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The structure of time series is usually characterized by means of correlations. A new proposal based on visibility
networks has been considered recently. Visibility networks are complex networks mapped from surfaces or time
series using visibility properties. The structures of time series and visibility networks are closely related, as
shown by means of fractional time series in recent works. In these works, a simple relationship between the
Hurst exponent H of fractional time series and the exponent of the distribution of edges γ of the corresponding
visibility network, which exhibits a power law, is shown. To check and generalize these results, in this paper we
delve into this idea of connected structures by defining both structures more properly. In addition to the exponents
used before, H and γ , which take into account local properties, we consider two more exponents that, as we
will show, characterize global properties. These are the exponent α for time series, which gives the scaling of the
variance with the size as var ∼T 2α , and the exponent κ of their corresponding network, which gives the scaling of
the averaged maximum of the number of edges, 〈kM〉 ∼ Nκ . With this representation, a more precise connection
between the structures of general time series and their associated visibility network is achieved. Similarities and
differences are more clearly established, and new scaling forms of complex networks appear in agreement with
their respective classes of time series.
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I. INTRODUCTION

Connecting points of a discretized hypersurface that are
mutually visible, one gets a network where the points are nodes
and the links are edges. When the surface is rough enough,
the corresponding network becomes complex. Then, it can be
expected that both objects are closely related. This mapping
was first used in the characterization of time series dynamics.
A graphical representation of time series as one-dimensional
(1D) discretized surfaces allows for the interpretation of
dynamics events as topological facts [1]. Continuing with this
suggestive idea, one can assume that this mapping can be
interesting from two points of view. On the one hand, it can be
a proper nonparametric method of analysis of some aspects of
time series, while on the other hand it can be a simple method
with which to build correlated networks with determined
properties. Although only the first part of this proposition has
been exploited [2–4], one can expect additional interaction
between both subjects. Obviously, deeper knowledge of the
relation between them is necessary. The objective of this paper
is to obtain such knowledge.

Recently, the structure of time series and visibility networks
was connected in the simple case of series generated from
fractional Brownian (fB) processes [2,5]. In these works, a
simple relationship was shown between the Hurst exponent H

of fractional time series and the exponent of the probability
density of nodes γ of the corresponding visibility network,
which exhibits a power law. It reads γ = 2 − 3H for series
generated from fractional Brownian motion (fBm) processes,
and γ = 5 − 2H for those generated from fractional Brownian
noise (fBn). Although these values are not definitive, this is
a good example of the close relation between the geometrical
objects, in this case a time series taken as a 1D solid
surface, and its corresponding visibility network, i.e., the
network obtained connecting visible points on this surface.
The next step is of course to extend and check these results to
more general types of series. For this aim, a more complete

description of both objects is necessary. A standard way
of describing the structure of a time series is by means of
spectral properties or correlations. In a recent paper [6], it was
shown that a complete time series analysis based on spectral
properties requires knowledge of two types of behaviors,
of local and global character, observed in changes of scale.
Hence, there will be series with single or double spectral
scaling. Series generated from fB processes are typically
single-scaled, so only one exponent is necessary to characterize
their structure, for instance the Hurst exponent H . In general,
single scaling is observed in series generated from additive
and linear processes. Those generated from multiplicative
processes exhibit double scaling, and a description with at
least two exponents has to be used [6].

On the other hand, in order to characterize more properly
the structure of complex networks, besides the exponent given
by the power of the degree distribution γ [7], it is necessary to
take into account another distinct property [8]. In the case
of growing networks, a good choice is the scaling of the
maximum degree with the size of the network, 〈kM〉 ∼ Nκ ,
which produces a new exponent κ [9]. With these represen-
tations in mind, we can see in the paper that a more precise
connection between the structures of general time series and
their associated visibility network is achieved. In Sec. II, a brief
description of the method used for characterizing time series
is presented. The method gives an ordering in classes using
two exponents of local and global character. Five classes are
selected to represent typical kinds of time series. Numerical
methods to obtain synthetic samples of each class are outlined.
Section III explains how to deal with the large-scale structure
of complex networks by using two exponents with the same
local and global character as the ones used in the previous
section. Section IV introduces visibility networks and their
properties. Section V presents a numerical analysis of the
large-scale structure of visibility networks mapped from the
five classes of time series introduced in Sec. II. Finally, Sec. VI
concludes by emphasizing the similarities and differences
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observed between the large-scale structure of time series and
their corresponding visibility networks.

