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We developed a statistical mechanics model to study the emergence of a consensus in societies of adapting,
interacting agents constrained by a social rule B. In the mean-field approximation, we find that if the agents’
interaction H0 is weak, all agents adapt to the social rule B, with which they form a consensus; however, if
the interaction is sufficiently strong, a consensus is built against the established status quo. We observed that,
after a transient time αt , agents asymptotically approach complete consensus by following a path whereby
they neglect their neighbors’ opinions on socially neutral issues (i.e., issues for which the society as a whole
has no opinion). αt is found to be finite for most values of the interagent interaction H0 and temperature T ,
with the exception of the values H0 = 1, T → ∞, and the region determined by the inequalities β < 2 and
2βH0 < 1 + β − √

1 + 2β − β2, for which consensus, with respect to B, is never reached.

DOI: 10.1103/PhysRevE.95.062305

I. INTRODUCTION

In this article, we propose a statistical mechanics approach
to study the emergence and consolidation of opinion consensus
in a society of adaptive agents in the presence of a social
field B. The term consensus is understood to be the level
of agreement among the agents in favor of or against the
predetermined socially accepted position delivered by B [1].
B represents the set of rules that determine what is socially
acceptable. Such rules are the result of previous consensus-
forming processes, typically observed in any functioning
society [2,3].

We developed our model from the assumption that the
agents form their opinions on social issues based on partial
information received at regular intervals during the process.
The volume of information increases over time, and, as the
agents are adaptive, they update their opinions accordingly.

The model we work with has been inspired by the model
presented [4] and possesses the following characteristics:

(i) There is a mechanism for the agents to assimilate
information and update their opinions.

(ii) The model considers the existence of a set of rules B

that determines what is socially acceptable.
(iii) The model considers the interaction of the agents

with their neighbors [5,6], with a strength proportional to the
credibility, number, and proximity of neighbors to the agent.

The topology induced by the proximity of neighbors and
the adaptability of the agents are both sources of disorder that
have not been considered simultaneously in previous opinion-
formation models. We are convinced that this effort is worth
pursuing, and we expect that the inclusion of these components
will enhance the suitability of our model.

Opinions, considered to be the belief or attitude toward
different positions on a given subject, can be conveniently
modeled by continuous variables. Yet there is sufficient
evidence in support of modeling opinions (on important issues)
with binary variables [7]. Thus both the opinion of an agent
a and the social position delivered by B on an issue codified
into a binary string of length N,ξ ∈ {±1}N are, respectively,
σa(ξ ), σB(ξ ) ∈ {±1}. According to [4], representing a and
B with perceptrons ensures the analytical tractability of the
model. In this manner, the socially accepted position on ξ is

σB(ξ ) = sgn(B · ξ ), where B ∈ RN is the synaptic vector of
B, sgn(x) = 1 if x > 0,−1 if x < 0, and 0 otherwise, and
B · ξ = ∑N

j=1 Bjξj . It is clear from this formalism that the
presence of B introduces a privileged direction B in space,
which gives an anisotropic character to the opinion-formation
process. We associated with the agent a a perceptron with a
synaptic vector Ja ∈ RN , such that σa(ξ ) = sgn(Ja · ξ ).

There is a body of evidence supporting the effect of
social influence on opinion-formation processes [8]; as a
consequence, to model the agents’ interactions, we follow
social impact theory [5,6]. Following item (iii) above, and to
give a topological structure to the system, we consider a society
with M agents 1 � a � M linked by a set of social strengths
S ≡ {ηa,c|0 � ηa,c ∈ R}, where ηa,c represents the influence
that agent c has on the opinion of agent a. Reciprocity
is not assumed, and therefore the relationship ηa,c = ηc,a

is not expected. We define the neighborhood of a by
Na = {c|c �= a and ηa,c > 0}, which is the set of
agents connected to a. The opinion-formation
process itself is modeled by an on-line learning
scenario [9], where a set of social issues
LP ≡ {(ξμ,σB(ξμ)), μ = 1, . . . ,P } is used to define the
energy of the society:

E({Ja}; LP ,S ) ≡
P∑

μ=1

M∑
a=1

�( − σa(ξμ)σB(ξμ))

×
⎡
⎣1 −

∑
c∈Na

ηa,c�( − σc(ξμ)σB(ξμ))

⎤
⎦,

(1)

where �(x) = 1 if x > 0 and 0 otherwise. Observe that
for independent agents (∀ a,c, ηa,c = 0) the energy (1) is
minimized to 0 when all agents develop the same opinion as
B. If Na �= ∅, then the μth term on the right-hand side of
(1) is 0 if σa = σB or 1 − ηa,c1 − · · · − ηa,cm

if a disagrees
with B(σa �= σB) and agrees with some of its neighbors
ci ∈ {c ∈ Na|σa = σc}. Observe that if a disagrees with B and
the social strengths ηa,c are large enough, the added effect of
a’s agreeing neighbors could make the energy grow negative.
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This model of the energy accounts for the effect observed in
social experiments, where people tend to agree with peers that
share their same opinions [10].

