satisfy (Appendix C)

dδNi

dt
=

n∑
j=1

[(
δkjiN

e
j − δkijN

e
i

) + (kjiδNj − kij δNi)
]
,

(20)
and are constrained by the conservation law

∑n
i=1 δNi = 0.

Assume that the rate constants in (20) have the Arrhenius
form,

kij = Aij e
−βEij = Aij e

−β(Emax
ij −Ei ), (21)

where Eij is the activation energy from state i to j, Emax
ij

denotes the elevation of the free energy barrier between these
two states (Fig. 1), Aij represents the pre-exponential factor,
and β = 1/(kBT ) stands for the inverse temperature, with
the Boltzmann constant kB and the absolute temperature T .
Therein, Emax

ij and Aij are symmetric, where the former arises
directly from its definition and the latter is a consequence
of the microscopic reversibility [16]. Replacing Emax

ij by
Emax

ij + δEmax
ij and Ei by Ei + δEi in (21), one obtains up

to the first-order perturbation the equality

δkij = −Aij e
−β(Emax

ij −Ei )β
(
δEmax

ij − δEi

)
= kijβ

(
δEi − δEmax

ij

)
. (22)

Additionally, the equilibrium probabilities N e
i and N e

j in (20)
fulfill the detailed balance condition,

kijN
e
i − kjiN

e
j = 0. (23)

Substituting (22) and (23) into (20), it yields a Langevin-type
equation (Appendix C),

dδN
dt

= M
(
δN + β De

NδE
)
, (24)

where De
N is a diagonal matrix whose ith diagonal term is N e

i .
This equation describes the fluctuation of N̂ of a stochastic
system around the mean N of an ensemble of identical systems,
when N has reached equilibrium. Notice that even when N is
at equilibrium, the distribution of N̂ in the ensemble might
not have arrived at an equilibrium shape. A commonly studied
case is that all systems start with an identical initial state N̂ and
accordingly have an initial distribution like a Dirac δ function.
In such an ensemble, the covariance of δN will initially be
conditioned at zero and evolve as (4). If these identical N̂ are
exactly the equilibrium state of (1), the δN of each individual
system in the ensemble is governed by (24).

Combining the stochastic term δN in (24) with the deter-
ministic term N in (1) leads to a stochastic differential equation
as (2), with the specific form of stochastic force

f = β MDe
NδE. (25)

Although (25) looks complex, it is independent of δN and
therefore is an additive noise, which does not suffer from the
lto-Stratonovich dilemma [18]. According to (25), different
M will generate different f from the same δE and lead
subsequently to different σ in (4). In this respect, measuring
fluctuations δN induced by δE is instructive for understanding
M. This kind of relation arises naturally from the first-order
expansion in general perturbation theories. It is reminiscent
of the traditional FDT, which connects the microscopic fluc-
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tuations with the macroscopic relaxations (see the Discussion
section).

In (24) and (25), δN, δE, and f are n-dimensional vectors.
Owing to the conservation of total probability, the degree of
freedom of δN in (24) is reduced to n − 1. If the n components
in δE are independent from one another, the degree of freedom
of f will also be n − 1, because f is related to δE by the rank
n − 1 matrix M in (25). For n = 2, this reduction in the number
of driving components is equivalent to taking the free energy
difference F12 ≡ E1 − E2 as the single stochastic driving
source in a two-state receptor system (Appendix C) [29].
Notably, the term δEmax

ij in (22) has disappeared in (24). That

means, to the first-order perturbation, the fluctuations of N̂ do
not depend on the vibrations at the energy maxima along the
transition paths, but only on those at the local minima, δEj .
Therefore, the state fluctuations driven by δEmax

ij and δEi are
to the first-order perturbation identical with those driven solely
by δEi . This identity is rather general and independent of the
type of noise assigned to δE.

If δE is a Gaussian white noise with

〈δE(t ′)〉 = 0 and 〈δE(t)δE(t ′)T〉 = �̂δ(t − t ′), (26)

with a symmetric �̂, the stochastic force f in (25) will also be
Gaussian and white and have the symmetric covariance

�̄ ≡ β2 MDe
N�̂

(
MDe

N

)T
. (27)

If �̂ and �̄ represent the strengths of an intrinsic noise, they
are uniquely determined by the rate constants kij and the time-
dependent Ni in (1) [16]. When Ni are at equilibrium, these
covariances are constant in time, for which the distribution of
δN will arrive at an equilibrium shape at t → ∞. If �̂ and �̄

stand for the strengths of an extrinsic noise, they are generally
time dependent and do not necessarily approach any constant
matrices. Then the corresponding distribution of δN will never
converge to an equilibrium shape, even though the mean N of
N̂ must always be at equilibrium, as assumed to obtain (24)
and (25). More details about extrinsic and intrinsic noises are
referred to in the Discussion section.

To explore the physical limits of biochemical signaling in
chemotaxis, Bialek and Setayeshgar took into account the
fluctuation effect from protein kinetics [29] in addition to
that from ligand diffusion originally considered by Berg and
Percell [19]. In that refined model, a biological receptor is
assumed to be a two-state (bound and unbound) system, with
k+ (k−) the rate constant from the unbound (bound) to the
bound (unbound) state. Let n̄ be the equilibrium fractional
occupancy of the receptor by the ligand. Then the thermal
noise induced fluctuation δñ around n̄ will obey a Langevin
equation [29]

dδñ

dt
= −(k+c + k−) δñ + c(1 − n̄) δk+ − n̄ δk−, (28)

where δk± are small changes in k± and c is the ligand
concentration. This scalar equation turns out to be a special
case of the vector equation (24) with n = 2 (Appendix C).

Simple kinetic schemes are prevalently used to explain the
fluctuation related physical properties of a complex system,
such as the measurement uncertainty of chemotaxis explained
by the two-state protein model in (28). If hierarchical KE

schemes predict inconsistent uncertainties, one would be
puzzled by the question in which uncertainty we should
believe. Therefore, coincident physical properties concluded
from different KE schemes are crucial for whether we can rely
on the results obtained from a certain scheme. If the physical
property is defined on σ ′ and σ , that coincidence will then
depend on whether the KE condition (11) will lead to the
consistency in fluctuations, σ diff = 0. This question will be
clarified in the protein system in Sec. II C by the SLA theory
in Sec. II B.

D. Fluctuations relations between hierarchical networks
with an Arrhenius-type transition

Suppose the protein described by the above n-dimensional
kinetic scheme, termed system A, can also be regarded as an
n′-dimensional (n′ � n) system A′, governed by a stochastic
differential equation as (10). Following an analogous deriva-
tion as that for (25) and (27), one obtains the stochastic force
f′ of A′ and its covariance �̄′, given by

f′ = β M′De
N′δE′, (29)

�̄′ = β2 M′De
N′ �̂

′(
M′De

N′
)T

. (30)

Here, δE′ is a Gaussian white noise with a covariance �̂
′
.