II. CHARACTERIZATION OF TIME SERIES

To achieve a complete characterization of the time series in
[6], a combined use of local and global geometrical properties
is introduced. Consider a time series, Y (t) ≡ {yt1 ,yt2 , . . . ,ytN },
representing one sample of an ensemble, {YT }, of a numerical
or empirical process of size T . Global properties are associated
with affine transformations. We focus on series with constant
increments ti+1 − ti = �, and we consider affine transforma-
tions such as �′ = λ�, y ′ = �ωy. We can define a global
exponent ω → α if there is an exponent that keeps invariant
the statistical description of the series, YλT (λt) ∼ λ−αYT (t).
Local properties are associated with changes in the internal
variable, {ti}, keeping constant the size of the series. As
in the previous case, a local exponent αloc can be defined
if YT (λt) ∼ λ−αlocYT (t). It is worth remarking that, except
for the case of self-affine series where αloc = α, a proper
description of the scaling properties of time series requires
at least two distinct exponents, accounting for their local and
global character.

In practice, the global behavior is quantified by taking the
scaling exponents of the asymptotic variation of moments with

T as the mean value 〈YT 〉 ∼ T ν and variance 〈(YT − YT )2〉 ∼
T 2α . From now on, # and 〈#〉 denote time and sample
averaging, respectively. To measure local properties, a wide
variety of methods, ranging from spectral to wavelet analysis,
have been used in the literature. As in the previous case, we are
going to use methods that produce exponents to characterize
the series. When the curve representing the series is self-affine,
as in the case of fBm series, it is very frequent the use of the
scaling of local widths as 〈[Y (t + τ ) − Y (t)]2〉 ∼ τ 2αw . The
exponent αw is also called the Hurst exponent. In the case of
noises such as fBn, αw ≡ 0, and one can use as a quantifier
the Hurst exponent of the accumulated series, which is an
indirect measure. It is more convenient to use a direct measure
as the correlation C(t,T ) = 〈Y (t)Y (T )〉 ∼ t2φ( T −t

t
)2φl [10] or

the spectral density S(f ) = 1
T
〈̂YT (f ) ̂YT (−f )〉 ∼ T 2β

f 2αs+1 [11],

where #̂ is a Fourier transform. The advantage of using spectral
densities is that they are well defined in all types of series. αs

is positive for fractal curves and negative for noises, whereas
αw, which is always positive, is only defined for fractal curves,
and φl > −1. Moreover, the exponents in their common ranges
are related to the others. In fractal curves, αs and αw coincide
with the exception of the persistent fBm case with αw > 1/2,
where the spectral exponent saturates αs = 1/2. Then a good
characterization of the local scaling is by means of an exponent
that we call αloc defined as

αloc ≡

⎧⎪⎨
⎪⎩

αs if αs < −1,

αs = φl if − 1 � αs � 0,

αs = φl = αw if 0 < αs < 1/2,

max{αs = φl,αw} if αs � 1/2.

(1)

Hence, if we restrict our attention to typical time series that
are either symmetric with respect to their mean values (ν = 0)
or completely asymmetric (ν = α), we can conclude, as in [6],
that we have two independent exponents, α and αloc, which are

suitable for a proper characterization of time series based on
scaling properties. These exponents can be directly obtained
from power spectra of series with variable size. In [12] it was
shown that a complete scaling of power spectra can be written
as

S(f,T ) ∼

⎧⎪⎪⎨
⎪⎪⎩

T 2(α−αs )

f 2αs+1 if αs � 0,α �= 0,

[log(T )]−1

f
if αs = 0,α = 0,

T 2α

f 2αs+1 if αs < 0.

(2)

Therefore, a correspondence of the distinct scaling expo-
nents with the global exponent α can be written as

α ≡
⎧⎨
⎩

β if αs < −1/2,

β = φ − φl if − 1/2 � αs � 0,

β + αs = φ if 0 < αs.

