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Q-voter model with nonconformity in freely forming groups: Does the size distribution matter?
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We study a q-voter model with stochastic driving on a complete graph with q being a random variable described
by probability density function P (q), instead of a constant value. We investigate two types of P (q): (1) artificial
with the fixed expected value 〈q〉, but a changing variance and (2) empirical of freely forming groups in informal
places. We investigate also two types of stochasticity that can be interpreted as different kinds of nonconformity
(anticonformity or independence) to answer the question about differences observed at the macroscopic level
between these two types of nonconformity in real social systems. Moreover, we ask the question if the behavior
of a system depends on the average value of the group size q or rather on probability distribution function P (q).
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I. INTRODUCTION

Although the origins of agent-based models (ABM) in
sociology can be traced back to the 1960s, it was only from
the 1990s that ABM applications reached a critical mass [1,2].
Almost simultaneously, yet somehow independently, a new
field of sociophysics emerged [3]. There are many reasons for
parallel but independent development of agent-based social
simulations and sociophysics, such as rare scientific contacts
between statistical physicists and sociologists or lack of the
common terminology. However, it seems that the fundamental
problem is differences between social scientists and physicists
in their approach to modeling. Interdisciplinary research, par-
ticularly on the border between disciplines which significantly
different from each other, always involves certain danger. The
models analyzed within the framework of statistical physics
may be too simplistic to have any utility in social sciences.
On the other hand, the desire to describe the accurately social
phenomena can lead to an excessive complexity of the models,
which are too difficult for theoretical analysis and therefore
in general not of interest from the point of view of physics.
For these reasons we believe that searching for models and
questions that may be interesting for both social scientists and
physicists are particularly important.

Such an interesting question, related to the theory of social
response, has been asked within the q-voter model [4,5]. A
basic goal of researchers, developing the theory of social
response, is to identify the minimum number of variables that
is needed to distinguish between responses such as conformity,
independence, and anticonformity [6]. Conformity, defined as
a change in behavior to match that of others refereed, leads
to the consensus (ferromagnetic order). Independence, i.e.,
resisting social influence, and anticonformity, i.e., rebelling
against influence, are recognized as two types of nonconfor-
mity and can destroy consensus. The question asked in [4,5],
namely “Do differences between two types of nonconformity,
that are recognized by social psychologists on the individual
(microscopic) level, manifest on the society (macroscopic)
level?” occurred to be interesting not only for the theory of
social response but also from the physical perspective [4–6].
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The q-voter model, proposed as a generalization of
two earlier models of opinion dynamics—linear voter and
Sznajd model [7]—itself seems to be merely yet another
oversimplified model of opinion dynamics. However, it has
been shown that its generalized version is suitable to de-
scribe many social phenomena [8–12]. Moreover, the q-voter
model occurred to be also very interesting from theoretical
point of view and gained considerable interest in physical
literature [13–23].

In the original q-voter model all individuals are homo-
geneous, which means that we cannot speak about leaders,
authorities, etc. The only trait that characterizes an agent
is a dichotomous opinion, i.e., dynamical variable Si(t) =
±1, which is reminiscent of the spin in the Ising model.
Therefore, such a particularly simple agent was named a
spinson (=spin+person) and graphically represented by the
combination of a man and an arrow [5]; see Fig. 1. Spinsons,
alternately called agents, individuals, voters, or just spins,
are placed in the nodes of a given network and potentially
can interact with all other individuals to whom they are
linked. A characteristic feature of the q-voter model is that
in a single time step each agent can interact only with q

spinsons randomly chosen from its neighborhood. Besides,
voter is influenced by its neighbors only if a chosen group
is unanimous (i.e., all q individuals have the same opinion).
The validity of this assumption has been broader discussed in
[9]. In the original model [7], and in most of the later works,
the size q of the influence group (so called q panel) has been
a parameter of the model, which means that q has been a
constant value [8–11,13–17,17,18,21–23]. Only recently this
model’s assumption has been modified by introducing zealots
(inflexible voters that never change their opinion) and two
types of susceptible voters (type q1 or q2): at each time
step, a qi-susceptible voter (i = 1,2) consults a group of qi

neighbors and adopts their opinion if all group members agree
[19,20]. Such a modification introduces heterogeneity to the
model giving voters personal traits and is compatible with a
personality oriented approach [24].