II. THE FREE ENERGY
IN THE MEAN-FIELD APPROXIMATION

The energetic formulation of the problem allows us to apply
the techniques from the statistical mechanics of disordered
systems to better understand the behavior of the society.
There are two sources of disorder in the model described
by (1), one introduced through the set of issues LP , and
the second through the topology imposed by S . As a valid
first approach to the full treatment of the present formalism,
we present in this article a study on the emergence of
consensus in a mean-field approximation [i.e., for all index a,
Na = {1,2, . . . ,a−1,a+1, . . . ,M}, and ηa,c = η0 for all pairs
(a,c)].

We apply the replica trick [11] in order to compute the
expectation of the logarithm of the partition function ln Z =
limn→0 n−1(Zn − 1). The average of the replicated partition
function is

Zn(β,η0) ≡
〈

exp

{
−β

∑
γ,μ,a

�
(−Jγ

a · ξμ B · ξμ

)

×
[

1 − η0

∑
c

�
(−Jγ

c · ξμ B · ξμ

)]}〉
{ξμ},B,{Jγ

a }
,

(2)

where β (the inverse of the temperature) is a parameter that
gauges the fluctuations of energy, and the angular brackets
represent the expectation over the set of issues {ξμ}, the
distribution of synaptic vectors of the social rule B, and the set
of replicated synaptic vectors of the agents {Jγ

a } (the details of
the calculation are presented in Appendix A).

The calculation of the average over the disorder introduced
through the social issues in LP produces an expression for the
replicated partition function Zn that depends on the following
distributed variables:

Rγ
a ≡ Jγ

a · B
N

, W
γ

a,b ≡ Jγ
a · Jγ

b

N
,

qγ,ρ
a ≡ Jγ

a · Jρ
a

N
, t

γ,ρ

a,b ≡ Jγ
a · Jρ

b

N
.

These overlaps are the cosines of the angles between synaptic
vectors, and they represent a level of agreement between
the agents and the society (Rγ

a ), between two different
agents (Wγ

a,b and t
γ,ρ

a,b ), or between versions of the same
agent in different replicas (qγ,ρ

a ). We impose a replica and
site-symmetric approximation, which entails consideration of
the values of the overlaps as site- and replica-independent
R

γ
a = R, q

γ,ρ
a = q, W

γ

a,b = W , and t
γ,ρ

a,b = t . It is possible
to justify that the difference between W and t satisfies the
scaling τ ≡ M(W − t) ∼ O(1) [see Ref. [12], Eq. (3)], which
simplifies the matrix representation of the interaction between
replicated systems.

In this approximation, and assuming that the length of the
issues N is sufficiently large and τ sufficiently small, the

replicated partition function can be expressed as

Zn(α,β,H0) = extr
q,R,W

{
exp

(
N

2
GS(q,R)

+αNGE(q,R,W ; β,H0)

)}
,

where α ≡ P/N is a parameter that measures the volume
of information provided to the agents. Such information is
supplied at a constant rate, thus α can be interpreted as a
measure of time. To express the extraction of the asymptotic
behavior of integrals of the form IN ≡ ∫ x2

x1
dx eNg(x) in the limit

N → ∞ through Laplace’s method, we denote: extrx IN ≡
eNg(x0) where x0 is such that g(x0) � g(x) for all x ∈ [x1,x2].
The quantity H0 ≡ Mη0 ∼ O(1) is a measure of the total
interaction between an agent and its neighborhood. It must be
an O(1) quantity to ensure the extensivity of the energy (1), and

GS(q,R) ≡ nM

(
ln(1 − q) + q − R2

1 − q

)
,

GE(q,R,W ; β,H0) ≡ −2nM

∫
dzN

(
z

∣∣∣∣0,
W

1 − q

)

×H
(

−
√

1 − q

W (W − R2)
Rz

)
�(z; β,H0),

where N (x|μ,σ 2) = exp[(x − μ)2/2σ 2]/
√

2πσ 2 is a Gaus-
sian distribution in x, centered at μ and with variance σ 2, and
H(x) ≡ ∫ ∞

x
dzN (z|0,1) is the Gardner error function. The

function �(z; β,H0) carries the information of the averaged
interagent interaction, weighted by the thermal coefficient:

�(z; β,H0) ≡ − lim
M→∞

1

M
ln

{∫
Dx

[
H(−z)

+ exp

(√
2βH0

M
x − β

)
H(z)

]M}

= min
u∈[0,1]

�̃(u,z; β,H0), (3)

with

�̃(u,z; β,H0) ≡ [u − H(z)]2

2H(z)H(−z)
− u2βH0 + uβ.