(3)

The scaling of the spectra defines two general aspects of
the large-scale structure of time series. On the one hand, there
is an essential difference between noise (αs < 0) and fractal
curves (αs > 0) that induces two different forms of scaling.
On the other hand, one or two spectral scales exist in the
dynamics of time series, which is another essential property.
More specifically, with both exponents we can classify time
series into classes, representing distinct types of series that
share some geometrical property. This is very useful for
our propose of comparing structures of series and visibility
networks since every class of time series should map to their
corresponding class of complex network. A diagram showing
this classification and the representation of classes we are
going to use in this paper is given in Fig. 1. We are going
to consider five classes exhibiting distinct features:

(i) The class of self-affine curves (SA) defined by αloc =
α > 0. A graphical representation of time series in this class
is self-affine fractal curves since local and global scaling
coincide. fBm curves are typical examples of this class.
For their numerical implementation we use the Levinson
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FIG. 1. Diagram of the classification of time series concerning
their large-scale structure, using two exponents characterizing a local,
αloc, and global, α, behavior. Time series are ordered in classes: self-
affine (SA), stationary noise (SN), stationary fractal (SF), saturated
multiplicative (SM), and 1/f (1F). Points in each class represent the
cases under study.
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algorithm, which produces Gaussian fBm processes with a
very accurate exponent αloc = H [6].

(ii) The class of stationary noise (SN) defined by αloc < 0,
α = 0. It is composed of stationary correlated noise since
its variance is constant with T and the correlation is only
dependent on the difference of times τ . Series in this class can
be numerically obtained using methods of pulse addition [6] or
directly using fBn processes. In this paper, we use fBn series
generated from increments of fBm processes which also gives
Gaussian processes with αloc(fBn) = αloc(fBm) − 1.

(iii) The class of saturated multiplicative processes (SM)
defined by αloc = 1/2, α > 1/2. Multiplicative processes
generated by the stochastic equation in the Ito interpretation:

Ẏ (t) = (μ − ρ)Y 2μ−1 + ξ (t)Y (t)μ, (4)

where ξ (t) is a random Gaussian noise, present scaling
exponents [6,13] given by

αloc = 3 − ρ

4(1 − μ)
, (5)

α = 1

2(1 − μ)
. (6)

ρ is the exponent of the probability density function, which
in a certain region of Y evolves as P (Y,t) ∼ Y−ρ . From (5)
one obtains the condition of saturation of the local scaling,
where αloc = 1/2, as μ >

ρ−1
2 . In these conditions, we have a

process with an apparent form of random walk, since αloc =
1/2, that is not self-affine, α > αloc. These are what we call SM
processes. In our numerical implementation, we take powers
of the Wiener process (fBm with H = 1/2) Y (t) = |W (t)|q ,
which lead to multiplicative processes with αs = 2q+1

4 and
α = q/2. For q > 1/2, αs saturates to 1/2 and series in the
SM class are generated.

(iv) The class of 1/f noise defined by αloc = 0, α < 0.
A standard generator of 1/f noise consists of the addition
of pulses whose interpulse time follows a positive random-
walk process [14]. Exponents of this process are αloc = 0, α =
−1/3 [6]. Hence it is a good example of nonstationary noise
with decreasing variance. A generalization of this process can
be easily achieved simply by taking as the interpulse time
process a positive fBm process with a given αloc = H [12].
Now the local scaling does not change, αloc = 0, but the global
scaling is dependent on H as α = − H

1+H
. Hence a continuous

band of 1/f processes in the range α ∈ (0,1/2) can be obtained
in this simple form. They are processes belonging to the 1/f

class. We have implemented them using a superposition of
exponential pulses with amplitude unity and interpulse times
given by the absolute value of fBm processes.

(v) The class of stationary fractal curves (SF) defined by
αloc > 0, α = 0. They are processes with a singular structure,
since they are fractal curves (αloc > 0) with a constant
variance (α = 0), which appears in some physical experiments
[15]. They are good examples of weak stationarity. They
can be numerically implemented [6] by superposing pulses
with random unitary amplitudes (±1) whose interpulse time
process is a renewal process with a power-law distribution
P (τ ) = (d − 1)τ−d with 1 < d < 2, τ ∈ (1,∞). The expo-
nents obtained in this way are α = 0, αloc = 1 − d/2 in a
range αloc ∈ (0,1/2).

III. LARGE-SCALE STRUCTURE
OF COMPLEX NETWORKS

The most used characteristic to define a network structure is
the distribution of vertex degrees pk , defined as the fraction of
vertices that have degree k [7]. Depending on the asymptotic
form of pk , a first classification of networks is possible. We
focus in this paper on the case in which this asymptotic form
becomes a power law, pk ∼ k−γ , and the network is then said
to be scale-free. These kinds of networks are very common
in many fields of science [7], usually with values 2 � γ � 3,
but our interest here is because they are typical of visibility
networks.