On the contrary, within the situation-oriented approach all
agents are homogeneous and each of them can behave with
some probability differently. For example, in [4] it has been
proposed that each agent with probability p behaves like a
nonconformist and with probability 1 − p as a conformist.
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Similarly, we could assume that q is a random variable given
by a certain probability distribution P (q). Within such an
approach each agent at every time could be influenced by
a group of a different size. An idea to introduce probability
distribution for gathering sizes into the opinion dynamics
model was introduced already in 2002 by Serge Galam within
a simple diffusion reaction model [25] and here we will use it
within the q-voter model with nonconformity.

This is not entirely clear which approach, personality
oriented (PO) or situation oriented (SO), is more suitable to
describe social phenomena and there has been a long-lasting
person-situation debate related to this issue [24]. If we study
different sizes of groups then the PO approach can describe
two types of personality—loners and gregarious. On the other
hand, SO allows one to investigate opinion dynamics in freely
forming groups [26,27]. Both approaches are interesting from
a physical point of view: PO can be viewed as the quenched
approach and SO as the annealed one.

In this paper we will continue studies initiated in [4] and
therefore we will use mainly the annealed (situation-oriented)
approach. Nonetheless, we will also check how results would
change if we use the quenched approach. Once again we will
ask the same question if the difference between two types of
nonconformity (anticonformity or independence), which are
different behaviors at the individual level, would lead to a
different behavior of the system on the macroscopic level.
In other words, is it really necessary to introduce two types
of nonconformity to the theory of social response from the
point of view of sociology? Previously, we have shown that
both types of nonconformity lead to the order-disorder phase
transition, but for the model with anticonformity the transition
is continuous for all q � 2 (there is no phase transition for q =
1), whereas for the model with independence the transition is
continuous only for q ∈ [2,5] and for q > 5 it switches to
discontinuous. Here we check how results would change if
one replaces a constant value of q (parameter) by a random
variable with certain probability density distribution P (q).

Until now it has been claimed that the constant value of
q could be interpreted as a selection of an optimal or an
average group size [9,28–31]. Here we check if indeed the
behavior of the model depends on the expected value itself
or rather probability density distribution (PDF). Therefore, we
start with investigating artificial PDF’s with the same average
value 〈q〉. Next, we consider empirical human group size dis-
tributions P (q) collected by other researchers during various
social studies, including observations of pedestrians, shopping
groups (observed in department stores and public markets),
play groups (public playgrounds), public gathering (public
beach swimming pool, public parks, etc.), students (observed
in coffee shop in a student union, dining hall, undergraduate
library, etc.), and football fans [32–34]. This part will allow
one to answer the question about the difference between anti-
conformity and independence in real freely forming groups.

Summarizing, in this paper we will try to answer the
following questions.

(i) Does the behavior of the system depend on the average
value of the group size q or rather on probability distribution
function P (q)?

(ii) Is it possible to observe qualitative differences at the
macroscopic level between the system with independence and

the system with anticonformity for real (measured empirically)
P (q)?

(iii) Does it influence results if we use a personality-
oriented (quenched) instead of situation-oriented (annealed)
approach to model distribution of group sizes?

II. MODEL

We consider a system of N agents (voters, spinsons), each
of which is described by a single dynamical variable (opinion)
Si(t) = ±1, where i = 1, . . . ,N and t denotes time. Voters are
placed in the nodes of a given network. Originally only one
type of the social response, namely conformity, has been taken
into account [7]. Within this type of response a voter adopts
an opinion of its q randomly chosen neighbors (so-called q

panel) if all q neighbors share the same opinion. Later on
we have proposed to introduce also nonconformity—with
probability p, an agent acting as nonconformist and with
the complementary probability 1 − p, an agent conforming
to the q panel [4]. In general, conformity is a force which
tries to order the system (i.e., leads to the consensus), whereas
nonconformity acts against consensus and tries to destroy the
order. As a result of competition between conformity and
nonconformity, a phase transition should appear. Indeed it
has been found that there is a critical value of nonconformity
p = p∗, below which there is a majority of one opinion and
above which there is a stalemate state, i.e., there is an equal
number of individuals with positive and negative opinion.
However, the character of this phase transition depends on
the type of nonconformity.