This expression is obtained through the application of
Laplace’s method under the assumption that the size of the
population (M) is sufficiently large. [The relationship of the
quantities that set the size of the replicated system (N , M , and
n) is as follows: 1 � M � N and nNM � 1.] There are three
possible results to the minimization problem (3), depending on
the values of the variable z and the parameters β and H0. Given
the functions b0(β,H0) and b1(β,H0) [Eqs. (A7) and (A8),
respectively], we observe that if b0 < z, the minimum of (3)
is at u = 0 and �(z) = �0(z) ≡ �̃(0,z); if b1 < z < b0, the
minimum is at u = u0, where 0 < u0 < 1 is given by Eq. (A3)
and �(z) = �u0 (z) ≡ �̃(u0,z); and if z < b1, the minimum
is at u = 1 and �(z) = �1(z) ≡ �̃(1,z). The explicit form of
the components �0, �u0 , and �1 is given in expression (A9).
Observe that the function � so defined is continuous but
not differentiable at z = b0,b1. In Fig. 1, we present the
distribution of the components �0, �u0 , and �1 in the plane
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FIG. 1. Distribution of the components (A9), with their corre-
spondent boundaries b0 (A7) and b1 (A8), in the plane (β,H0).

(β,H0), which provides insight on the phase diagram of the
system.

By defining the new parameters w ≡ W/(1 − q) and
r ≡ R/

√
1 − q, we have that

βf (αβ,H0) ≡ − lim
n→0

lim
M,N→∞

Zn(α,β,H0) − 1

nNM

= extr
q

ψ(q) + extr
r,w

φ(r,w; α,β,H0), (4)

where

ψ(q) ≡ −1

2

(
ln(1 − q) + q

1 − q

)
, (5)

φ(r,w; α,β,H0) ≡ r2

2
+ 2α

∫
dzN (z|0,w)

× H
(

− rz√
w(w − r2)

)
�(z; β,H0). (6)

Observe that ψ(q) is concave in q, and its minimum is reached
at q = 1. Given that ψ does not depend on the parameters α, β,
or H0, we will consider the problem of optimizing the shifted
free energy:

βf0(α,β,H0) ≡ extr
r,w

φ(r,w; α,β,H0). (7)

III. THE ROLE OF THE SOCIALLY NEUTRAL ISSUES

To better understand how the process of opinion formation
evolves, we need to study what happens in the orthogonal
hyperspace to B. Toward that end, we define as socially neutral
issues all the binary strings S0 ∈ {±1}N satisfying B · S0 = 0.
Thus, a socially neutral issue is an issue for which there is no
socially accepted position.

The optimization of the function φ with respect to the
rescaled parameters produces the equations ∂rφ = ∂wφ = 0,
which are satisfied if

r = −
√

2

π
α

∫
dzN (z|0,w − r2)

∂�(z; β,H0)

∂z
, (8)

r2 = 2α

∫
dzN (z|0,w)

(
1 − z2

w

)

× H
(

− rz√
w(w − r2)

)
�(z; β,H0), (9)

where 0 � r2 � w, which implies that R2 � W . If two agents
a and c have the same overlap with B, i.e., Ra = Rc = R, the
relationship between R and W is W = R2 + (1 − R2) cos ϕ,
where ϕ is the angle between the components of Ja and Jc

perpendicular to B. In such a case, if R2 = W , then ϕ = π
2

and the probability of both agents agreeing on any S0 is 1
2 and

no consensus can be built on socially neutral issues. If R = 0,
then 0 < cos ϕ = W , indicating that there is no consensus in
favor of or against B, but a level of agreement can be built on
socially neutral issues.

A. r2 = w solution. Independence of opinion
on socially neutral issues

Observe that Eqs. (8) and (9) can be satisfied simultaneously
with the condition r2 = w (implying R2 = W ) for a finite
value of α = αt at a particular value of r = rt determined by
the equations

αt = −
√

π

2

rt

�(1)(β,H0)
, (10)

rt = −
√

2π

�(1)(β,H0)

∫
dzN

(
z|0,r2

t

)(
1 − z2

r2
t

)

× �(rt z) �(z; β,H0), (11)

where

�(n)(β,H0) ≡Au0 (β,H0)
∂n�u0 (z; β,H0)

∂zn

∣∣∣∣
z=0

+ A0(β,H0)
∂n�0(z; β,H0)

∂zn

∣∣∣∣
z=0

+ A1(β,H0)
∂n�1(z; β,H0)

∂zn

∣∣∣∣
z=0

(12)

is the nth derivative of � at z = 0, and A1(β,H0) ≡ �(H0 −
1)�(2βH0 − 2 − β), Au0 (β,H0) ≡ �(1 − H0)�(2 − β) + �

(H0 − 1)�(2 + β − 2βH0), and A0(β,H0) ≡ �(1 − H0)�
(β − 2) are signal functions such that A� = 1 if z = 0 is in
the domain of �� or 0 otherwise, with � = 0,u0,1. [Observe
that A1 + Au0 + A0 = 1 and A1Au0A0 = 0 for all (β,H0).]
In particular, the first derivative of � at 0 is given by

�(1)(β,H0) =
√

2

π
sgn(H0 − 1)

(
β|H0 − 1|
2 − βH0

Au0 (β,H0)

+ A0(β,H0) + A1(β,H0)

)
. (13)
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Observe that sgn(�(1)) = sgn(H0 − 1), and since αt > 0, from
(10) the sign of rt must be sgn(1 − H0). Let us assume that |rt |
is small enough, such that the error term

ε(β,H0) ≡ max
z∈R,γ=0,1

{|�(z; β,H0)|}|bγ |N (
bγ |0,r2

t

)
(14)

is negligible, and that we are working in a region of the plane
(β,H0) such that the boundaries b0 and b1 are not zero. By
using expressions (12) and (14), we can approximate (11) in
the following way:

rt ≈ −
√

2π

∞∑
n=0

rn
t

n!

