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Ensemble dynamics and the emergence of correlations in one- and two-dimensional wave turbulence
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We investigate statistical properties of wave turbulence by monitoring the dynamics of ensembles of trajectories.
The system under investigation is a simplified model for surface gravity waves in one and two dimensions with
a square-root dispersion and a four-wave interaction term. The simulations of decaying turbulence confirm
the Kolmogorov-Zakharov spectral power distribution of wave turbulence theory. Fourth-order correlations are
computed numerically as ensemble averages of trajectories. The shape, scaling, and time evolution of the
correlations agree with the predictions of wave turbulence theory.
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I. INTRODUCTION

Wave turbulence [1–3] is a disordered nonequilibrium state
of weakly interacting dispersive waves in nonlinear optics
[4–6], fluid mechanics [7], and plasma physics [8,9]. This
nonequilibrium is maintained by external driving forces and
dissipation, which affect length scales that are in many cases
widely separated in wave number space. Driving and damping
inject and dissipate quantities like energy and wave action,
which are conserved by the Hamiltonian dynamics within the
inertial range between these scales. This causes flows of the
conserved quantities in wave number space from the driving
range to dissipation ranges at high and low wave numbers
[10]. These flows are mediated by the nonlinear interaction of
weakly correlated waves [1].

Wave turbulence theory provides an analytical connection
between a nonlinear wave equation for a field ψ(x,t) and
statistical quantities like the wave action density nk(t),
which is the Fourier transform of the two point correlation
〈ψ(x,t)ψ∗(x + r,t)〉. Wave turbulence theory is applicable to
turbulence that is spatially homogeneous in the sense that
ensemble averages like 〈ψ(x,t)ψ∗(x + r,t)〉 depend only on
the relative vector r but not on the location x; nk(t) is then
independent of x. A central step of wave turbulence theory
is the derivation of closed kinetic equations for the slow
time dependence of nk(t) through an asymptotic expansion
of cumulants [3,11]. Stationary solutions of the kinetic equa-
tions include turbulent nonequilibrium spectra (Kolmogorov-
Zakharov spectra) and thermal equilibrium spectra (Rayleigh-
Jeans spectra) [1].

In this paper we probe the predictions of wave turbulence
numerically for a generic system with four-wave interactions
in one and two dimensions. We compute firstly nonequilibrium
spectra as time averages, and secondly fourth-order correla-
tions as ensemble averages of trajectories; that is, we integrate
the equations of motion for a large set of initial conditions and
compute statistical averages over the ensemble of trajectories.
In contrast to averages over time, the ensemble averages allow
us to trace the time evolution of statistical quantities. The
correlations that we compute are central for the interactions of
waves in turbulence as they provide directed flows of conserved
quantities in wave number space; we compare our numerical
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results to the analytical expressions that underlie the kinetic
equations of wave turbulence theory.

The equation of motion under investigation (Majda-
McLaughlin-Tabak equation [12]) is

i
∂ψ

∂t
= L(1/2)ψ + σψ |ψ |2 + D, (1)

where ψ(x,t) or ψ(x,y,t) is a complex variable in one
or two spatial dimensions. L(1/2) is an operator with the
eigenfunctions eikx and eik·x and the eigenvalues ω = √|k|
and ω = √|k| in one and two dimensions, respectively, which
mimics the dispersion of gravity surface waves in fluids [13].
The nonlinearity |ψ |2ψ serves as a simplified version of the
actual four-wave interaction of surface waves [14–17]; its
coefficient can always be scaled to σ = ±1. D is a damping
term that affects very long and short waves only. Our study
is confined to decaying turbulence in order to avoid any
contamination of statistical data by external driving forces.

Equation (1) without dissipation can be derived from
a Hamilton function H = ∫ |L(1/4)ψ |2 + σ |ψ |4/2dV , with
dV = dx in one and dV = dxdy in two dimensions. The
operator L(1/4) has again the eigenfunctions eikx or eik·x, the
eigenvalues are |k|1/4 or |k|1/4. N = ∫ |ψ |2dV is a second
conserved quantity that is associated to the continuous phase
symmetry of the system; a third conserved quantity, the
momentum, follows from the translational symmetry [12].

Numerical studies of nonequilibrium spectra of this system
have lead to a debate on the validity of the closure of wave
turbulence. Wave turbulence theory predicts the Kolmogorov-
Zakharov spectra nk = |k|−1 in one dimension and nk = |k|−2

in two dimensions. The kinetic equations are independent of
the sign of σ , so the same spectra are expected for σ = ±1.
In contrast to this prediction, numerical studies of Eq. (1) in
one dimension with an external driving force have detected a
spectrum nk ∼ |k|−1.25 for σ = 1 [18–21]; the Kolmogorov-
Zakharov spectrum has been found for σ = −1 [19–21].
Simulations of the fourth-order correlation function [12] have
appeared to differ from the closure of wave turbulence, too.