Social psychologists distinguish between two basic types
of nonconformity: anticonformity (rebelling against influence)
and independence (resisting influence) [6]. In [4,5] we have
asked the following question: do differences between two
types of nonconformity, that are recognized by social psy-
chologists on the individual (microscopic) level, manifest
on the society (macroscopic) level, at least within the q-
voter model? To answer this question, we have considered
two special cases, each with conformity and one type of
nonconformity: model A (conformity+anticonformity) and
model I (conformity+independence). Here we will again
consider model A and model I, but the size q of the influence
group is no longer a parameter, as in the original q-voter model,
but a random variable described by a certain PDF P (q) (see
left panel in Fig. 1).

This assumption has been motivated by the empirical
studies on the freely forming groups [32–34]. It has been
shown that typically q varies between 1 and 7 and the size
distribution depends on the situation (place of the meeting, type
of the event, etc.). Later in this paper we will present results for
several empirically measured P (q), but we start with asking
the following question: would results on the macroscopic level
depend on the size distribution or maybe rather on the average
value of q? Therefore, we compare results for different P (q)
but with the same average value 〈q〉, given by

P (q = Q) =
⎧⎨
⎩

ε for Q = 〈q〉 − δ,

1 − 2ε for Q = 〈q〉,
ε for Q = 〈q〉 + δ,

(1)
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FIG. 1. Schematic illustration of the model’s assumptions. Left
panel: the size q of the influence group is not longer a parameter,
as in the original q-voter model, but is given by a certain density
probability distribution P (q). This means that the q panel (green
up spinsons in this illustration), which influences a voter (red down
spinson), can change size in each update. Right panel: social network
is described here by the complete graph (clique) and therefore each
agent is connected with any other agent. Yet, in a single update an
agent is influenced only by a group of q spinsons (here q = 3).

where ε and δ are parameters of the model. This means that
P (q) consists of three peaks: the middle one at the expected
value 〈q〉 and two side peaks equally spaced by a distance δ

from the central one. This model is a generalization of the
q-voter model with the constant value of q and reduces to this
model for ε = 0 or δ = 0. Certainly also other PDF’s could
be tested but P (q) given by Eq. (1) is particularly useful in
answering the question posed in this paper.

For clarity in further calculations let us introduce

�w = (w1,w2,w3) = (ε,1 − 2ε,ε) (2)

and

�q = (q1,q2,q3) = (〈q〉 − δ,〈q〉,〈q〉 + δ). (3)

Then Eq. (1) can be rewritten in the following form:

P (q = Q) =
⎧⎨
⎩

w1 for Q = q1,

w2 for Q = q2,

w3 for Q = q3,

(4)

which could be easily generalized to the simple form that
allows for arbitrary probability distribution:

P (q = qi) = wi, where
∑

wi = 1. (5)

Such a general form will be useful later on, when we use the
empirical distributions for freely forming groups.

Similarly, as in [4], we consider the model on a complete
graph (see right panel in Fig. 1), which means that every agent
is linked to all other agents. To distinguish between continuous
and discontinuous phase transitions, we consider two types
of initial conditions: (i) ordered, i.e., all agents have positive
opinions [Si(t = 0) = 1 for all i = 1, . . . ,N], and (ii) random,
i.e., each agent at t = 0 is positive or negative with equal
probability.

After initialization the system evolves according to the
algorithm, which depends on the model (A or I).

FIG. 2. Example of a single update for the q voter with anticon-
formity (model A). In this example q = 3 and a chosen target spinson
(in the square) has initially positive opinion.