�(n)(β,H0)

�(1)(β,H0)

∫ ∞

0
Dz zn(1 − z2) + O(ε),

(15)

which implies that, keeping terms up to O(r4
t ) in (15), we

obtain

rt ≈
√

π3

2

−2βH0 + 2(1 + β)H0 − β

(1 − H0)[(12 − π )βH0 + 2π ]
Au0 (β,H0)

+
√

2π3

12 − π
[A0(β,H0) − A1(β,H0)] (16)

and

αt ≈ π5/2

23/2

(2 − βH0)[−2βH0 + 2(1 + β)H0 − β]

β(1 − H0)2[(12 − π )βH0 + 2π ]

×Au0 (β,H0) + α0,1[1 − Au0 (β,H0)], (17)

where

α0,1 ≡ 21/2π5/2

24 − 2π
≈ 1.396. (18)

α0,1 is introduced as a measure of a typical time scale for
most of the points of the (β,H0) plane. Equation (16) is an
approximation to the solution of (11), which is qualitatively
suitable if sgn(rt ) = sgn(1 − H0). This is not the case for order
pairs (β,H0) satisfying

B(β,H0) = �(2 − β)�(1 + β −
√

1 + 2β − β2 − 2βH0).

(19)

In this region, the proposal r2
t = wt does not satisfy the saddle

point equations (8) and (9). We will explore the behavior of the
solution in this region in the next subsection. For almost the
entire region of the plane (β,H0) determined by the equation
B(β,H0) = 0, the solution r2 = w is stable (see Appendix B).

Most of the opinion-formation process occurs for α > αt .
The effective energy for α > αt can be defined as

φeff(r; α,β,H0)

≡ r2

2
+ 2α

∫
dzN (z|0,r2)�(rz)�(z; β,H0). (20)

The new saddle point equation is

∂rφeff = r − 2α

|r|
∫

dzN (z|0,r2)

(
1 − z2

r2

)
�(rz)�(z; β,H0),

which implies that for large values of α, |r| 
 1, thus

r3 ≈ sgn(1 − H0)

2π
α, (21)

which implies that |r| ∼ O(α1/3), and the second derivative is
then ∂2

r,rφeff ≈ 1 + O(α−1/3), which indicates that the solution
(21) is stable.

Finally, observe that r2 ∝ 1/(1 − q), thus we expect that α

will be sufficiently large to observe the asymptotic behavior
q ≈ 1 − O(α−2/3).

B. r2 < w solution. Consensus on socially neutral issues

The behavior r2 < w is observed for values of β and H0

such that B(β,H0) = 1, indicating that the component of �

that appears in (8) and (9) for these values of β and H0 is
�u0 . Therefore, for small enough values of α we have that
w − r2 � 1 and |r| � 1, therefore

r ≈ −
√

2

π
α�(1)

u0
(β,H0), (22)

r2 ≈ 2α

∫ ∞

0
Dz (1 − z2) �u0 (

√
wz; β,H0), (23)

where (22) and (13) indicate that r > 0, and in (23) we
have used the approximation based on (14). By expanding
�u0 (z; β,H0) around z = 0, we obtain an expression for r up
to order 1 in w:

r ≈ √
w − 2

π

βH 2
0 − 2(β + 1)H0 + β

(1 − H0)(2 − βH0)
w, (24)

where the factor of w in the second term of (24) is positive if
B(β,H0) = 1.

For large values of α, we suppose that w > w − r2 
 1.
Thus

r = −
√

2

π

α

w − r2

∫ ∞

−∞
Dz z �u0 (

√
w − r2z; β,H0)

≈ αβ(1 − H0)

π
√

w − r2
, (25)

r2 ≈ α

∫ ∞

−∞
Dz (1 − z2) �u0 (

√
w − r2z; β,H0)

≈ αβ(2 − β)

4π
√

w
. (26)

From (25) and (26) we obtain that r ∼ 1
4 (2 − β)/(1 − H0)

asymptotically, which does not depend on α. In a similar
manner, we obtain the asymptotic behavior of

√
w ∼ 4

π
αβ(1 −

H0)2/(2 − β), which indicates that 1 − q ∼ O(α−2). These
results indicate that the overlap R approaches zero asymptoti-
cally, R ∼ O(α−1).