That covariance generates a σ ′, which is the σ in (4), with
M and � there replaced by M′ and �̄′, respectively. The
distinguishability between σ ′ and the σ generated by the �̄

in (27) can be decided by σ diff ≡ σ ′ − UσUT. If A and A′
can equally well describe the experimentally observed mean
behavior of the protein dynamics, they fulfill the KE condition
(11). Under this condition, σ diff can be simplified as

σ diff =
∫ t

0
eM′τ �̄diff(e

M′τ )T dτ, (31)

with �̄diff ≡ �̄′ − U�̄UT, as that in (12). The time derivative
of (31) is

dσ diff

dt
= M′σ diff + σ diffM′T + �̄diff, (32)

from which follows the relations (18) and (19), with �diff

there replaced by �̄diff . As remarked in the text following
(27), for general noises, �̄ and �̄′ are not necessarily time
independent, although they are associated with an equilibrium
system discussed here. For intrinsic noises, �̄ and �̄′ are time
independent only when the system has arrived at equilibrium.
For those constant �̄ and �̄′, (18) and (19) with [0,t] extended
to [0,∞) allow us to inspect the distinguishability, σ diff , for
equilibrium fluctuations.

In terms of the �̂ of δE in (27) and the �̂
′

of δE′ in (30),
(31) becomes

σ diff = β2
∫ t

0
eM′τ M′ �̂diffM′T(eM′τ )T dτ, (33)

where the symmetric matrix

�̂diff ≡ De
N′ �̂

′
De

N′ − UDe
N�̂De

NUT (34)

is related to the �̄diff in (31) by

�̄diff = β2M′�̂diffM′T. (35)
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In analogy to the σ diff and �diff in (12), the σ diff and �̄diff in (31)
as well as the σ diff and �̂diff in (33) stand for matrices at times
t and t − τ , respectively. From (35) follows (Appendix D)

�̂diff �̄� 0 ⇒ �̄diff �̄� 0, (36)

where �̄� denotes “�,” “�,” or “=,” which is valid pointwise
at any instantaneous time.

The time derivative of σ diff in (33) gives

dσ diff

dt
= M′σ diff + σ diffM′T + β2M′�̂diffM′T. (37)

A comparison between (37) and (32) reconfirms (35). Both
(37) and (33) lead to the conclusion

�̂diff = 0
⇒
�⇐ σ diff = 0, (38)

where both equalities hold individually for all t ′ ∈ [0,t], which
includes [0,∞), as explained in the text after (32). Here, the
reason for the forward implication “⇒” is the same as that for
(18). The failure of the reverse implication “⇐” is ascribed
to the noninvertible M′ embedded in (33). The relation in
(38) means that to observe indistinguishable state fluctuations
σ diff = 0, the free energy fluctuations δE and δE′ are not
necessarily “distinguishable,” �̂diff = 0. A plausible example
for �̂diff = 0 is when �̂ and �̂

′
are related by

�̂ = UT�̂
′
U, (39)

which can be readily verified by inserting (39) into (34) and
making use of the identity De

N′ = UDe
NUT. The form of (39)

looks similar to, but in fact is different from, �̄diff = 0 with
the �̄diff in (31) or �diff = 0 with the �diff in (13), because
the ordering of UT and U in (39) is opposite that in those two
identities. Owing to this ordering difference, (39) is an equality
between n × n matrices, whereas �̄diff = 0 and �diff = 0 are
equalities between n′ × n′ matrices.

Although the claim in (38) for δE is weaker than that in
(18) for f, other claims for the former,

�̂diff �̄� 0 ⇒ σ diff �̄� 0 ⇒ Vdiff �̄� 0, (40)

are similar to those for the latter in (19), where each �̄� holds
individually for all t ′ ∈ [0,t], which contains [0,∞) as in (38).
The claims in (40) stem directly from (36) and (19), with �diff

in (19) substituted by the special case �̄diff . A slight difference
between (40) and (19) is that the inequalities “>” and “<”
in the latter are absent in the former because they can be
derived only under certain conditions. To see this subtlety, let
us reexpress the diagonal terms of Vdiff as (Appendix D)

[Vdiff]aa = β2
d∑

b=1

λb

∫ t

0

∣∣e′T
a M′eM′τ ξ b

∣∣2
dτ, (41)

where [Vdiff]aa, λb, and ξ b refer to [Vdiff(t)]aa, λb(t − τ ),
and ξ b(t − τ ), respectively. Here, d is the total number
of the nonzero eigenvalues of �̂diff and ξ b denotes the
normalized eigenvector of the bth nonzero eigenvalue λb of
�̂diff . Therefore, eM′τ ξ b is the point at which a trajectory of (9)
starting from ξ b will arrive after time τ . The term inside the
absolute value, | · |, is the ath component of the vector field of
that point. With this dynamic interpretation, it is transparent

to see that (Appendix D)

�̂diff �� 0 ⇒ Vdiff �� 0, (42)

where each �� holds individually for all t ′ ∈ [0,t], which
includes [0,∞), as in (40). The σ diff in (40) is absent in (42)
because it does not have a simple expression as that for Vdiff

in (41) to show its �� relation with �̂diff . In applications, (40)
and (42) are basic criteria for judging the effective strengthes
of different stochastic forces (see Fig. 4).

As a comparison, (18) and (19) are properties of f and f′,
while (38), (40), and (42) are those of δE and δE′. They are
two natural ways to introduce stochastic driving sources to
this system. Notice that (7), (8), (18), (19), (38), (40), and (42)
have been shown to be true in an interval [0,t] on both sides of
each implication. However, one can easily see that the second
implications of (8), (19), and (40) are even pointwise correct
at any instantaneous time, as that in (36).

Apart from its contribution in clarifying (42), expression
(41) also suggests possible variations of stochastic forces
during environmental changes. If the covariances of δE and
δE′ are additively shifted by

�̂ → �̂ + c11T and �̂
′ → �̂

′ + c′1′1′T, (43)

σ diff is invariant (Appendix D), because 11T and 1′1′T lie in the
null space of the integral transformation (33). Here, c (c′) is a
real number and 1 (1′) denotes an n-(n′-)dimensional column
vector with all components equal to 1. The two mappings
in (43) form a two-dimensional gauge transformation, which
does not modify the mean energies Ei , but only the magnitudes
of the fluctuations δEi around these means. For large c

and c′, �̂ + c11T and �̂
′ + c′1′1′T will behave like c11T and

c′1′1′T with two comparatively small deviations �̂ and �̂
′
,

respectively. Nevertheless, irrespective of how small these
deviations are, σ diff is merely determined by them, rather than
by c11T and c′1′1′T.

The gauge characteristic in (43) is not a common property
for general transformations. For instance, a transformation
consisting of

�̄ → �̄ + c11T and �̄′ → �̄′ + c′1′1′T (44)

will not make σ diff invariant, because, unlike (33), there is no
noninvertible M′ in the transformation (31) to bring the 1′1′T

in (44) into a null space. Another simple transformation is the
multiplicative change of the covariances of δE and δE′,

�̂ → c�̂ and �̂
′ → c′�̂

′
, (45)

which does not give an invariant σ diff either, except in the
trivial case c = c′ = 1 (Appendix D). In a real macromolecule,
changing an environmental condition, such as the pH value
of the system, may readily affect the statistical properties
of the stochastic forces and their corresponding �̂ and �̂

′
.