Algorithm for model A (see also Fig. 2).
(1) Choose randomly target agent i, i.e., choose a random

number i from the uniform probability distribution U (1,N ).
(2) Choose the size of the influence group q from a given

PDF P (q).
(3) Choose randomly q agents from the whole system

(without repetitions)—they will form a q panel.
(4) If the q panel is unanimous, i.e., all q agents have

the same opinion, then the q panel influences voter i: with
probability p voter i takes the opinion opposite to the q panel,
otherwise voter i takes the opinion of the q-panel; go to (1).

Algorithm for model I (see also Fig. 3).
(1) Choose randomly target agent i, i.e., choose a random

number i from the uniform probability distribution U (1,N ).
(2) Decide if a target agent is independent, i.e., choose a

random number r from the uniform probability distribution
U (0,1) and if r < p then an agent acts independently, i.e., go
to (3), otherwise go to (4).

(3) A target agent changes opinion to the opposite with
probability f , i.e., choose a random number r from the uniform
probability distribution U (0,1) and if r < f then agent Si(t +
�t) = −Si(t), otherwise nothing happens; go to (1).

(4) Choose the size of the influence group q from a given
PDF P (q).

FIG. 3. Example of a single update for the q voter with inde-
pendence (model I). In this example q = 3 and a target spinson (in
the square) has initially positive opinion. In this paper we will use
f = 1/2, analogous as in [4].
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(5) Choose randomly q agents (without repetitions)—they
will form a q panel.

(6) If the q panel is unanimous, i.e., all q agents have the
same opinion then a target voter i takes the opinion of the q

panel, otherwise nothing happens; go to (1).
We are aware that after reading this section, one could get

the impression that there is not much novelty in this paper
with respect to the previous one [4]. However, we believe that
the purpose of this work is meaningful because it brings us
closer to answering the question about qualitative differences
between two types of nonconformity in real social systems.
In the previous work, we have claimed that the significant
distinction between independence and anticonformity is given
by the type of the phase transition. Independence has led to
much richer behavior displaying tricriticality, resulting from
the switch from continuous to discontinuous phase transition
at q = 6. Nevertheless, it may occur that our previous findings
are interesting only from a theoretical point of view, because
in reality groups are not always of the same size q. Of course,
one could claim that parameter q plays the role of the average
value, as proposed in [9]. However, in that case, the question
arises if results will indeed depend only on the average value
of q or rather on the probability distribution function P (q).
This latter question is important not only from the social point
of view but also in respect to the field of sociophysics or
agent-based modeling in general.

A. Results

In a single time step �t , three events are possible—the
number of “up” spins N↑ increases or decreases by 1 or
remains constant. Of course all three events can be rewritten
for the number of “down” spins N↓ as N↑ + N↓ = N . Also
concentration c = N↑/N of spins up increases or decreases by
1/N or remains constant:

γ + = Prob

{
c(t + �t) = c(t) + 1

N

}
,

γ − = Prob

{
c(t + �t) = c(t) − 1

N

}
,

γ 0 = Prob{c(t + �t) = c(t)} = 1 − γ + − γ −. (6)

In the original model with a constant value of q, the
transition probabilities γ +,γ −,γ 0 depend on the size of the
influence group q [4]. Here q is given by the probability
distribution function (5), and therefore the total transition
probability reads γ ± = ∑

i wiγ
±
qi

, where γ ±
qi

is a transition
probability for a given constant value qi of the influence group,

as derived in [4]. If we assume that N → ∞ then we can write
the following.

(i) Model A (conformity + anticonformity):

γ + =
∑

i

wi[(1 − p)(1 − c)cqi + p(1 − c)qi+1],

γ − =
∑

i

wi[(1 − p)c(1 − c)qi + pcqi+1]. (7)

The terms in square brackets [. . .] describe the probability of
increment or decay of c for a fixed value of the influence

group qi . The first term in [. . .] corresponds to the probability
that a spin will flip due to the conformity and the second term
describes the probability of a flip due to the anticonformity.
This can be easily understood by tracing back all processes
that are needed for a given change. Let us take as an example
the first term in [. . .] for γ +. First of all, conformity takes
place with probability 1 − p. Concentration of spins up will
increase if a spin chosen randomly to be changed is down,
which takes place with probability 1 − c. Finally, in order to
flip a spin down to the up position according to conformity
all qi neighbors have to be up and the probability of this is
equal to cqi . Therefore, the total probability of this event is
a product (1 − p)(1 − c)cqi . Analogously we can consider all
other processes that change c.