Two different interpretations of these results have been
discussed. The first one questions the validity of the wave
turbulence closure and suggests alternative random wave clo-
sure [12,21] to explain the steeper spectrum. The second is that
coherent structures (collapses [18–20], quasisolitons [21,22])
that coexist with wave turbulence change the spectrum. The
results that we present in this paper are consistent with this
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second interpretation: By avoiding conditions under which
coherent structures can emerge [22–24] we create a state
of pure wave turbulence; our numerical experiments verify
several central predictions of wave turbulence theory.

In Sec. II we present time averaged numerical spectra in
one and two dimensions. We show that the results are in good
agreement with the Kolmogorov-Zakharov spectra predicted
by wave turbulence theory.

In Sec. III we study the time evolution of fourth-order
correlations in one and two dimensions. The correlations
are computed as ensemble averages of trajectories. We
find that correlations of resonant quartets of modes emerge
spontaneously from an ensemble of initial conditions with
random phases. We also show that the imaginary part of fourth-
order correlation scales as the third power of second-order
correlations, as it is predicted by wave turbulence theory.

In Sec. IV we discuss our results in the context of insta-
bilities and the formation of coherent structures [18,19,21,22]
that can lead to deviations from pure wave turbulence.

II. WAVE TURBULENCE SPECTRA IN ONE AND
TWO DIMENSIONS

We present numerical simulations of decaying turbulence
that confirm the Kolmogorov-Zakharov spectra nk ∼ |k|−1 in
one dimension and nk ∼ |k|−2 in two dimensions. Equation
(1) is numerically integrated using a standard pseudospectral
method that eliminates the linear part of the equation of motion
[12]. The resulting non-stiff problem is integrated with an
adaptive step-size Runge-Kutta solver with an accuracy that
is sufficient to simulate high-k modes whose amplitudes in
a turbulent spectrum are small. In one dimension the system
size is L = 2π with periodic boundary conditions. The wave
numbers are integers −2048 � k < 2048, and we denote the
Fourier modes as Ak . The wave action is related to the Fourier
modes as nk = 〈|Ak|2〉 with

∑
k nk = ∫ 2π

0 〈|ψ(x)|2〉dx. The
amplitude is small enough so that the linear time scales of
Eq. (1) are short compared to the nonlinear time scale for all
k > 1.

Damping is applied to the homogeneous mode k = 0 and
to short waves with |k| > 1024 where the strength of damping
increases linearly in |k|. The k = 0 damping absorbs the
inverse cascade and the high-|k| damping absorbs the direct
cascade and minimizes aliasing errors caused by the interaction
of short waves. No external driving force is applied. Numerical
simulations are performed for a variety of initial conditions,
including long waves (the power is gathered at waves with
|k| � 10) and a white spectrum where the power is evenly
distributed over all wave numbers. The equation of motion is at
first integrated over a period of 20 000 time units for relaxation.
Subsequently, the spectrum is computed as an average over
60 000 time units. Here, we use a time average instead
of an ensemble average because of the high computational
requirements for a long relaxation period. Figure 1 shows
Kolmogorov-Zakharov spectra nk ∼ |k|−1 that we find for
σ = −1 and for σ = 1 for initial conditions with a broad
spectrum; long-wave initial conditions where the power is
gathered at wave numbers |k| � 10 yield very similar results
(not shown here).
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FIG. 1. Double-logarithmic plot of the wave action nk over |k|
for decaying turbulence of Eq. (1) σ = −1 (a) and σ = 1 (b) in
one dimension. The straight lines correspond to the direct cascade
Kolmogorov-Zakharov spectrum nk ∼ |k|−1. The spectra are time
averages for decaying wave turbulence for a system that is damped
both at small and at high |k|. The time averages are computed over
an interval of 60 000 time units after an initial relaxation period of
20 000 time units.

For the two-dimensional system, we use a size of 2π ×
2π , periodic boundary conditions, and 512 × 512 grid points.
Damping is applied to short waves with |k| � 128 and to
the homogeneous mode |k| = 0; again no external driving
force is applied. The initial state that contains the same power
in all modes is allowed to relax for 200 000 time units and
then averaged over 800 000 time units. The simulations of
Fig. 2 confirm the Kolmogorov-Zakharov spectrum nk ∼ |k|−2

for either sign of the nonlinearity. Again, long wave initial
conditions (the power is gathered at modes with |k| � 10)
yield the same type of spectrum after an appropriate relaxation
time (not shown here).