The consistency condition σ diff = 0 in hierarchical KE models
should be retained under an environmental change, which can
be preserved by (43), but not by (45). This analysis offers an
additional information for targeting appropriate �̂ and �̂

′
.
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E. Some basic types of stochastic forces

To gain more insight, let us consider some basic types of
�̂, which may be used to account for the stochastic properties
of real biological systems. While the �̂ of an intrinsic noise
is uniquely determined by rate constants, that of an extrinsic
noise can be rather diverse [18]. That diversity may arise from
the noises of nonuniform migration of ions onto an ion channel
under physiological conditions [30] or from the artificially
generated noises for studying the energy transduction in ion
pumps [26]. Even though the �̂ of a system may be large and
complex, properly shuffling the components of N̂ in (2) can
often bring more correlated states together to make M and �̂

more block diagonal. The states in the same block will usually
be merged into a common state during model contraction.

If this coarse-graining procedure is a lumping process, it
is a contraction from a kinetic scheme A to its KE scheme
A′. Suppose the �̂

′
of A′ is diagonal and the �̂ of A is block

diagonal, represented by a direct sum of submatrices,

�̂ =
n′∑

a=1

∑
i∈Sa

∑
j∈Sa

�̂ij eieT
j , (46)

�̂
′ =

n′∑
a=1

�̂′
aae′

ae′T
a , (47)

where ei and e′
a are standard unit vectors [see the example in

(B3)]. For the three-dimensional lumping example in (B2) in
Appendix B, (46) and (47) are

�̂ =
⎛⎝�̂11 �̂12 0

�̂21 �̂22 0
0 0 �̂33

⎞⎠ and �̂
′ =

(
�̂′

11 0
0 �̂′

22

)
. (48)

The diagonal �̂
′
refers to the uncorrelated energy fluctuations

between two lumped states, a = 1 and 2, whereas the block
diagonal �̂ indicates that the correlated energy fluctuations are
limited to the internal states of a lumped state (Appendix B).

The off-diagonal entries of a covariance matrix are often
less in magnitude than the diagonal entries. Among others,
correlation matrices are a typical example. If the �̂ in (46) has
this property, it can be reexpressed as

�̂ij =
n′∑

a=1

γij �̂
′
aaδi∈Sa

δj∈Sa
. (49)

Therein, δi∈Sa
is an indicator function [see (B4) in

Appendix B] and γij are the correlation coefficients, where
|γij | = 1 for i = j and |γij | � 1 for i �= j . With this property,
the �̂ in (48) will become

�̂ =
⎛⎝ �̂′

11 γ12�̂
′
11 0

γ21�̂
′
11 �̂′

11 0
0 0 �̂′

22

⎞⎠. (50)

Under this general setup, one can show that (Appendix E 1)

�̂ in (49) and �̂
′
in (47) ⇒ �̂diff � 0. (51)

This relation covers several fundamental types of energy
fluctuations, as shown in Fig. 2. Together with (40), it leads
to the following ordering rules for the magnitudes of state
fluctuations:

(a) (b) (c)

Γ̂
I

Γ̂
II

Γ̂
III

incoherent coherent anticoherent

FIG. 2. During energy fluctuations, the energy landscape (black
dashed curve) of the protein in Fig. 1 vibrates to different shapes (red
solid curves). The two energy minima may fluctuate (a) independently

described by an incoherent covariance �̂
I
, (b) in phase described by

a coherent covariance �̂
II
, or (c) completely out of phase described

by an anticoherent covariance �̂
III

.

(I) Incoherent driving. The simplest example of (51) is

�̂ = In×n and �̂
′ = In′×n′ ⇒ �̂diff � 0, (52)

where In×n (In′×n′ ) is the n-(n′-)dimensional identity matrix.
In this case, all components in the δE of A (δE′ of A′) are
uncorrelated, for which the example in (48) is reduced to

�̂ =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ and �̂
′ =

(
1 0
0 1

)
. (53)

This type of �̂ (�̂
′
) characterizes the incoherence between

the driving sources, δEi (δE′
a), at different energy states,

such as those in Fig. 2(a). Since �̂diff � 0 in (52) implies
Vdiff � 0 in (40), smaller KE networks will generate larger
state fluctuations.

In reality, the diagonal forms in �̂ and �̂
′

in (52) may
occur when a protein is sensitive to some charged particles
stochastically migrating onto it. If those particles approached
the protein always from the same direction, δEi and δEj would
be correlated and follow the linear or Marcus free energy
relation [31]. But charged particles in electrolyte solutions
usually arrive stochastically from arbitrary directions, which
randomizes the correlation between δEi and δEj . Thus, the
energy fluctuations at different states are likely incoherent and
have diagonal �̂ and �̂

′
as those in (52).

(II) Coherent driving. If γij = 1 for all i and j at each a in
(49), (51) is reduced to the relation (Appendix E 2)

δE = UTδE′ ⇒ �̂diff = 0. (54)

In this case, all internal states of a lumped state in A′ have
strong coherence in energy variations [Fig. 2(b)], so that
the off-diagonal entries in each block of �̂ are as large as
the diagonal entries. With this property, the example in (48)
becomes

�̂ =
⎛⎝�̂′

11 �̂′
11 0

�̂′
11 �̂′

11 0
0 0 �̂′

22

⎞⎠ and �̂
′ =

(
�̂′

11 0
0 �̂′

22

)
. (55)
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According to (54) and (40), A and A′ will have indistinguish-
able covariances σ diff = 0 and variances Vdiff = 0 in their state
fluctuations.

Physically, the structure of �̂ in (55) may occur when the
internal states of a lumped state of a protein follow certain
conformational symmetry. An example is the potassium ion
channel with four identical gates, which have four configura-
tions with one gate open and three gates closed [30]. These
four configurations are indistinguishable in a patch-clamp
recording. They belong to a global state [31] and each
configuration is an internal state of that global state. If the four
symmetric configurations respond coherently to an external
stimulus, they form a 4 × 4 block in �̂ with the same entry
value in the block, similar to the example of the 2 × 2 block
in (55).

(III) Anticoherent driving. If γij = 1 for all i = j and −1
for all i �= j at each a in (49), the property in (51) and Vdiff � 0
in (40) still hold. In this case, the example in (48) becomes

�̂ =
⎛⎝ �̂′

11 −�̂′
11 0

−�̂′
11 �̂′

11 0
0 0 �̂′

22

⎞⎠ and �̂
′ =

(
�̂′

11 0
0 �̂′

22

)
.

(56)
As the two variances, �̂′

11 and �̂′
22, are always non-negative,

the diagonal (off-diagonal) entries in �̂ and �̂
′

are positive or
zero (negative or zero).

The negative entries in �̂ represent the negative correlations
between the fluctuating energies in the first two states, as
those in Fig. 2(c). This may happen when two conformational
states of a protein have opposite partial charges exposed
to surroundings and respond oppositely to the local charge
variation in an electrolyte solution.

(IV) Weakly coherent driving. A more realistic covariance
�̂ will have 0 < |γij | < 1 for i �= j in each block in (49),
which lies between the above three limiting cases (I), (II), and
(III). Since this setup also belongs to the category of (51), one
has again Vdiff � 0 from (40).