There are some problems in detecting power-law behavior
in a simple histogram such as {pk}. One is that the histogram
can be very noisy at the end of the tail due to statistical
fluctuations. Then it is possible either to use a more suitable
form of representation, or, if we have an ensemble of equivalent
networks, consider sample-averaged histograms as Pk = 〈pk〉.
Typically, a real power-law distribution deviates from the true
power law in the small-k regime, but also this deviation can
happen for high k as well. There will be a cutoff of some type
limiting high degrees of vertices in the tail. As we can see in
the following sections, these limitations should be carefully
treated in visibility networks to avoid misinterpretations.

The exponent of the power distribution γ plays a similar
fundamental role in complex networks to that αloc in time
series. In addition, as in the case of time series, we could say
that in many situations it is not enough to define properly the
large-scale structure of the network. If we deal with networks
whose size is variable, or can be varied, it is possible to get a
new characteristic by considering the scaling of the maximum
degree with the size, 〈kM〉 ∼ Nκ . In visibility networks, it is
expected that this exponent κ plays the same role as the global
exponent α in their corresponding time series.

The physical structure of networks imposes constraints on
the value of the characteristic exponents γ and κ . There is
a general constraint that is called the natural bound [16],
κ � 1

γ−1 , which is not due to structural constraints but is
inherent in any finite degree sequence with a power-law
distribution. When the networks are standard, with neither
multiple connections nor self-connections, a typical structural
constraint comes from the conditions of graphicality. For
generic scale-free networks, this condition reads κ < 1/γ in
the range 1 < γ < 2. The constraints imposed by graphical
conditions in visibility networks have been treated in [17]. It
is worth remarking that these constraints apply to networks
whose degree distributions exhibit true power laws without
size dependence. As we will see in the following sections,
degree distributions of visibility networks mapped from double
scaling series are size-dependent, and new constraint rules
should be adapted for them.

IV. TIME SERIES AND VISIBILITY NETWORKS

Visibility graphs from time series are produced by consider-
ing that two data points that are mutually visible are connected.
In more concrete terms, any pair of data points yti ,ytj (ti < tj )
are mutually visible, and hence they are connected in the
corresponding graph, if and only if for any intermediate
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tk , ti < tk < tj ,

ytk < yti + (ytj − yti )
tk − ti

tj − ti
.

Note that by construction the visibility graph is undirected
and always connected, since each node is linked at least
with its neighbors. One important property is the invariance
of the visibility graph under affine transformation of the
series, thus affine transformation in time series is irrelevant
in their corresponding visibility graph, which indicates that
they capture only a part of the structure. A given visibility
network represents not only the corresponding series but also
all series produced by affine transformations. But this also
means that not all transformations done on time series can
be detected by visibility networks. In fact, there is not a
direct relationship between the classification with exponents α

and αloc, based on correlations and spectral densities, and the
classification of visibility networks based on exponents γ and
κ . While in the first case the exponents account for independent
properties, this is not so clear in the second. For instance, we
only need the exponents αloc and α to classify almost every
kind of time series, whereas, as we will see, a third exponent
added to γ and κ is necessary to represent the same sets. This
happens because degree distributions of visibility networks
coming from double-scaling time series are size-dependent,
Pk ∼ Nθk−γ , and in general there is not a direct dependence,
such as the Parcival law in spectral analysis [6], between the
new exponent θ and κ . Note that with this scaling of the degree
distribution, the natural boundary condition changes. Since it
is given by the condition N

∫ ∞
kM

Pkdk < 1, now it reads

κ <
1 + θ

γ − 1
. (7)

V. NUMERICAL RESULTS AND THEIR INTERPRETATION

In the degree distribution of scale-free networks, the first
and final part of the power-law distribution can deviate ap-
preciably from their theoretical distribution, it being difficult,
in some cases, to get the correct behavior with only samples
of one size. Deviations in the first part of the distribution are
usually due to finite-size effects, but deviations of the last part
can be due to true structures that scale with the size of the
network producing characteristic patterns in the distribution.
On the other hand, as we have mentioned, series with
double scaling in their spectral density produce networks with
size-dependent degree distributions of the form Pk ∼ Nθk−γ .
Hence, an analysis with series of distinct sizes is necessary to
capture the true large-scale structure of both the time series
and their corresponding visibility networks. To obtain the
scaling pattern of visibility networks, we use the averaged
histogram of the relative number of edges with respect to the
maximum value, Pk/kM