(ii) Model I (conformity+independence):

γ + =
∑

i

wi[(1 − p)(1 − c)cqi + fp(1 − c)],

γ − =
∑

i

wi[(1 − p)c(1 − c)qi + fpc]. (8)

Again, the term in the square brackets [. . .] describes the
probability of increment or decay of c for a fixed value of
the influence group qi . The first term in [. . .] corresponds
to the probability that a spin will flip due to the conformity
and the second term describes the probability of a flip due to
the independence.

Generally f ∈ [0,1], but in this paper we will use f = 1/2,
analogously as in [4]. Yet, for any other value of f > 0 results
can be rescaled [35].

Evolution of the expected value of concentration is given
by the rate equation:

〈c(t + 1)〉 = 〈c(t)〉 + (γ + − γ −), (9)

and thus the stationary state from the condition

γ + − γ − = 0. (10)

Solving analytically Eq. (10), i.e., finding cst as a function
of p is impossible, but we can easily derive the oppo-
site relations satisfying Eq. (10) as follows. (i) Model A
(conformity+anticonformity):

p =
∑

i

wi

[
cst (1 − cst )qi − (1 − cst )c

qi

st

(1 − cst )qi+1 + cst (1 − cst )qi − (1 − cst )c
qi

st − c
qi+1
st

]
. (11)

(ii) Model I (conformity+independence):

p =
∑

i

wi

[
cst (1 − cst )qi − (1 − cst )c

qi

st

(1 − cst )/2 + cst (1 − cst )qi − (1 − cst )c
qi

st − cst /2

]
. (12)
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FIG. 4. Dependencies between the average public opinion 〈m〉 in
the steady state and the level of nonconformity p for the model with
conformity+anticonformity (model A). In this case the size of the
q panel is constant [ε = 0 in Eq. (1)] and q increases from left to
right. Results have been obtained from Eq. (11). It is seen that phase
transition is continuous for all values of q and critical temperature
increases with q. The same results have been obtained within less
general model with constant q in [4].

For clarity of discussion, we will present all results in the
language of public opinion (magnetization):

m(t) = 1

N

N∑
i=1

Si(t), (13)

which is related to the concentration c of spinsons up by the
simple formula

m(t) = N↑ − N↓
N

= 2c(t) − 1. (14)

We will use formulas (11) and (12) to plot the dependence
between the steady value of public opinion and the level
of nonconformity p. Although only the relation p(cst ) is
calculated analytically and the opposite relation is unknown,
we plot mst (p) by simply rotating the figure with the relation
p(cst ) and then applying formula (14); see Figs. 4 and 5.
Results presented in Figs. 4 and 5 are nothing new, because
in these figures we show the case with ε = 0, which reduces
the model to the original one with a constant value of q. They
are presented here for two reasons: (1) to recall differences
between models A and I; (2) to confirm that our generalized
formulas reduce to the known results from [4].

Before we discuss results for different P (q), let us compare
obtained analytical results with Monte Carlo simulations.
Besides, we compare Monte Carlo results for the annealed
(situation-oriented) and quenched (personality-oriented) ap-
proach. In this case we investigate the system of size 104 and
average results over 102 samples after 103 Monte Carlo steps of
“thermalization.” It is shown in Fig. 6 that all methods give the
same results for both types of nonconformity (anticonformity
and independence). In this example, we use the probability
density function of q given by Eq. (1) with 〈q〉 = 6,δ = 1
and ε = 0.1, which means that �q = (5,6,7) with probabilities
�w = (0.1,0.8,0.1). This particular form of PDF has been
chosen just as an example, to show that Monte Carlo results
agree very well with analytical ones. Monte Carlo simulations
from two types of initial conditions (ordered and random)
give exactly the same results for model A, which confirm