The concrete examples discussed above reveal the effective
strengths of the stochastic forces of several basic driving
sources, which may readily be assumed to model a complex
system. The general condition for γij in (49) results in the
inequality �diff � 0 in (51) and subsequently Vdiff � 0 from
(40). It indicates the trend that a low-dimensional model will
more easily overestimate the fluctuations of a real system, in
comparison with a less coarse-grained model. This bias needs
to be balanced by magnifying (diminishing) the values of all
entries in � (�′) to obtain consistent driving effects.

III. NUMERICAL SIMULATIONS

As applications, let us consider a four-dimensional network
A, which can be lumped into a two-dimensional network A′
by a lumping matrix U, where the rate constants of A and A′
as well as U are given by⎛⎜⎝k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

⎞⎟⎠ =

⎛⎜⎝ 0 0 5 15
0 0 5 15

10 20 0 0
10 20 0 0

⎞⎟⎠,

0 0.025 0.05
0

0.01

0.02

0.03

Γ̂I ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Γ̂II ≡

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎟⎠

Γ̂III ≡

⎛
⎜⎜⎝

1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎞
⎟⎟⎠

Γ̂
′ ≡ 1 0

0 1

Time  t

F
lu

ct
ua

tio
n 

va
ria

nc
e

FIG. 3. The variance σ ′
11 of δN ′

1 of a two-dimensional network
subject to a stochastic force of covariance �̂

′
is compared with the

lumped variance [UσUT ]11 of δN1 and δN2 of a four-dimensional

KE network subject to a stochastic force of covariances �̂
I
, �̂

II
, and

�̂
III

. Both the curves, simulated by the Langevin equation (24), and
the symbols, theoretically evaluated by (4), follow the ordering rules
predicted in (I)–(III).

(
k′

11 k′
12

k′
21 k′

22

)
=

(
0 20

30 0

)
, and U =

(
1 1 0 0
0 0 1 1

)
.

(57)

A and A′ are subject to the stochastic forces in (25) and (29),
respectively, with the covariances �̂

′
(black matrix) for the δE′

in A′ and �̂
I
, �̂

II
, and �̂

III
(green, red, and blue matrices,

respectively) for the δE in A, as given on the right-hand
side of Fig. 3. The first diagonal entry of Vdiff , or σ diff , is
the difference between the σ ′

11 of A′ and the [UσUT ]11 of
A. Here, σ ′

11 is the variance of δN ′
1 generated by �̂

′
and

[UσUT ]11 is the sum of the second moments σ11, σ12, σ21,
and σ22 of δN1 and δN2 generated by �̂

I
, �̂

II
, or �̂

III
. On

the left-hand side of Fig. 3, σ ′
11 is plotted in black (crosses

and dotted curve), whereas [UσUT ]11 is depicted in green
(squares and dashed curve), red (circles and solid curve), and
blue (diamonds and dash-dotted curve). Therein, the symbols
(crosses, circles, squares, and diamonds) are calculated from

the integral expression (4), with � substituted by �̂
I
, �̂

II
, �̂

III
,

and �̂
′
. The curves (dotted, solid, dashed, and dash-dotted)

are simulated by (24), which have been averaged over 104

realizations in a system of 102 proteins. Even though the curves
averaged from this limited number of realizations still deviate
slightly from the symbols, their ordering is already as clear as
that of symbols and enables us to illustrate (40). Notice that
during the time the variances of the fluctuation distributions in
Fig. 3 approach their equilibrium values, the mean dynamics
N of the ensemble of systems stays always at equilibrium,
because (24) is valid only for equilibrium systems. Owing
to the conservation law

∑4
i=1 δNi = ∑2

a=1 δN ′
a = 0, σ ′

22 and
[UσUT ]22 follow the same tracks as σ ′

11 and [UσUT ]11,
respectively, and are therefore not depicted in the plot.
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Figure 3 contains a lot of information about the fluctuation
relations between different KE systems. First of all, both the
curves and symbols confirm the orderings predicted by (40):

For a comparison between �̂ = �̂
II

and �̂
′
, the coincidence

between the red circles and black crosses indicates σ diff =
Vdiff = 0, as proved for the coherent driving in (II). For a

comparison between �̂ = �̂
I

(�̂ = �̂
III

) and �̂
′
, the values

of the black crosses are always larger than those of the
green squares (blue diamonds), indicative of σ diff � 0 and
Vdiff � 0, as predicted from the incoherent driving in (I) [the
anticoherent driving in (III)]. Besides confirming (I)–(III),
Fig. 3 also unravels how different stochastic forces affect
the state fluctuations in the same network. For example,

the coherent driving by �̂
II

is effectively stronger than the

incoherent driving by �̂
I

and than the anticoherent driving by

�̂
III

, because the values of the red circles are larger than those
of the green squares and those of the blue diamonds. This
numerical result shows a simple tendency that more positive
entries in �̂ will give a stronger force, which proposes a
hypothesis for further analytical justification. Moreover, the

indistinguishable variances generated by �̂ = �̂
II

(red circles)
and �̂

′
(black crosses) are a good example for the claim that

�̂ = UT�̂
′
U in (39) will imply σ diff = 0 in (38) discussed

before. For simplicity of illustration, all �̂ and �̂
′

used in the
above simulations are time independent, which should not lead
to the misunderstanding that (51) is valid only for constant �̂

and �̂
′
.

IV. DISCUSSIONS

Historically, the relation between σ , M, and � has been
intensively studied in statistical physics. Generally, � does not
necessarily depend on M, as when f is an extrinsic noise. If
� and M originate from the same source, they will depend on
each other [16], as when f is an intrinsic noise. Irrespective of
intrinsic or extrinsic, σ can be calculated by � and M via (4)
or (5). The FDT of Kubo is a theory for intrinsic noises, which
relates the internal fluctuations of a system to the response of
that system to a stimulus [32]. Traditional examples range over
Nyquist’s theory, Brownian motion, and Onsager’s regression
hypothesis. Certainly, Kubo’s FDT is stricter than the gener-
alized FDT (6), because the former holds only for systems in
which � depends on M, while the latter is not restricted to
this dependence. Keizer proposed a canonical theory for the
fluctuations caused by elementary processes associated with an
Arrhenius-type transition rate [16]. Because those fluctuations
stem from the discrete nature of the microscopic constituents
of a macroscopic system and � depends on M, the canonical
theory is aimed at intrinsic noises as well. It not only covers
the equilibrium fluctuations discussed in Kubo’s FDT but also
fluctuations far from equilibrium, including systems having
time-dependent � and chaotic attractors. If the equilibrium
fluctuations generated by (24) and (28) only need to obey the
generalized FDT (6), these two Langevin equations can be used
to discuss both intrinsic and extrinsic noises, as we do here. If
they are additionally constrained by Kubo’s FDT, the analysis
is restricted to intrinsic noises, as when (28) was derived in
Ref. [29]. One might suspect whether the dependence of f on
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+−

−

−
−

++
++

−−
−−

+

+
+

+

−
−

−
−

State 1 State 2

FIG. 4. A protein has two conformational states corresponding to
the two energy minima in Fig. 1. As state 1 (state 2) here has less
(more) partial charges exposing to the electrolyte solution, it is likely
less (more) sensitive to the environmental noises. Thus, on average
one has |δE1| < |δE2|. Under the same environmental noises, the
ordering may readily change to |δE1| = |δE2| or |δE1| > |δE2|, if
the partial charge distribution or the macromolecular geometry is
modified.