The spectra of Figs. 1 and 2 decay slowly as dissipation
reduces wave action and energy of the waves. They represent
the dynamics close to the stationary solution of the kinetic
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FIG. 2. Double-logarithmic plot of the wave action nk over
|k| for decaying turbulence of Eq. (1) σ = −1 (a) and σ = 1
(b) in two dimensions. The straight lines correspond to the direct
cascade Kolmogorov-Zakharov spectrum nk ∼ |k|−2. The spectra are
averaged over time and direction for decaying wave turbulence for a
system that is damped both at small and high |k|. The time averages
are computed over an interval of 800 000 time units after an initial
relaxation period of 200 000 time units.
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equation. Stationary Kolmogorov-Zakharov spectra can be
maintained either by an external driving force that permanently
supplies energy and wave action at the same rate as these
quantities are dissipated, or by a small reservoir of wave action
and energy on top of the spectrum at low |k|. In this case a
direct and an inverse cascade emanate from this reservoir,
so that the reservoir slowly decays but the spectrum remains
unchanged until the reservoir is drained. This type of behavior
can be created by starting with initial conditions where the
power is gathered at |k| � 10 or |k| � 10: The low-k reservoir
of wave action gradually decays during a transient period,
and the distribution converges to a Kolmogorov-Zakharov
spectrum. In conclusion, our simulations indicate that the
Kolmogorov-Zakharov spectrum is attractive for a broad range
of initial conditions.

The relaxation in two dimension is surprisingly slow given
the fact that there are more resonant quartets of waves
compared to the one-dimensional system. On the other hand,
high-|k| waves in the Kolmogorov-Zakharov spectrum have
smaller amplitudes, so the interaction of resonant quartets
is weaker. This slow relaxation may be due to the absence
of quasisolitons in the two-dimensional system: While qua-
sisolitons are an efficient mechanism of energy transfer in one
dimension for σ = 1 [22], the instability that triggers their
formation is absent in two dimensions [23], and we have no
numerical indication for the presence of quasisolitons in this
case. For σ = −1 wave collapses [18–20] are possible in one
and two dimensions for initial conditions with sufficiently high
amplitudes.

III. ENSEMBLE DYNAMICS AND FOURTH-ORDER
CORRELATIONS

In this section we study fourth-order correlations by
numerically computing ensembles of trajectories. We briefly
summarize their role in wave turbulence theory. While Fourier
transforms Ak of arbitrary bounded physical fields ψ(x) on an
infinite domain do not exist as ordinary functions, cumulants
[ensemble averages of products of fields at different locations
like 〈ψ(x)ψ∗(x + r)〉 − 〈ψ(x)〉〈ψ∗(x + r)〉] can be Fourier
transformed if the correlation of ψ(x) and ψ(x + r) decays
at a sufficient rate as a function or r . 〈ψ(x)ψ∗(x + r)〉
and its Fourier transform nk are independent of the base
coordinate x for fields that are spatially homogeneous in a
statistical sense. The Fourier modes are then correlated as
〈AkA

∗
k′ 〉 = nkδ(k − k′), where δ is the Dirac delta. Equations

of motion for lower order Fourier moments or cumulants like
nk depend on higher order moments or cumulants. For the
one-dimensional example, the time evolution of nk

∂nk

∂t
= 2σ

∫
ImJ123kδ(k1 + k2 − k3 − k)dk1dk2dk3 (2)

depends on the fourth-order correlation
〈
Ak1Ak2A

∗
k3

A∗
k

〉 = J123kδ(k1 + k2 − k3 − k); (3)

via the cubic nonlinearity of the wave equation (1)
(see [1,19,21]); we abbreviate this correlation as c123k =
〈Ak1Ak2A

∗
k3

A∗
k〉. Similarly, the equation of motion for J123k

depends on the sixth-order correlation. As a result, the

statistical mechanics of the field is governed by an infinite
hierarchy of equations of motion.