C. Phase diagram

We solved Eqs. (10) and (11) numerically and constructed
the plot of ln(αt ) as a function of β and H0 presented in Fig. 2.
αt represents the transient period prior to the final stage
of the opinion-formation process, characterized by agents
developing independent attitudes toward their peers’ opinions
on socially neutral issues. From Fig. 2 we observe that there
is a sector of the (β,H0) plane for which the system takes a
relatively long time to reach the solution r2 = w. This sector is
formed by the order pairs (β,H0) that make Au0 (β,H0) = 1. In
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FIG. 2. Logarithm of the transient time ln(αt ) as a function
of β and H0.

the triangular sector formed by order pairs (β,H0) that make
B(β,H0) = 1, no suitable numerical solution was found, as
was expected.

To better understand the picture the system presents
immediately after αt and by considering the definitions of
A1, Au0 , A0, and B with the addition of the calculation of the
unstable region and the analysis of the signs of the solutions
presented in (21) and (25), we constructed the diagram of
Fig. 3. The areas marked Au0 correspond to sectors of the
(β,H0) plane characterized by relatively long transient times

0 1 2 3
β

0

1

2

H0
A1 = 1, R < 0

Au0
 = 1, R > 0

Au0
 = 1, R < 0

A0 = 1, R > 0

B = 1, R = 0

I

2βH0 = (β+2)
H0 = 1

2βH0 = 1+β−(1+2β−β2)1/2

FIG. 3. Diagram of the system at αt . We labeled the regions where
the proposed solution r2

t = wt is stable by Au0 (where αt 
 α0,1), A0

and A1 (where, in both cases, αt = α0,1), by I where the proposed
solution is instable and by B the region where r2 < w for all α. We
also indicated the sign of R according to (16) and (25).

0 1 2 3
β

0

0.5

1

1.5

H
0

R  = -1

R = 1

R = 0

FIG. 4. Phase diagram of the system in the limit of α → ∞.
Transitions between any two phases are always of the first order.

αt 
 α0,1, whereas the areas marked A0 and A1 develop the
solution r2 = w in relatively short transient times αt = α0,1.

With the asymptotic behavior of R inferred from Eqs. (21)
and (25), we constructed the phase diagram of the system,
presented in Fig. 4. Observe that for H0 > 1, the asymptotic
value of R = −1. At H0 = 1, we have that R = 0 for all α; in-
side the sector with B(β,H0) = 1, R vanishes asymptotically;
and for order pairs (β,H0) such that H0 < 1 and B(β,H0) = 0,
we have that R = 1. The transitions between the phases with
R = 0 and 1 and between the phases with R = 1 and −1 are
of the first order.

IV. DISCUSSION

We presented a model for the opinion-formation process
in a society of interacting agents, represented by binary
perceptrons, in the presence of a social field B. The field
is the result of many opinion-formation processes prior to
the current one; it provides the socially acceptable position
on current issues and indicates a preferential direction in the
space of issues given the anisotropic character of the system.
The model, represented by Eq. (1), incorporates the interaction
of two different sources of disorder, namely the topology of the
interaction S and the training set LP , and, although our results
have been obtained by considering a mean-field approximation
on the topology, we expect to tackle the complete model in a
future work.

Our results are derived from the study of the shifted free
energy (7), associated with the function φ (6) through an
optimization procedure. The optimal solutions of the energy
are obtained by solving Eqs. (8) and (9) for the reduced
parameters r ≡ R/

√
1 − q and w ≡ W/(1 − q), respectively.

For most of the values of β and H0 [i.e., B(β,H0) = 0], the
solution r2

t = wt is reached after a transient time αt . This
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transient is larger in the region determined by the values of β

and H0 such that Au0 (β,H0) = 1. This region is characterized
by a high temperature (β → 0), which is the cause of the long
transients. The only region in the plane (β,H0) for which the
solutions found are not stable is located in the neighborhood
of the point β = 0 and H0 = 1, indicated in Fig. 3 by a
label I .

We also constructed a phase diagram of the system by
inferring the behavior of R for large values of α, presented
in Fig. 4. For values of H0 > 1, the consensus is always
formed against B, i.e., R = −1. This is one of the effects
studied within the context of moral foundation theory, which
considers the cause of change in the society’s status quo the
frequent corroboration of opinion between equally minded
voters [13,14]. The conservative attitude of the agents (R = 1)
interacting with low values of H0 < 1 is consistent with
previous studies done on a dynamical version of the model
at zero temperature [4]. Inside the region B(β,H0) = 1 there
is no consensus with respect to B (R = 0). The transitions
between any two phases are of the first order in all the possible
cases.

The fact that at αt the overlaps become R2
t = Wt indicates

that the agents approach consensus disregarding the opinion
of their peers on socially neutral issues (issues for which there
is no definite socially accepted position). Given that the only
anisotropy of energy (1) is due to the presence of the synaptic
vector B, it is reasonable to suppose that the agents evolve
maximizing the diversity of opinions in the only region of the
space of synaptic vectors compatible with the rule B where
there is no social reference, i.e., the hyperspace perpendicular
to B.