M in (25) has restricted f to be an intrinsic noise. It is not,
because to be that noise, δE in f must also depend on M.

If a complex system subject to an intrinsic noise is modeled
by two KE kinetic schemes, one can use the master equation
to prove the indistinguishability between these two networks
in all moments of the fluctuations of δN, including the
indistinguishable covariance, σ diff = 0 [17]. If the noise is
small, those fluctuations can also be calculated by stochastic
differential equations, such as (2) and (10), whose � and �′
are analytically known from M and M′, respectively. One can
show that these � and �′ will give �diff = 0 and, owing to (18),
σ diff = 0. It agrees with that concluded from the above master
equation approach without the small noise assumption [17].
This indistinguishability in σ and σ ′ excludes the possibility
of obtaining contradictory state fluctuations from different
KE networks. It fortifies the legality of using simple kinetic
schemes in the study of fluctuations generated by intrinsic
noises.

By contrast, if f in (2) represents an extrinsic
noise [24,26,33], it summarizes the statistical properties of
environmental disturbances and how the system responds
to them. Even when the disturbance is the same, different
systems may respond in different ways (Fig. 4). Since the
environment can be rather complex and the corresponding
� is decoupled from M, it is much more difficult to derive
� and �′ to justify �diff = 0 than in the case of intrinsic
noises. This difficulty is further complexified by the diverse
meanings of “state” in a kinetic scheme. For instance, a state of
a macromolecule usually corresponds to an effective minimum
of a free energy landscape (Fig. 1), highly coarse grained
from a much rugged potential energy landscape of atomic
precision [34]. The coordinates of the free energy can be order
parameters or progress variables, such as the numbers of native
contacts, hydrogen bonds, and native dihedral angles [35]. The
stochastic behavior of a state depends certainly on how the
coordinates are selected. Thus, although � is to represent the
stochastic driving effect outside the system, it also depends on
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how the degrees of freedom inside the system is coarse grained.
The combination of these external and internal complexities
makes it nearly impossible to derive � for a real system to
inspect whether �diff = 0, even for a short peptide or a small
atom cluster [34]. However, despite that difficulty, �diff = 0
is a mathematical consequence of σ diff = 0 in (18). That is,
�diff = 0 is true once two networks are KE to each other
and have consistent covariances, σ diff = 0. But these two
conditions are exactly what we usually request during model
selection. Indeed, if f represents an extrinsic noise, in practice
we rarely consider it as a quantity to derive but mostly as
a variable to tune to fit the observed experimental data. In
this proposition, �diff = 0 is not a claim to be proved, but
conversely serves as a criterion for identifying the desired M
and � from M′ and �′.

As an example, suppose an ion channel of n states can be
described by an n-dimensional kinetic scheme A. However,
the binary switching of its conductance measured from a
patch-clamp recording suggests it to be a two-state system.
Those binary data can be used to construct the M′, σ ′, and
subsequently �′ of a two-dimensional model A′ (Appendix A).
If both A and A′ can correctly account for the dynamic features
of those data, they are KE to each other and follow the KE
condition (11). Mathematically, there exist infinitely many U
and M which satisfy (11) for a given M′, as noticed at the end
of Sec. II B. This diversity will be largely reduced, if σ diff =
�diff = 0, or equivalently σ ′ = UσUT and �′ = U�UT, are
considered, because M is related to � and σ by (5) and
(6). Noises are known to be useful for inferring with the
hidden structures of networks, as those in detecting metastable
states [36] and solving inverse problems [37,38]. Even in the
above highly indefinite problem to infer A from A′, noise
information, σ diff = 0, is still constructive.

Finally, there exists an intriguing correspondence between
statistical physics and LA for networks whose states have
an Arrhenius-type transition rate. Inserting the Arrhenius
equation (21) into the rate constants in the KE condition (B1),
it yields

e−βE′
ab =

∑
j∈Sb

(Aij/A
′
ab)e−βEij . (58)

This expression has the same form as the definition, e−βF =∑
ρie

−βεi , of a free energy F , with the system energies εi and
their densities of state ρi . Just as the free energy is an effective
energy of all system energies, the activation energy E′

ab from
a lumped state a to another lumped state b can be interpreted
as an effective energy of the activation energies Eij from an
internal state i of a to all internal states of b.

V. CONCLUSION

Motivated by its original goal to extract the key behaviors of
complex networks, LA has become a theory for understanding
the relations between the mean dynamics of KE networks.
SLA takes into account stochasticity and generalizes these
relations from the mean dynamics to the fluctuations of KE
systems. In this work, we extended the SLA theory in a
more systematical way and studied it on networks associated
with the frequently encountered Arrhenius-type transition.
The explicit form of the Langevin force derived from that

kind of transition allows us to deduce various fluctuation
relations between hierarchical KE networks subject to intrinsic
and various extrinsic noises. The result not only sets up a
mathematical basis for justifying the consistency between
the fluctuations among KE kinetic schemes, but also gives
insight into the relations between the hierarchical fluctuations
of general physical observables. For instance, the fluctuating
δN under the fluctuating free energy in (24) is a special
case of the fluctuating extensive variable under its fluctuating
thermodynamically conjugate variable in Keizer’s canonical
theory [16]. As the canonical form of transition rate in that
theory shares the same Arrhenius structure with (21), the
fluctuation relations concluded here may be fundamental for
general physical observables at different levels of description
in nonequilibrium statistical physics.
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APPENDIX A

1. Let G be an invertible matrix which can transform M
into a diagonal matrix M′′ = GMG−1. If G and its transpose
GT act on the both sides of (5), one has

dσ ′′

dt
= M′′σ ′′ + σ ′′M′′T + �′′, (A1)

with σ ′′ = GσGT and �′′ = G�GT. Then the dynamics of the
individual entries in this matrix equation can be decoupled and
will follow the scalar equations

dσ ′′
ij

dt
= σ ′′

ij (M ′′
ii + M ′′

jj ) + �′′
ij . (A2)

If �, and subsequently �′′, is time independent, the system will
eventually reach its equilibrium state, whose σ ′′ is determined
by

σ ′′
ij (M ′′

ii + M ′′
jj ) = −�′′

ij . (A3)

If M and then M′′ were invertible, the σ ′′ and �′′ in (A3) and
subsequently σ and � would uniquely determine each other.
Since M in (1) is noninvertible and of rank n − 1, it has a zero
eigenvalue. This will lead to a vanishing diagonal term, say
M ′′

kk , in the diagonalized matrix M′′. If σ ′′ = 0, (A3) implies
�′′ = 0, which is equivalent to the implication from σ = 0
to � = 0. Conversely, if �′′ = 0, all σ ′′

ij must be zero except
for the indefinite σ ′′

kk , caused by M ′′
kk = 0. Although σ ′′

kk is the
only unknown entry in σ ′′, all entries in σ = G−1σ ′′(GT)−1

will become unknown. Hence we have the relation

�∗ = 0
�⇒
⇐ σ ∗ = 0 (A4)

for the covariance σ ∗ of the equilibrium fluctuations of a
system at a fixed �∗. This pointwise relation derived from
(6) is in contrast to the nonpointwise relation (7) obtained
from (4) and (5).