= 〈pk/kM
〉, for distinct sizes. If the

distribution is a size-dependent power law with exponents γ

and θ , this quantity scales as 〈kM〉ηPk/kM
∼ (k/kM )−γ , with

η = γ − 1 − θ/κ . We plot in log-log the left part of this
equivalence against k/kM for distinct sizes, varying η until
reaching a collapse of the curves as in Figs. 6, 7, and 8. The
power law exists and the exponent is correct if, besides a
good collapse, the slope of the collapsed part is the exponent

γ . In this way, the pattern of the distribution composed of a
true power law and deviations is perfectly identified. Finally,
the exponent κ is obtained straightforwardly by plotting in a
log-log representation 〈kM〉 against N for different sizes. In the
analysis that follows, we have used time series with sizes 212,
214, and 216 and ensembles of 100 samples. In some cases, the
finite-size effects have a slow variation, and very long series
are needed to get the true exponents. A recent fast algorithm
[18] to create visibility graphs from time series allows us to
deal with series up to 220 points in a reasonable amount of
computing time.

A. Time series with one spectral scale: SA and SN classes

As mentioned in Sec. II, we use Gaussian fBm processes
to represent the SA class and time increments (also Gaussian)
of them to represent the SN class. The SA class consists of
time series with a self-affine graphical representation in which
the local and global scaling coincide, αloc = α = H > 0. It
is worth noting that a small difference in structure exists
between the antipersistent and the persistent series. As we
are going to see, this difference also affects the structure
of their corresponding visibility networks. So, regarding the
structure of time series, we will consider three cases in
this subsection composed of series in the SA class with (i)
persistent behavior (α = αloc = H � 0.5), (ii) antipersistent
behavior (α = αloc = αs = H < 0.5), and (iii) series in the
complete SN class (αloc = αs < 0, α = 0). To represent these
cases, we use, respectively, fBm processes with H = 0.7,
H = 0.3, and fBn processes with H = 0.5.

On the one hand, let us consider the scaling of the maximum
degree with the system size through the exponent κ as
〈kM〉 ∼ Nκ . As mentioned in [17], κ is in fact the fractal
dimension of the visible sites from the site of maximum
visibility. Given the self-affine property of the series in the SA
class, a close connection between the exponents α = αloc and
this fractal dimension can be expected. In fact, the identity
κ = α = H is supported by the numerical analysis shown
in Fig. 2. Differences observed in the extremes H → 1 and
H → 0 are due to finite-size effects. These finite-size effects
are very important in the entire class of SN series. As shown
in Fig. 2, an estimated value of κ ∼ 0.2 is obtained with a
standard analysis, but when using a more detailed description
to see finite-size effects, an extremely slow variation, κ ∼
1/log(N ), is observed, confirming that in this class κ = 0 is
the true exponent. Hence, the identity κ = α is numerically
corroborated.

On the other hand, the analysis of the degree distribution is
more complicated and requires a careful study of the scaling
with the system size N . In Fig. 3, this analysis is outlined.
Typical degree distributions of visibility graphs are depicted
in the left panels for the representatives of each case. One
can see that the three cases possess very distinct structure.
The dashed line, which corresponds to the curve exp(−kμ1 ),
with μ1 ∼ 0.5, fits perfectly in the entire range of degrees in
the SN case, whereas it fits only the zone of small degrees
in the other cases. In the central panels of Fig. 3, we plot
the scaled distribution of relative degrees 〈kM〉γ ∗−1P (k/kM )
against k/kM , adjusting γ ∗ to get a collapse of the curves
with distinct N . If a true power law exists, the exponent γ ∗
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FIG. 2. (a) Estimation of the exponent κ from the scaling 〈kM〉 ∼
Nκ for visibility networks corresponding to fBm series with αloc =
H = 0.7 (persistent, left triangle), αloc = H = 0.3 (antipersistent, up
triangle), and fBn series with αloc = αs = −0.5 (white noise, right
triangle). Values are obtained from an average of the maximum degree
in 100 samples and series sizes of 28,210,212,214,216. (b) Values of κ

obtained with this method for the entire range αloc ∈ (−1,1) including
series in the SN and SA classes. The dashed line corresponds to
κ = α. (c) More precise estimation of κ for a series in the SN class
(αs = −0.5). Now the number of samples is 1000 and the range of
sizes goes from 28 to 220. A small curvature is observed. (d) Local
exponents κN vs N obtained in the left-hand figure. The dashed red
line is the fitted curve, κN = 1.79

logN
.

found in the collapse should be coincident with the exponent
of the observed power law in the figure (k/kM )γ