Consensus with respect to B is never formed for β = 0,
H0 = 1, and the values of β and H0 satisfying B(β,H0) = 1.
On the line β = 0, �(z) is zero, consensus is never achieved
due to large energy fluctuations in the system, and R = 0
for all α. At H0 = 1, �(z) is even and the solution to (8)
is R = 0. This occurs because competing attitudes toward

following either B or neighboring agents cancel each other
out, and consensus is never reached. At B(β,H0), a consensus
is initially built in favor of B (R > 0), but it vanishes
asymptotically when more information is provided to the
system (R → 0 when α → ∞). The only consensus observed
in this region is with respect to socially neutral issues, which
is an effect similar to the one observed when irrelevant events
affect the opinion of voters on government performance [15].

A similar model, without the presence of B, has been
studied in [16]. In this model, the authors found the persistence
of disagreement in a system composed by consensus seekers.
Apparently the lack of reference (B in our case) made the
formation of a consensus impossible.

It is worth mentioning that these results have been obtained
assuming that the size of the population (M) is large enough.
Although large enough in this context is equivalent to infinitely
large, it may be interesting to explore the suitability of the
results found as approximations to the behavior of finite-sized
communities.

α is a timelike parameter, thus the reported αt can be
considered as the characteristic time of the model, which,
for a fully connected system, is expected to be shorter than
that obtained by other means than a mean-field approximation
[17,18]. As is expected from a mean-field approximation
[19,20], phenomena associated with the correlation length of
the system (such as the presence of clusters reported in [4,21])
cannot be addressed within this framework. To do so, we will
need to consider more realistic graph topologies, particularly
by introducing nonsymmetric interaction (directed graphs)
[22] and connectivity dynamics [23,24], which facilitates the
exchange of information between agents [25,26].
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APPENDIX A: MEAN-FIELD APPROACH

The average we need to compute is

Zn(β,η0) ≡
〈

exp

{
−β

∑
γ,μ,a

�
(−Jγ

a · ξμ B · ξμ

)[
1 − η0

∑
c

�
(−Jγ

c · ξμ B · ξμ

)]}〉
{ξμ},B,{Jγ

a }
.

We assumed that the components of the issues ξ are i.i.d variables drawn from P(ξi = ±1) = 1
2 (but any distribution with

zero mean and unit variance would do). Any nonzero vector B ∈ RN could be used as the social rule’s synaptic vector and
thus determine a privileged direction in space. For simplicity’s sake, we chose the vector with components Bk = 1, and thus
P(B) = ∏

k δ(Bk − 1). The agents’ synaptic vectors are uniformly distributed over the surface of a sphere in RN centered at 0
and with radius

√
N , thus P(J) ≡ ∏N

k=1 δ(
∑N

k=1 J 2
k − N )/

√
2πe.

To compute the partition function equation (2), we define the O(1) variables λ
γ
a,μ ≡ Jγ

a · ξμ/
√

N and uμ ≡ B · ξμ/
√

N and
perform the average over the training set:

Zn(β) =
∫ ∏

γ,μ,a

dλ
γ
a,μdλ̂

γ
a,μ

2π

∫ ∏
μ

duμdûμ

2π
exp

(
−i

∑
γ,μ,a

λ̂γ
a,μλγ

a,μ − i
∑

μ

ûμuμ

)〈∏
μ,k

cos

(∑
γ,a

λ̂
γ
a,μJ

γ

a,k√
N

+ ûμBk√
N

)〉
B,{Jγ

a }

× exp

{
−

∑
γ,μ,a

β�
(−λγ

a,μuμ

)[
1 − η0

∑
c

�
(−λγ

c,μuμ

)]}
.
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By applying a Gaussian approximation to the product of cosines, by introducing the overlaps,

Rγ
a ≡ Jγ

a · B
N

, W
γ

a,b ≡ Jγ
a · Jγ

b

N
, qγ,ρ

a ≡ Jγ
a · Jρ

a

N
, t

γ,ρ

a,b ≡ Jγ
a · Jρ

b

N
,

by defining the matrices,

[ Q̂]γ,ρ

a,b ≡ i
{
δγ,ρ

(
δa,b�̂

γ
a + (1 − δa,b)Ŵ γ

a,b

) + (1 − δγ,ρ)
[
δa,bq̂

γ,ρ
a + (1 − δa,b)t̂ γ ,ρ

a,b

]}
,

[ Q]γ,ρ

a,b ≡ δγ,ρ
[
δa,b + (1 − δa,b)Wγ

a,b

] + (1 − δγ,ρ)
[
δa,bq

γ,ρ
a + (1 − δa,b)tγ,ρ

a,b

]
,

and by integrating over the synaptic vectors, we have that

Zn(α,β,η0) = C −1Ĉ −1
∫

d Q d R d Q̂ d R̂ exp(NgS( Q,R, Q̂,R̂))