FIG. 5. Dependencies between the average public opinion 〈m〉 in
the steady state and the level of nonconformity p for the model with
conformity+independence (model I). In this case the size of the q

panel is constant [ε = 0 in Eq. (1)] and q decreases from left to right.
Results have been obtained from Eq. (12). Dotted lines have been
used to mark instability of the solution, whereas solid lines denote
stable solution. This shows that for model I the phase transition is
continuous only q ∈ [2,5], whereas for q � 6 the phase transition is
discontinuous. Moreover, the critical value of p decreases with q,
contrary to model A. The same results have been obtained within a
less general model with constant q in [4].

that transition is continuous, whereas for model I hysteresis
is observed, which indicates discontinuous phase transition.
Moreover, it is seen that annealed and quenched approaches
give the same results. We would like to stress here that the
annealed versus quenched approach relates here only to the
distribution of q. In the annealed approach q is a random
variable and each agent at every time can be influenced by a
group of different size. On the contrary within the quenched
approach, q is a trait that characterizes an agent, which means
that each agent has fixed value of q. We recall it here because
the situation is completely different if we investigate the
annealed versus quenched approach in respect to the level
of nonconformity p. In the latter issue, an annealed approach
means that each agent acts as nonconformists with probability
p and follows the q-panel with probability 1 − p. On the
other hand, within a quenched approach pN individuals are
nonconformist for ever [24]. In such a case, the quenched
approach gives qualitatively different results than the annealed
one.

Because Monte Carlo results agree with our analytical
formulas (11) and (12), which is not surprising as far as we
consider a system on a complete graph, we will use only these
formulas to discuss two problems posed in the introduction,
namely as follows.

(i) Does the behavior of the system depend on the average
value of q or rather P (q)?

(ii) Will one observe qualitative differences at the macro-
scopic level between the system with independence and the
system with anticonformity for real (measured empirically)
P (q)?

To answer the former question we consider probability
distribution function P (q) given by Eq. (1). We keep constant
expected value 〈q〉 but change distribution itself using different
values of δ and ε. A particularly interesting value of an
average group size is 〈q〉 = 6, because for q = 6 a switch
from continuous to discontinuous phase transition has been
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FIG. 6. Dependencies between the average public opinion 〈m〉 in
the steady state and the level of nonconformity p for the probability
density function of q is given by Eq. (1) with 〈q〉 = 6, δ = 1,
and ε = 0.1. This means that �q = (5,6,7) with probabilities �w =
(0.1,0.8,0.1). Results for the annealed approach are presented in
the upper panels, whereas in the bottom panels results for the
quenched approach are shown. Besides, results for the model with
anticonformity (model A) are presented in the left column and for
the model with independence (model I) in the right column: (a)
model A with the annealed approach; (b) model I with the annealed
approach; (c) model A with the quenched approach; (d) model I
with the quenched approach. The simulations were performed for the
system consisting of 104 spinsons. The results were averaged over
102 realizations after 103 Monte Carlo steps.

observed for the model with independence (model I) [4].
Results for 〈q〉 = 6 are presented in Fig. 7. It is seen that
for the model with anticonformity (model A) phase transition
is continuous for any distribution P (q). On the other hand,
for the model with independence results depend on P (q), not
only on 〈q〉. For the same average value 〈q〉 = 6 transition
can be continuous or discontinuous, which is seen particularly
well for P (q) with the higher variance (e.g., δ = 3; left panels
in Fig. 7). For ε = 0 the transition is clearly discontinuous.
With increasing ε the jump in order parameter and hysteresis
decreases monotonically to zero and for ε ∈ (0.2,0.4) the
transition becomes continuous.

Calculating the jump of the order parameter at the transition
point for different values of δ and ε allows one to construct
the phase diagram for model I. Such a phase diagram for P (q)
given by Eq. (1) with 〈q〉 = 6 is presented in Fig. 8. For small
values of δ and ε the system undergoes discontinuous phase
transition and below the critical line (δ∗,ε∗) = (δ∗,ε(δ∗)) there
is a continuous phase transition.