∗
. This

clearly happens in the persistent case (first row), where a
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FIG. 3. Three distinct scaled plots of the degree distribution to
account for behaviors of the smallest degrees, Pk ∼ exp −akμ1 [(a)–
(c)]; intermediate ones, Pk/kM

∼ (k/kM )−γ ∗
[(d)–(f)]; and highest

degrees, Pk/kM
∼ (k/kM )−γ exp [−A(k/kM )μ2 ] [(g)–(i)], for the same

three series used in the previous figure: αloc = −0.5 [(c), (f), and (i)],
αloc = 0.3 [(b), (e), and (h)], and αloc = 0.7 [(a), (d), and (g)]. Dashed
lines correspond to the fitted curves.

perfect pattern of the distribution is observed: a first part with
deviations due to finite-size effects, a second part that is a
true power law (now the exponent is true, γ = γ ∗), and a
final part with an exponential form that is size-dependent. So,
a more complete scaling as ∼(k/kM )γ exp [−A(k/kM )μ2 ] is
expected in this case. In the other two cases, the curves in
the intermediate zone of degrees only collapse at one point,
indicating that γ ∗ is not a true exponent. These exponents have
been taken as true in other works in which simple analyses with
only one size were performed [2]. These apparent exponents
obtained in the entire range of SA and SN classes are given by
a simple law, γ ∗ = 3 − 2αloc. Moreover, these exponents have
been justified through some scaling arguments [5] that assume
the existence of true power laws, but in [19] doubts about the
validity of their numerical estimation are expressed.

To obtain the new exponent μ2, as shown in the right-
hand panels of Fig. 3, a plot of log[〈kM〉γ+1(k/kM )γ P (k/kM )]
versus k/kM , adjusting the exponent γ to reach a collapse of
the zone with the highest degrees, is performed. The fit with
the expected curve logB − Axμ2 is complete in the case of
persistent SA series. The case of antipersistent fBm series is
not so clear since, although the collapse exists, the separation
between the exponential and power-law parts, implying the
existence of a flat slope, is limited by finite-size effects that
are stronger since the range of scaling is smaller (∼Nκ ).

A plot of the exponents obtained in the complete range
of SA and SN processes is shown in Fig. 4, where a
distinction between true and apparent exponents is given.
In this interpretation, it is assumed that the true behavior of
the networks from SN processes is exp(−akμ1 ), so the other
exponents γ and γ ∗ are only apparent. For SA processes,
we assume a true scaling, (k/kM )γ exp [−A(k/kM )μ2 ], with
γ = 1/κ , so the exponents γ ∗ are true in persistent models,
where γ = γ ∗, but only apparent in antipersistent models.
Note the great difference between these exponents and the ones
obtained in previous work, where γ = 3 − 2αloc [2]. We have,
in fact, a simple heuristic argument that supports the exponent

-1 -0.5 0 0.5 1
αloc

0

1

2

3

4

5

γ
γ∗

μ1
μ2

FIG. 4. Exponents obtained from the three scaled plots of the
previous figure for the entire range αloc ∈ (−1,1). The larger symbols
correspond to true exponents, and the smaller symbols correspond
to apparent exponents. Continuous lines represent the models: red,
γ = 1/κ = 1/αloc; black, γ = 3 − 2αloc.
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γ = 1/κ in visibility networks coming from SA series. This
argument uses the idea of separation in isolated blocks that
yields such good results in simulations [18]. Given a series
of size N , the highest point separates the support of the series
into two parts whose points are not mutually visible. Assuming
that this is the point of maximum visibility with a number of
edges proportional to Nκ , and that the separated blocks have
a similar number of points N1 ∼ N/2, one sees that in the ith
partition we have 2i points with maximum visibility in zones
with lengths N

2i , that is, with ( N
2i )κ edges. Then one obtains the

scaling pk ∼ k−1/κ , that is, γ = 1/κ . In simple simulations,
one sees that if partitions are not of the same size but random,
the scaling keeps its shape. So the exponential cutoff observed
at the maximum edges should be a border effect.