×
[∫

dλ̂ dλ du

(2π )nM+1/2
exp

(
gE( Q,R,λ̂,λ,u; β,η0)

)]αN

,

where C and Ĉ are suitable normalization constants, P = αN , and

gS( Q,R, Q̂,R̂) ≡ 1

2
tr Q Q̂ − 1

2
ln | Q̂| − 1

2

∑
a,b

∑
γ,ρ

R̂γ
a [ Q̂

−1
]γ,ρ

a,b R̂
ρ

b + i
∑
γ,a

R̂γ
a Rγ

a − nM

2
,

gE( Q,R,λ̂,λ,u; β,η0) ≡ − 1

2

∑
γ,a

[
1 − (

Rγ
a

)2](
λ̂γ

a

)2 −
∑
γ,a

∑
γ<ρ

(
qγ,ρ

a − Rγ
a Rρ

a

)
λ̂γ

a λ̂ρ
a

−
∑
γ,a

∑
a<b

(
W

γ

a,b − Rγ
a R

γ

b

)
λ̂γ

a λ̂
γ

b −
∑
γ,a

∑
γ �=ρ

∑
a<b

(
t
γ,ρ

a,b − Rγ
a R

ρ

b

)
λ̂γ

a λ̂
ρ

b

− u2

2
+ i

∑
γ,a

λ̂γ
a Rγ

a u − i
∑
γ,a

λ̂γ
a λγ

a −
∑
γ,a

β�
( − λγ

a u
)(

1 − η0

∑
c

�
( − λγ

c u
))

.

In the large-N limit, we can apply the Laplace method to solve the integrals over Q̂ and R̂, thus obtaining

R̂γ
a = i

∑
ρ,b

[ Q̂]γ,ρ

a,b R
ρ

b , [ Q̂
−1

]γ,ρ

a,b = [K ]γ,ρ

a,b ≡ [ Q]γ,ρ

a,b − Rγ
a R

ρ

b ,

which produces

exp[NGS(K )] ≡ extr
Q̂,R̂

{exp(NgS( Q,R, Q̂,R̂))} = |K |N/2

and thus

Zn(α,β,η0) = extr
K

{
exp

(
N

2
ln |K | + αNGE(K ; β,η0)

)}
,

where

exp[GE(K ; β,η0)] ≡
∫

dλ̂ dλ du

(2π )nM+1/2
exp(gE( Q,R,λ̂,λ,u; β,η0)).

By imposing the replica symmetric ansatz and symmetry between agents, i.e., R
γ
a = R, q

γ,ρ
a = q, W

γ

a,b = W , and t
γ,ρ

a,b = t , with
the assumption that the overlaps W and t satisfy the scaling τ ≡ M(W − t) ∼ O(1) [see Ref. [12], Eq. (3)], the logarithm of the
determinant of K is

ln |K | = nM

[
ln(1 − q) + q − W

1 − q
+ W − R2

1 − q + τ
+ O(n)

]
. (A1)
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By defining the function B(x; β,η0) ≡ exp (
√

2βη0x − β) and performing the integrals over the variables λ̂
γ
a and λ

γ
a , we have

that

exp[GE(K ; β,η0)] = 2
∫ ∞

0
Du

∫
Dw

∫ ∏
a

Dwa

{∫
Dx Ds

∏
a

[B + (1 − B)H(−ya)]

}n

≈ 2
∫ ∞

0
Du

∫
Dw

∫ ∏
a

Dwa

{∫
Dx Ds[B + (1 − B)H(−y)]M

}n

≈
√

2

π

1 − q

W

∫
dz exp

(
−1 − q

W

z2

2

)
H
(

−
√

1 − q

W (W − R2)
Rz

)

×
{√

M(1 − q)

2πτ

∫
Dx dσ exp

(
−M

1 − q

τ

(σ − z)2

2

)
[B + (1 − B)H(−σ )]M

}n

,

where the intermediate step has used the average variable,

y ≡ Ru + √
t − R2w + √

q − tM−1 ∑
a wa + √

W − ts√
1 − q + t − W

,

Dx ≡ (2π )−1/2dx e−x2/2 is the Gaussian measure, and H(x) ≡ ∫ ∞
x

Dy is the Gardner error function. To keep the extensivity of
the energy (1), we will impose the scaling H0 ≡ Mη0 ∼ O(1). For a large enough population size M , we can use the Gaussian
approximation for the binomial factor, solve the integrals in σ and x by the Laplace method, and expand for small n:

exp [GE(K ; β,η0)] ≈ 1 − 2nM

√
1 − q

W

∫
dz√
2π

exp

(
−1 − q

W

z2

2

)
H
(

−
√

1 − q

W (W − R2)
Rz

)

× min
u∈(0,1),σ∈R

{
1 − q

τ

(σ − z)2

2
+ [u − H(σ )]2

2H(σ )H(−σ )
− u2βH0 + uβ

}
+ O(n2). (A2)