062401-10



FLUCTUATION RELATIONS BETWEEN HIERARCHICAL . . . PHYSICAL REVIEW E 95, 062401 (2017)

2. If �(t ′) = 0 is valid for all t ′ ∈ [0,t], σ (t ′) in (5) does
not change with time within that time interval, because σ (t ′) is
a conditional covariance starting with σ (0) = 0. Conversely,
if σ (t ′) = 0 for all t ′ ∈ [0,t], one obtains straightforwardly
�(t ′) = 0 from (5) within the same time interval.

This result can also be intuitively understood from (4). The
forward implication “⇒” in (7) is trivial from (4). For its
reverse implication “⇐”, σ (t ′) = 0 at any t ′ ∈ [0,t] implies a
vanishing integrand in (4), which yields �(t ′) = 0 within that
time interval. Here, σ (t ′) is like the “area” bounded under the
“curve” H (τ ) ≡ eMτ�(t ′ − τ )(eMτ )

T
in (4) and between the

two ends at τ = 0 and t ′. If the area is zero for any interval
[0,t ′], H (τ ) and subsequently �(τ ) must vanish as well
for all τ .

3. If �� in (8) denotes “>,” �(t ′) is positive definite
for all t ′ ∈ [0,t] and therefore v�(t − τ )vT > 0 for any
nonzero row vector v and all τ ∈ [0,t]. It implies that
veMτ�(t − τ )(eMτ )TvT = ṽ�(t − τ )ṽT > 0 for any nonzero
v, because ṽ ≡ veMτ is again a nonzero vector, owing to the
invertible matrix eMτ . Therefore, eMτ�(t − τ )(eMτ )T is also
a positive definite matrix. As σ (t) in (4) is an integral of
eMτ�(t − τ )(eMτ )T over the interval [0,t], it is positive definite
as well at time t . This is true also for σ (t ′) at any time t ′ ∈ [0,t],
which can be obtained by shrinking the integration interval
from [0,t] to [0,t ′]. According to the property of positive
definite, the diagonal elements of σ (t ′) are positive, because
eT
i σ (t ′)ei > 0 for all i, where ei are the standard unit vectors

defined in the text before (B3). Consequently, the matrix V(t ′),
which is the diagonal part of σ (t ′), is also positive definite for
all t ′ ∈ [0,t].

If �� in (8) represents “<,” “�,” and “�,” the argument is
the same. If �� stands for “=,” the claim that � = 0 implies
σ = 0 is known from the forward part of (7).

APPENDIX B

If an n′ × n lumping matrix U is used to contract the n-
dimensional N in (1) of network A, the n states in A are
first partitioned into n′ sets Sa via the n′ row vectors in U,
where a = 1, . . . ,n′. Thereafter, all states in Sa are merged
as the state a in A′ and termed “the internal states” of a. In
general, the n′-dimensional contracted dynamics N′ = UN is
not self-contained and, owing to a memory kernel, does not
follow a simple linear equation like (9). If it does, we say A

is lumpable and can be lumped into A′ by U, for which the M
of A, the M′ of A′, and U obey the matrix condition (11). In
terms of rate constants, this condition is equivalent to [17]

k′
ab =

∑
j∈Sb

kij (B1)

for all a, b ∈ {1,2, . . . ,n′} and all i ∈ Sa , with k′
aa ≡ 0.

As an example, let A be a system of three states {1,2,3},
which fulfills (1) with n = 3. If a lumping matrix

U =
(

1 1 0
0 0 1

)
(B2)

is used to contract A into A′, it will partition the states of A

into two sets S1 = {1, 2} and S2 = {3}. Then, state 1 and 2 of
A will be merged into state 1′ of A′, and state 3 of A will be

renamed as state 2′ of A′. State 1 and 2 of A are the internal
states of state 1′ of A′. Since each column of (B2) is a standard
unit vector, this matrix performs a proper lumping. After being
contracted by U, the dynamics N′ = [N ′

1,N
′
2]T of state 1′ and

2′ does not necessarily fulfill a simple equation like (9). If it
does, A is lumpable.

Let ei (e′
a) be an n-(n′-)dimensional standard unit column

vector whose ith (ath) component is 1 and other components
are 0. The product eieT

j gives a matrix whose (i,j )th entry is 1
and other entries are 0. For instance, if we have (i,j ) = (3,2)
in a four-dimensional system, then

e3eT
2 =

⎛⎜⎝0
0
1
0

⎞⎟⎠(
0 1 0 0

) =

⎛⎜⎝0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞⎟⎠. (B3)

The kth column of U is Uek , which is some n′-dimensional
standard unit vector e′

a . The indicator function of a proper
lumping matrix U is defined as

δi∈Sa
≡ e′T

a Uei =
{

1, if i ∈ Sa ,
0, if i �∈ Sa , (B4)

which behaves like a Kronecker δ and indicates whether state
i belongs to the set Sa .

APPENDIX C

1. Perturbing the rate equation (1) by replacing the rate
constants kij by kij + δkij and the probabilities Ni by Ni +
δNi , one obtains

d(Ni + δNi)

dt

=
n∑

j=1

[(kji + δkji)(Nj + δNj ) − (kij + δkij )(Ni + δNi)]

=
n∑

j=1

[(kjiNj − kijNi) + (δkjiNj − δkijNi)

+ (kjiδNj − kij δNi) + (δkjiδNj − δkij δNi)], (C1)

with four parentheses in the last sum. The first one can be
eliminated by (1) and the fourth one is the second-order
term of the perturbation, which will be neglected because the
fluctuations considered here are small. Thus it is left with (20).

2. Substituting (22) into (20) and considering the detailed
balance condition (23), we obtain

dδNi

dt
=

n∑
j=1

[
N e

j kjiβ
(
δEj − δEmax

ij

)
−N e

i kijβ
(
δEi − δEmax

ij

) + kjiδNj − kij δNi

]
=

n∑
j=1

[
β(kjiN

e
j δEj − kijN

e
i δEi)

+ kjiδNj − kij δNi

]
. (C2)
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Rearranging the summands yields

dδNi

dt
=

n∑
j=1

[
βkjiN

e
j δEj + kjiδNj

]
−

n∑
j=1

kij

n∑
k=1

(
βN e

k δEk + δNk

)
δik

=
n∑

j=1

[
kji

(
βN e

j δEj + δNj

)]
−

n∑
k=1

kik

n∑
j=1

(
βN e

j δEj + δNj

)
δij

=
n∑

j=1

⎡⎣kji

(
βN e

j δEj + δNj

)

−
n∑

k=1

kikδij

(
βN e

j δEj + δNj

)]
. (C3)

Since Mij = kji − ∑n
k=1 kikδij , as defined in (1), we arrive at

the simple expression

dδNi

dt
=

n∑
j=1

[
Mij

(
βN e

j δEj + δNj

)]
, (C4)

whose vector form is (24).
3. If a protein has two states 1 and 2, let us denote by k+ (k−)

the rate constant from state 1 to 2 (2 to 1). When the protein
is subject to noises, the fluctuations of the probabilities for
finding states 1 and 2 are governed by a two-dimensional (24)
with

M =
(−k− k+

k− −k+

)
, De

N =
(

N e
1 0

0 N e
2

)
,

δE =
(

δk−
k−β

+ δEmax

δk+
k+β

+ δEmax

)
, f =

(−δk−N e
1 + δk+N e

2
δk−N e

1 − δk+N e
2

)
,

(C5)

where δE has been expressed as δk± by (22). Since both
components of f are proportional to δF12 = δE1 − δE2, the
two-dimensional stochastic source f has the same degree of
freedom as the one-dimensional δF12.