B. Time series with two spectral scales: SM 1F and SF classes

One interesting result presented in this paper concerns
the size dependence of the degree distribution of a visibility
network when the corresponding time series has a spectral
power depending on size. As an illustrative example, we show
in Fig. 5 a case in the SM class with α = 1 and αloc = 0.5. The
size dependence of the spectra S(f,T ) ∼ Tf −2 translates into
size dependence of the degree distribution Pk ∼ N0.35k−2.6.
Hence, time series with two spectral scales map, in general,
to visibility networks whose degree distributions are also
size-dependent. Note that if the degree density is given by
a pure power law with exponent −γ in the interval (km,kM ),
with kM � km and γ > 1, we have

Pk = γ − 1

k
1−γ
m − k

1−γ

M

k−γ ∼ (γ − 1)kγ−1
m k−γ ,

which implies a size dependence of the minimum degree as

km ∼ N
θ

γ−1 . This is the case observed in Fig. 5. In a more
general case with the existence of crossovers as in Fig. 6, the
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FIG. 5. Series in classes with double spectral scaling, whose
spectra are size-dependent, produce visibility networks whose degree
distributions are also size-dependent. Right: PSD’s for series with
three sizes 212,214,216 in their normal form (b) and collapsed (d).
Left: degree densities of the corresponding visibility networks in
their normal form (a) and collapsed (c). Series belong to the
multiplicative class with αs = 0.5, α = 1. The measured exponents
of their corresponding visibility networks are θ = 0.35 and γ = 2.6.
Spectra and degree densities are averaged using 100 samples.

10-3 10-2 10-1 100

k/kM

100

102

104

106

<k
M

>1.
2 P k/

k M

0.001 0.01 0.1 1
k/kM

100

102

104

<k
M

>0.
7 P k/

k M

(k/kM)-3

(k/kM)-1.2

FIG. 6. Scaled relative degree densities of visibility networks
corresponding to a multiplicative series with αs = 0.5, α = 1.5
showing a crossover between two states with power laws. The
exponential behavior observed in the part with the highest degrees of
the previous cases is substituted here by a power law.

size dependence of the intervals where the power laws are
observed is more complicated.

SM class. Numerical simulations indicate that the three
exponents κ , γ , and θ are connected through η = γ − 1 −
θ/κ ∼ 1 in visibility networks coming from processes in the
SM class. Using (7) one sees that a natural bound does not
exist in this case, since it reads κ < 1. However, when passing
the standard natural bound, for α > 1, a kind of crossover
as seen in Fig. 6 is observed in the relative degree density.
Instead of having an exponential cutoff, as in the precedent
cases, we observe a kind of power law. So it is clear that a
transition in the behavior of multiplicative processes for α > 1
is being detected, and this change is not so clearly observed
with standard methods of time series analysis.

1F class. Visibility networks of processes in the 1F class
also present a two-scale behavior as shown in Fig. 7. One
interesting question that arises in this case is whether the
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FIG. 7. Scaled relative degree densities of visibility networks
corresponding to a series in the 1F class (αs = 0, α = −0.3). In
the inset, the explicit dependence with N is shown. The dashed lines
are guides for the eye to compare true power-law and exponential
behavior.
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FIG. 8. Scaled relative degree densities of visibility networks
corresponding to a series in the SF class (α = 0, αs = 0.3). In the
inset, the lack of dependence with the series size is shown.

degree distribution exhibits a true power law or if it is simply
exponential as in the SN class. In the inset of the figure, both
alternatives are confronted. Although the possibility of a power
law seems more evident, the small range of scales involved in
the analysis precludes a definitive answer. In fact, for −α > 0.3
numerical results seem to overcome the corresponding natural
barrier, which is an indication that a power law is not possible.
In this case, one obtains κ ∼ θ , so, from (7), the natural bound
reads κ < 1

γ−2 . As seen in Fig. 9, this bound is overcome.
SF class. Visibility networks mapped from processes in

the SF class show an extreme behavior with γ ∼ 1. Despite
the double scaling observed in the spectral densities [6], the
degree density of the corresponding visibility networks does
not present any apparent size dependence (Figs. 8 and 9).
Scale-free networks with an exponent less than 2 show
different properties [20]. Probably the broad dispersion of
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FIG. 9. Exponents γ , κ , and θ obtained from visibility networks
corresponding to series in the SA (a), SM (b), 1F (c), and SF (d) classes
in a wide range of cases. Exponents γ and θ are obtained from the
scaling of the degree distribution, Pk ∼ Nθk−γ , as in Fig. 5. Exponent
κ is obtained from the scaling of the mean maximum degree, 〈kM〉 ∼
Nκ , as in Fig. 2(a). Black dashed lines are y = x lines to guide
the eye. The red dashed line in (c) is the natural barrier calculated
from (7).

degrees in the local behavior facilitates the lack of dispersion
in the global one.

Finally in Fig. 9, and for the sake of completeness, a plot of
exponents γ , κ , and θ versus the relevant spectral exponents
is shown for series in the SA, SM, 1F, and SF classes.