The factor between curly brackets on the right-hand side of (A2) emerges from the interaction between agents and is responsible
for the fragmentation of the phase space observed in the following. For sufficiently small values of τ , the minimum of (A2) is
achieved at σ = z. The remaining problem corresponds to the minimization of a quadratic polynomial in u ∈ [0,1], for which
the solution is either the minimum of the parabola,

u0 = [1 − βH(−z)]H(z)

1 − 2βH0H(z)H(−z)
(A3)

if the factor of the quadratic component is positive, i.e., 1 − 2βH0H(z)H(−z) > 0 and if 0 < u0 < 1, or the border of the interval,
i.e., u = 0,1. Consider H−1(x) the inverse of the Gardner error function. We found that, by defining the quantities

a1 ≡ −H−1

(
�(2H0 − 1) max

{
0,

β(2H0 − 1) − 1

β(2H0 − 1)

})
, (A4)

a2 ≡ −H−1

(
min

{
1,

1

β

})
, (A5)

a3 ≡ −H−1

(
1

2
−

√
β2(1 − H0)2 + 1 − 1

2β(1 − H0)

)
, (A6)

b0 ≡ �(a2 − a1)a2 + �(a1 − a2)a3, (A7)

b1 ≡ �(a2 − a1)a1 + �(a1 − a2)a3, (A8)
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we observe that if b1 < z < b0, the minimum is achieved at u = u0 (A3); if b0 < z, the minimum is achieved at u = 0; and if
z < b1, the minimum is achieved at u = 1. The solution to the minimization problem, in zeroth order in τ , is then

�(z; β,H0) ≡ lim
τ→0

min
u∈(0,1),σ∈R

{
1 − q

τ

(σ − z)2

2
+ [u − H(σ )]2

2H(σ )H(−σ )
− u2βH0 + uβ

}

=

⎧⎪⎪⎨
⎪⎪⎩

�1 ≡ H(−z)
2H(z) + β(1 − H0), z < b1,

�u0 ≡ βH(z)[1−H0H(z)]
1−2βH0H(z)H(−z) − β2H(z)H(−z)

2[1−2βH0H(z)H(−z)] , b1 < z < b0,

�0 ≡ H(z)
2H(−z) , b0 < z.

(A9)

�(z; β,H0) is continuous in z but not differentiable at the boundaries defined in Eqs. (A7) and (A8). In the plane defined
by the independent parameters β and H0, the components �z0 , �0, and �1 cover the areas illustrated in Fig. 1. Observe
that the component �z0 appears in the sector Sz0 ≡ {(β,H0)|β � 1 and H0 � 0} ∪ {(β,H0)|β > 1 and 2H0 < β/(β − 1)}, the
component �1 appears in the sector S1 ≡ {(β,H0)|β � 0 and 2H0 > (1 + β)/β}, and the component �0 appears in the sector
S0 ≡ {(β,H0)|β � 1 and H0 � 0}.

APPENDIX B: STABILITY OF THE SOLUTION r2 = w

To explore the stability of the solution (16), we analyze the sign of the eigenvalues of the matrix of second derivatives [∂2
γ,δφ].

The second derivatives of φ with respect to r and w are

∂2
r,rφ = 1 −

√
2

π
αr

∫
dzN (z|0,w − r2)

∂3�(z; β,H0)

∂z3
,

∂2
r,wφ = α√

2π

∫
dzN (z|0,w − r2)

∂3�(z; β,H0)

∂z3
,

∂2
w,wφ = α

w2

∫
dzN (z|0,w)

(
3

2
− 3z2

w
+ z4

2w2

)
H(−κz)�(z; β,H0)

+ α

2
√

2π

r(2w − r2)

w3

∫
dzN (z|0,w − r2)

∂

∂z

[(
1 − z2

w

)
�(z; β,H0)

]

−
√

2

π
α

r(r2 − w)

w3

∫
dzN (z|0,w − r2)

∂�(z; β,H0)

∂z

+ α

2
√

2π

r(2w − r2)

w2

∫
dz

N (z|0,w − r2)

w − r2

(
1 − z2

w − r2

)
∂�(z; β,H0)

∂z
.

The evaluation of these derivatives at the solution (16) produces the entries of the Hessian matrix at the critical point:

hr,r ≈ 1 + π

2

[�(2)(β,H0)]2

�(1)(β,H0)�(3)(β,H0)
, (B1)

hr,w = hw,r ≈
√

π

8

�(2)(β,H0)

�(1)(β,H0)
, (B2)

hw,w ≈ π

10

�(2)(β,H0)�(4)(β,H0)

�(1)(β,H0)�(3)(β,H0)
. (B3)

By numerical calculations, we found that the Hessian matrix, with entries (B1), (B2), and (B3), possesses two positive
eigenvalues for all values of β and H0 with the exception of a small neighborhood of the point β = 0, H0 = 1, and inside the
region described by B(β,H0) (19), where the proposed solution r2

t = wt is not suitable.
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