Wave turbulence theory [1–3,11] provides an asymptotic
closure for weakly interacting dispersive waves, i.e., it shows
that the dynamics generates correlations in a way that higher
order cumulants behave as functions of lower order cumulants.
The premises of wave turbulence theory [3] are spatial
homogeneity (in a statistical sense) of the field, a sufficiently
rapid decay of the cumulants in the initial conditions (i.e., fields
at distant points are not correlated), and a wide separation of
the linear and nonlinear time scales for all k. The closure
is the result of a solvability condition, i.e., a condition for
avoiding secular terms in the cumulant expansion [11]. For the
imaginary part of the fourth-order correlation, it follows [1]
that

ImJ123k ≈ 2πσf123kδ(ω1 + ω2 − ω3 − ω) (4)

with

f123k = n1n2n3 + n1n2nk − n1n3nk − n2n3nk. (5)

ImJ123k is δ-shaped, the sign of the peak depends on σ and
its size scales ∼n3. The real part scales as ReJ123k ∼ n2. This
reduction of higher-order correlators to two correlators is a
lowest-order result of the perturbation theory [11]. The slow
time dependence of nk is governed by a kinetic equation that
can be written down by expressing ImJ123k in Eq. (2) as a
function of the nk using Eqs. (4) and (5). As a result, the time
derivative of nk Eq. (2) depends only on quartets nk , nk1 , nk2 ,
nk3 that satisfy the resonance condition ω1 + ω2 = ω3 + ω

of Eq. (4) in addition to k1 + k2 = k3 + k of Eq. (2). The
kinetic equation is independent of the sign of the nonlinearity
as it contains the factor σ 2 only. The Kolmogorov-Zakharov
spectrum (nk ∼ |k|−1 in one dimension and nk ∼ |k|−2 in two
dimensions for σ = ±1) is a nonequilibrium solution of the
kinetic equation and therefore a consequence of the closure of
wave turbulence.

The validity of this closure has been questioned on the
basis of steeper spectra that have been obtained numerically
for σ = 1: Simulations of the one-dimensional system with
an external driving force have generated spectra at or near
nk ∼ |k|−1.25 [12,19–21], so one might look for an alternative
closure that leads to this spectrum. [12] have suggested the
alternative closure

ImJ123k ∼ √
n1n2n3nk(ω1 + ω2 − ω3 − ωk)−1 (6)

from which a steeper spectrum with nk ∼ |k|−1.25 would follow
[19], have shown that the δ-function for the frequencies is a
requirement for the conservation of energy. As a closure that
satisfies this as well as basic symmetry properties and that
leads to the steeper spectrum they have tentatively given

ImJ123k ∼
(

∂ω1

∂k1
+ ∂ω2

∂k2
+ ∂ω3

∂k3
+ ∂ω

∂k

)

× (n1n2 − n3nk)

× δ(ω1 + ω2 − ω3 − ω) (7)

while stressing that this is unlike the closure of wave turbulence
theory not based on any derivation.

By computing averages over an ensemble of trajectories
we check central statements of the closure of Eq. (2), namely
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FIG. 3. Fourth-order correlation Im(c123k) with c123k =
〈Ak1Ak2A

∗
k3

A∗
k〉 for an ensemble of 5 120 000 trajectories of Eq. (1)

with σ = 1. The modes are k1 = 49, k2 = −4, k3 = 9 and k variable.
(a) Time evolution of the correlation for the resonant quartet
where k = k4 = 36. (b) Correlation Im(c123k) as a function of k for
the initial random-phase state. (c) Contour plot of Im(c123k) as a
function of k and time showing the appearance of a correlation at
k = k4 = 36. (d) Correlation Im(c123k) at t = 400 that has a negative
peak at k = k4 = 36.

distribution of Im(c123k) that is sharply peaked as a function
of k Eq. (3) and ω Eq. (4), its n3-scaling Eq. (5) and its
time-evolution. For the one-dimensional system we use 256
grid points. The ensemble consists of 5 120 000 trajectories.
The modes Ak in the ensemble of initial conditions are random
with a Gaussian distribution and a Kolmogorov-Zakharov
spectrum 〈|Ak|2〉 ∼ k−1 and 〈|A0|2〉 = 〈|A1|2〉. The initial
phases are random and uniformly distributed so that the
ensemble average is Im(c123k) = 0 at t = 0; this distinguishes
the initial conditions from wave turbulence. The equation of
motion (1) is integrated numerically for each initial condition
separately and the ensemble-average Im(c123k)(t) is recorded
during the time-evolution. This allows us to monitor the
build-up of phase-correlations as the systems converge toward
wave turbulence. This is expected to occur at the intersection of
the hypersurfaces in the four-dimensional space of k1,k2,k3,k

that are defined by Eqs. (3) and (4).
Figure 3 shows results Im(c123k) for σ = 1 in one dimension

where we vary k along a path through an intersection point
of these two hypersurfaces: The modes k1 = 49, k2 = −4,
k3 = 9 are fixed and k is varied; for k = k4 = 36 the modes
interact resonantly, i.e. k1 + k2 = k3 + k4,