Our results clearly show that the average value of the
group size is not enough to describe opinion dynamics
in social systems, especially if we take into account the
possibility of independent behavior. Now we turn to the
second question posed here, namely if qualitative differences
between anticonformity and independence would be seen in
real societies, i.e., if we consider empirical P (q).

FIG. 7. Dependencies between the average public opinion 〈m〉 in
the steady state and the level of nonconformity p for the models with
anticonformity (model A; upper panels) and independence (model
I; bottom panels) for P (q) given by Eq. (1) with 〈q〉 = 6 and two
values of δ: left panels (a),(c) δ = 3; right panels (b),(d) δ = 1. In
each panel results for several values of ε are shown: ε changes with
a step �ε = 0.1 from zero to 1 (from right to left for model A and
from left to right for model I).

For over 60 years, social scientists have examined the size of
naturally occurring groups in different informal locations like
sidewalks, stores, playgrounds, carnivals, receptions, swim-
ming pools, basketball game intermissions, church socials, and
train depots. It has been shown that groups ranged in size from
two to seven [26,32–34]. Already this information suggests
that differences between anticonformity and independence
may be not visible in real societies, since qualitative differences
between these two types of social response are visible on
the macroscopic level only for q � 6. Nevertheless, we have
decided to examine several empirical P (q) and see phase
diagrams of models A and I. In Fig. 9 we present results
for two empirical P (q): distribution for fans gathered to
watch a college football game [34] and pedestrians on the

FIG. 8. Phase diagram for model I (conformity+independence)
with P (q) given by Eq. (1) for 〈q〉 = 6 and ε,δ being two model’s
parameters. In the black region the system undergoes continuous
phase transition (there is no jump in order parameter, i.e., �m = 0)
and in the brighter area there is discontinuous phase transition.
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FIG. 9. Empirical probability density functions of P (q) (upper
panels) for fans gathered to watch a college football game [34] (a) and
pedestrians on the streets in Eugene (Oregon) [33] (b). Corresponding
dependencies between the average public opinion 〈m〉 in the steady
state and the level of nonconformity are presented in bottom panels.

streets in Eugene (Oregon) [33]. It is seen that in both cases,
and for many other empirical PDF’s not shown here, phase
transition is continuous for both models. Lower critical level
of anticonformity than independence is sufficient to destroy
an order in the system for all investigated empirical P (q).
Besides, for most empirical data the level of nonconformity
needed for the stable disordered (stalemate) state is surpris-
ingly low, i.e., pc ∈ (0.05,0.2). It is worth mentioning here
the results obtained for U.S. presidential elections, where
the best agreement for the voter model with noise, which can
be interpreted as independence, has been obtained for the noise
level 0.03 [36]. Results obtained here could also explain voting
at fifty-fifty in political elections, which has been discussed
also by Galam [37].

III. CONCLUSIONS

It is obvious that competition between two opposing forces
such as conformity and nonconformity should lead to the
order-disorder phase transition. Nonetheless, it is far less
obvious what type of the transition will appear. For the q-voter
model with independence it was shown that the transition is
continuous for smaller group sizes (q < 6) and discontinuous
for larger. For the q-voter model with anticonformity the phase
transition is always continuous. It should be recalled here
that in other opinion dynamic models, with different types of
nonconformity, only continuous phase transitions have been
observed [38–40]. Therefore, it seems that the q-voter model
with independence is quite unique. Yet, the question arises
if in the real social systems this discontinuity will be seen.
Furthermore, we have asked the following: is the average
value of the group size itself responsible for the type of the
phase transition or rather the probability distribution P (q)?
To answer these questions we have studied two types of
PDF’s: (1) artificial with the fixed expected value 〈q〉, but a
changing variance, and (2) empirical of freely forming groups
in informal places. It has occurred that the average value 〈q〉
itself does not determine the type of the phase transition.
Moreover, it seems that in real systems indeed only continuous
phase transitions would be observed and the order would be
more easily destroyed by anticonformity than independence.
Surprisingly the level of nonconformity sufficient to destroy
the order and reach the stalemate situation is very low, at
least within the q-voter model. This could be an alternative
explanation for the often fifty-fifty result of recent political
elections [37,41].
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