For a receptor protein surrounded by ligands of concentra-
tion c mentioned in (28), let its bound state (unbound state) be
the above state 1 (state 2). Then the k+ and δk+ in (C5) needs to
be replaced by ck+ and cδk+. The N e

1 and δN1 in the f of (C5)
are the equilibrium fractional occupancy n̄ and its fluctuation
δñ in (28). Inserting the specific matrices and vectors in (C5)
into (24), the two components of (24) will become the same
dynamics as (28) [29].

APPENDIX D

1. The reason for “�̂diff �̄� 0 ⇒ β2M′�̂diffM′T �̄� 0” in
(36) is similar to that for “� �� 0 ⇒ eMτ�(eMτ )T �� 0” in
Appendix A. The main difference is that the noninvertible M′
in the former has replaced the invertible eMτ in the latter. As

a result, vβ2M′�̂diffM′TvT = v�̄diffvT can be zero for some
nonzero row vector v, even when �̂diff > 0 or < 0. Thus,
a positive definite (negative definite) �̂diff in (35) does not
necessarily imply a positive definite (negative definite) �̄diff .
Consequently, “>” and “<” have to be excluded from �� ,
which leads to �̄� in (36).

2. The Vdiff in (40) is the diagonal part of the σ diff in (33),
which can be decomposed as

Vdiff =
n′∑

a=1

e′
ae′T

a σ diffe′
ae′T

a

= β2
n′∑

a=1

∫ t

0
e′
ae′T

a eM′τ M′�̂diffM′T(eM′τ )Te′
ae′T

a dτ,

(D1)

where e′
ae′T

a is as defined before (B3). Since �̂diff is symmetric,
it can be orthogonally diagonalized as

�̂diff = �D�T =
d∑

b=1

�(e′
bλbe′T

b )�T =
d∑

b=1

ξ bλbξ
T
b . (D2)

Here, D is an n′ × n′ diagonal matrix whose bth diagonal
term is the bth eigenvalue λb of �̂diff , � denotes an n′ × n′
orthogonal matrix whose bth column ξ b is the bth normalized
eigenvector of �̂diff , and d represents the number of nonzero
λb with 0 � d � n′, as defined in the main text. Substituting
(D2) into (D1), the ath diagonal term of Vdiff becomes

[Vdiff]aa = β2
∫ t

0

d∑
b=1

e′T
a M′eM′τ ξ bλb ξT

b (M′eM′τ )Te′
adτ

= β2
∫ t

0

d∑
b=1

λb

∣∣e′T
a M′eM′τ ξ b

∣∣2
dτ, (D3)

where the commutation relation between eM′τ and M′ has been
used in the last equality. Therein,

e′T
a M′eM′τ ξ b = [M′N′|N′=eM′τ ξ b

]a

=
[

dN′

dτ

∣∣∣∣
N′=eM′τ ξ b

]
a

(D4)

has the dynamic interpretation in the text after (41). Exchang-
ing the integral and the sum in (D3) leads to (41).

Expression (D3) can be used to reconfirm (40). To this end,
recall that Vdiff ≡ Vdiff(t), [Vdiff]aa ≡ [Vdiff]aa(t), �̂diff ≡
�̂diff(t − τ ), λb ≡ λb(t − τ ), and ξ b ≡ ξ b(t − τ ) in (D1),
(D3), and (D4). If �̂diff(t ′) � 0 for all t ′ ∈ [0,t], one has λb � 0
for all b in that time interval. Subsequently all summands
in (D3) are non-negative at all τ ∈ [0,t], which yields
[Vdiff(t)]aa � 0 for all a. It also implies [Vdiff(t ′)]aa � 0 for all
a and all t ′ ∈ [0,t], which can be obtained by simply shrinking
the integration interval from [0,t] to [0,t ′]. Therefore, it yields
(40) for the case when �̄� denotes “�.” For “�” and “=,” the
argument is the same.

3. The claim “�̂diff �� 0 ⇒ Vdiff �� 0,” with ��
denoting “�,” “�,” and “=,” is clear from (40). For “�̂diff(t ′) >

0,” one has λb > 0 for all b and all t ′ ∈ [0,t]. Then, (D3)
implies [Vdiff(t ′)]aa > 0 or [Vdiff(t ′)]aa = 0 for all a at t ′ = t
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and even at all t ′ ∈ [0,t], as explained at the end of Appendix
D. According to (D3), the sufficient and necessary condition
for [Vdiff]aa = 0 at a given a is that (D4) vanishes for all
ξ b. It is equivalent to [dN ′

a/dτ ]N′=eM′τ ξ b
= 0 at all τ ∈ [0,t]

and subsequently [d
∑

a′ �=a N ′
a′/dτ ]

N′=eM′τ ξ b

= 0 in the same

time interval, due to the conservation of
∑n′

a′=1 N ′
a′ . That

means the subpopulation in state a and that in the sum
of all other states do not change with time τ during the
evolution to equilibrium. Therefore, the ratio between initial
subpopulations (

∑
a′ �=a �a′b)/�ab must be identical with the

ratio between equilibrium subpopulations (
∑

a′ �=a N ′
a′

e)/N ′
a

e ≡
ωa , where the entry �ab of � in (D2) is the ath component of
ξ b. This identity can be expressed as 
aξ b = 0, with 
a a row
vector whose ath component is −ωa and other components are
1. Since the system has only one equilibrium state, the identity
is valid for all ξ b, which means 
a� = 0. As 
a is nonzero,

a� = 0 holds only when � is a noninvertible matrix, which
would contradict its definition in (D2). Therefore, [Vdiff ]aa = 0
is excluded and only [Vdiff]aa > 0 can follow from �̂diff > 0
in (D3). As a result, we have “�̂diff > 0 ⇒ Vdiff > 0.” The
argument for �� denoting “<” is similar.