VI. CONCLUSIONS

In this paper, we have dealt with time series ordered in
five classes whose power spectra exhibit clear power laws
in practically the complete range ∼T (Fig. 5), whereas the
degree densities of their corresponding visibility networks
present a structural cutoff, strong finite-size effects, and
narrower ranges, ∼T κ . So, from a technical point of view,
the direct analysis of time series based on correlations or
spectral densities is more feasible than the analysis of visibility
networks. In fact, in this last case a detailed analysis involving
size-dependent scaling is necessary to obtain true exponents.
In this way, we have obtained different values of exponents
than the ones shown in previous work. Therefore, I strongly
recommend this type of detailed analysis in future uses of
visibility networks to characterize either time series or other
surfaces.

In Fig. 10, we present the counterpart in network theory
of the time series diagram presented in Fig. 1. Now the
large-scale structure of visibility networks is analyzed by
means of γ and κ , which play the role of exponents in a
local and global scaling, respectively. Symbols in the diagram
are numerical results of visibility networks mapped from the
same time series as those used in Fig. 1, whose detailed
description was given in the preceding section. Larger symbols
correspond to true exponents, and smaller symbols to apparent
ones. Continuous lines are theoretical values of single-scaled
processes. Black represents the model of [5], γ = 3 − 2αloc,
while red represents our model, γ = 1/κ , both with κ = α.
Comparing the diagrams, at first glance we see that networks
present strong system-size effects, much more intense than

1 2 3 4 5
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0.6

0.8

1

κ

SF

SM

1F

SN

SA

FIG. 10. Diagram of the classification of visibility networks con-
cerning their large-scale structure, using two exponents characterizing
a local, γ , and global, κ , behavior. Points in the diagram correspond to
visibility networks mapped from the time series appearing in Fig. 1.
The larger symbols represent true exponents, whereas the smaller
symbols represent apparent exponents. The red dashed line is the
natural barrier, and continuous lines represent models.
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their corresponding time series. We also observe that visibility
networks can overcome the reference barriers of the standard
networks. These facts were explained in the preceding section.
Now we focus on the possible connection between the
structures of time series and visibility networks. We can see
that there are evident similarities but also deep differences,
which implies that the analysis of visibility networks can
provide us with information other than that obtained by
correlations of time series. The main facts observed with
correlations, or more specifically with spectral analysis, have
an analog in the analysis of visibility networks. On the one
hand, the clear difference between noise (αloc < 0) and fractal
curves (αs > 0), observed, for instance, in the scaling of
spectra, is transformed here into differences in the scaling laws
of the degree distribution Pk . Visibility networks of fractal
curves exhibit a true power-law distribution with an exponent
γ = 1/κ , while degree distributions of noises are not power
laws, since the exponent γ ∗ obtained in other works is only an
apparent exponent. On the other hand, single-scaled spectral
processes observed in time series, which correspond to SA and
SN classes, are mapped into visibility networks whose degree
distribution is also single-scaled, that is, it is independent of the
size as in any standard distribution. Double-scaled processes
corresponding to the remaining classes map into networks with
degree distributions that scale with the system size as Pk ∼
Nθk−γ . So they are not standard power-law distributions,
which implies that the usual restrictions of barriers, which
come from asymptotic behavior, do not apply in these cases.

Furthermore, I consider that this behavior is not exclusive
to visibility networks. Since it seems essential to describe
the structure of growing networks, it may be interesting to
investigate its existence in other types of networks.

Concerning differences, in the time series diagram of Fig. 1
one can see that the stationary 1/f process (αloc = 0, α = 0)
is a kind of critical point in which processes of four distinct
classes converge. Close to this point, correlations are very
similar despite being very different processes. In the diagram
of networks, this point, which would correspond to γ = 3,
κ = 0, does not exist. In fact, it is just the contrary, i.e.,
their corresponding processes appear very dispersed: κ = 0,
γ = ∞ in the SA class, κ ∼ 1, γ ∼ 1 in the SF class, and
κ = 0, γ = 0 (not power laws) in the SN and 1/F classes.
This dispersion suggests that the use of visibility networks
to distinguish between types of 1/f processes could be very
efficient.

To end with two general conclusions, we can say that
visibility networks are sensitive to different aspects of the
structure of time series due to correlations, which means that
they can be used as a complementary analysis of time series.
Secondly, visibility networks are examples of growth networks
with new kinds of scaling.
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