The KE systems excluded above are those which satisfy
[Vdiff(t)]aa = 0. According to (D3), they are systems which
have (i) d = 0 or (ii) d � 1 and | · | = 0 for all b ∈ {1, . . . ,d}
and all τ ∈ [0,t]. To fulfill (i), all eigenvalues of �̂diff(t ′) must
be 0, or equivalently �̂diff(t ′) = 0, for t ′ ∈ [0,t]. To satisfy (ii),
(D4) implies that the trajectory of (9) starting from ξ b should
be time independent in its ath component, which includes
the following three possibilities. First, if all components of
that trajectory are time independent, ξ b is proportional to the
equilibrium state N′e of (9), say ξ b = ρN′e with a normalized
constant ρ, because M′eM′τ ξ b = ρM′N′e = 0. In this case,
we have not only [Vdiff(t)]aa = 0 for a given a, but also
Vdiff = 0. Since M′ can only have one equilibrium state,
there exists merely one ξ b, which cannot bring all summands
in (D3) to 0, if d � 2. Therefore, in this case [Vdiff]aa =
0 and Vdiff = 0 can occur only when d � 1. Second, if
only some components, which contain the ath component,
of the trajectory eM′τ ξ b in (D3) are time independent, the
dynamics of these components may be disconnected from that
of other components. This implies a decomposable matrix
M′ and a nonergodic Markov chain generated by M′ [18],
which, however, is of less interest and has been excluded
in (1). Third, certain exceptional initial states of (9) may
have only some time-independent components during the
evolution, even when M′ is indecomposable. In this case,
[Vdiff]aa = 0 if a is one of those components. For instance,
in a three-dimensional A′ with [k′

12,k
′
21,k

′
13,k

′
31,k

′
23,k

′
32] =

[2,1,1,1,0,0], a trajectory N′ starting with the initial state
[N ′

1(0),N ′
2(0),N ′

3(0)]T = [1/4,ε + 1/2,−ε + 1/4]T for |ε| <

1/4 will fulfill dN′/dt = [0,−εe−t ,εe−t ]T for all t . Although
the fluxes between different states in this system do not satisfy
detailed balance before t → ∞, the first component of N′ is
always time independent, because the net flux from state 2 to
1 cancels with that from state 1 to 3. Interestingly, such local
steady state occurs only when A′ is lumpable again. In this
example, A′ can be lumped into a two-dimensional A′′ with
[k′′

12,k
′′
21] = [3,1]. Notice that this local steady state leads to

[Vdiff]aa = 0 for some a, but not Vdiff = 0.

4. Let us consider a special case,

cN′eN′eT ≡ �̂
(0)
diff, (D5)

of (D2) with d = 1 and ξ 1 = ρN′e, where c ≡ λ1ρ
2 with λ1

the eigenvalue of ξ 1. The matrix �̂
(0)
diff lies in the null space of

the linear transformation (33), because substituting it into the
�̂diff in (33) gives σ diff = 0. If we shift �̂

′
by c′1′1′T and �̂ by

c11T as those in (43), the �̂diff in (34) will be converted into

De
N′ (�̂

′ + c′1′1′T)De
N′ − UDe

N(�̂ + c11T)De
NUT

= �̂diff + (c′ − c)�̂
(0)
diff . (D6)

It will generate the same σ diff as �̂diff does, because (c′ −
c)�̂

(0)
diff also lies in the null space of (33).

If we change �̂
′

to c′�̂
′

and �̂ to c�̂ as those in (45), the
�̂diff in (34) will become

De
N′ (c′�̂

′
)De

N′ − UDe
N(c�̂)De

NUT. (D7)

It will apparently lead to different σ diff in (33) if c and c′ are
not 1.

APPENDIX E

1. For the special example of �̂ and �̂
′

in (48), the
decompositions in (46) and (47) mean

�̂ =
∑
i∈S1

∑
j∈S1

�̂ij eieT
j +

∑
i∈S2

∑
j∈S2

�̂ij eieT
j

=
⎛⎝�̂11 �̂12 0

�̂21 �̂22 0
0 0 0

⎞⎠ +
⎛⎝0 0 0

0 0 0
0 0 �̂33

⎞⎠, (E1)

�̂
′ =

n′∑
a=1

�̂′
aae′

ae′T
a = �̂′

11e′
1e′T

1 + �̂′
22e′

2e′T
2

=
(

�̂′
11 0
0 0

)
+

(
0 0
0 �̂′

22

)
. (E2)

For general �̂ in (46), the decomposition will be[
UDe

N�̂De
NUT]

ab
= e′T

a UDe
N�̂De

NUTe′
b

=
n′∑

c=1

∑
i∈Sc

∑
j∈Sc

�̂ij e′T
a UDe

NeieT
j De

NUTe′
b

=
n′∑

c=1

∑
i∈Sc

∑
j∈Sc

�̂ijN
e
i N

e
j e′T

a UeieT
j UTe′

b

=
n′∑

c=1

∑
i∈Sc

∑
j∈Sc

�̂ijN
e
i N

e
j δi∈Sa

δj∈Sb

=
∑
i∈Sa

∑
j∈Sb

N e
i �̂ijN

e
j δ

′
ab

=
∑
i∈Sa

∑
j∈Sb

N e
i N

e
j γij �̂

′
aaδ

′
ab, (E3)

where (49) has been used in the last equality. Therein, δab

denotes a Kronecker δ, which is 1 for a = b and 0 elsewhere.
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Likewise, for general �̂
′
in (47), the decomposition will give

[
De

N′ �̂
′
De

N′
]
ab

= e′T
a De

N′ �̂
′
De

N′e′
b =

n′∑
c=1

(N ′e
c )2�̂′

cce′T
a e′

ce′T
c e′

b

=
n′∑

c=1

(N ′e
c )2�̂′

ccδ
′
acδ

′
bc = (

N ′e
a

)2
�̂′

aaδ
′
ab. (E4)

Substituting (E3) and (E4) into (34) and using the condition
(49) again yields

[�̂diff]ab = [
De

N′ �̂
′
De

N′
]
ab

− [
UDe

N�̂De
NUT

]
ab

=
⎡⎣(

N ′e
a

)2 −
∑
i∈Sa

∑
j∈Sb

N e
i N

e
j γij

⎤⎦�̂′
aaδ

′
ab

�

⎡⎣(
N ′e

a

)2 −
∑
i∈Sa

∑
j∈Sb

N e
i N

e
j

⎤⎦�̂′
aaδab. (E5)

From the second line of (E5) we know �̂diff is diagonal. Owing
to

∑
i∈Sa

N e
i = N ′e

a ,
∑

j∈Sb
N e

j = N ′e
b , and the property of δab,

the term [·] in the last line of (E5) vanishes, which implies
[�̂diff]ab � 0. Consequently, the diagonal matrix �̂diff has only
non-negative entries and thus is positive semidefinite.

2. The claim in (54) is a special case of (51) with γij = 1
for all i and j in (49), as (55) is a special example of (48).
For those γij , the second line of (E5) is equal to its third line,
which is 0, as calculated above, and thus implies �̂diff = 0.
Alternatively, one can obtain (54) by inserting δE = UTδE′
there into (26),

�̂δ(t ′ − t ′′) = 〈δE(t ′)δET(t ′′)〉
= 〈UTδE′(t ′)δE′T(t ′′)U〉 = UT�̂

′
Uδ(t ′ − t ′′),

(E6)

because that implies �̂ − UT�̂
′
U = 0 in (39) and subsequently

�̂diff = 0.
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