√|k1| + √|k2| =√|k3| + √|k4|.
Figure 3(b) shows the ensemble average Im(c123k) as

a function of k for the initial state (t = 0). It is almost
identically zero because of the random phase initial conditions.
Figure 3(d) shows a negative peak in the distribution ImJ123k at
the time t = 400; the peak is located at the resonance k = k4 =
36. This correlation disappears for any variations of the wave
numbers that do not satisfy the conditions k1 + k2 = k3 + k

and ω1 + ω2 = ω3 + ω. The sign of the peak agrees with
Eq. (4): With the Kolmogorov-Zakharov spectrum nk ∼ k−1

equation (5) yields f1234 ∼ n−1
4 + n−1

3 − n−1
2 − n−1

1 ∼ |k4| +
|k3| − |k2| − |k1| = 36 + 9 − 4 − 49 < 0, so the sign of the
peak is negative for σ = 1.

Figure 3(a) shows the time-evolution of Im(c1234) starting
at zero and approaching a negative saturation value. In

wave turbulence [1] the time-evolution of the correlation
of a resonant quartet is expected to follow d

dt
Im(c1234) ∼

Im(c(stat)
1234 ) − Im(c1234), where Im(c(stat)

1234 ) is the value for a
statistically stationary nonequilibrium, and our simulations
are consistent with this exponential approach to the stationary
state. Simulations over a longer period of time show that the
correlations then decrease slowly as dissipation decreases the
amplitudes of the modes.

Figure 3(c) is a contour plot of Im(c123k)(t) depending
on time and k that shows the correlation emerging from a
background of small residual random fluctuations due to the
finite ensemble size. The fluctuations are noticeable only near
k = 0 where the amplitudes of the modes are high.

Analogous results (not shown here) are obtained for two
modified simulations. Firstly, a nonlinearity with the sign σ =
−1 leads to a positive peak. This is in agreement with Eq. (5).
Secondly, equivalent results are obtained for a quartet of modes
k1 = 196, k2 = −16, k3 = 36, k4 = 144 in a system with four
times more modes. These simulations are based on a smaller
ensemble and are therefore noisier.

The correlations that we find numerically differ from the
one found in [12], where the modes k1 = 441, k2 = 81, k3 =
−36 with k variable were used. This satisfies k1 + k2 = k3 + k

for k = 558 and
√|k1| + √|k2| = √|k3| + √|k| for k = 576,

so it yields no resonant quartet of modes.
Simulations of the two-dimensional system show results

that are equivalent to our findings in one dimension. In
the ensemble of initial conditions the modes Ak are again
random Gaussian with a Kolmogorov-Zakharov spectrum
〈|Ak|2〉 ∼ |k|−2 on a grid of 256 × 256 modes. Because of the
higher computational requirements for each trajectory in two
dimensions this ensemble contains only 51 200 trajectories.
We monitor collinear [25] modes k1 = 49êx , k2 = −4êx ,
k3 = 9êx k = kêx . The correlations in Fig. 4 are divided
by the average magnitude of the amplitudes Im(c̃123k) =
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FIG. 4. Fourth-order correlation for an ensemble of 51 200
trajectories of Eq. (1) in two dimensions with σ = 1. The modes
are collinear with k1 = 49êx , k2 = −4êx , k3 = 9êx k = kêx . The
correlation is normalized by the magnitude of the modes as
Im(c̃123k) = Im〈Ak1Ak2Ak3Ak〉/〈|Ak1Ak2A

∗
k3

A∗
k|〉. (a) Time evolu-

tion of the correlation for the resonant quartet where k = k4 = 36. (b)
Correlation Im(c̃123k) as a function of k for the initial random-phase
state. (c) Contour plot of Im(c̃123k) as a function of k and time showing
the appearance of a correlation at k = k4 = 36. (d) Correlation
Im(c̃123k) at t = 16 000 that has a negative peak at k = k4 = 36.
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FIG. 5. Growth rate of the imaginary part of the correlation
Im(c1234) = Im〈Ak1Ak2A

∗
k3

A∗
k4

〉. The growth rate is determined by
averaging ensembles of 512 000 trajectories of Eq. (1) with σ =
±1. The initial conditions have Kolmogorov-Zakharov spectral
distributions with nk = k−1, nk = (2k)−1, nk = (4k)−1, nk = (8k)−1,
nk = (16k)−1, and random phases. The line gives the wave turbulence
prediction d

dt
Im(c123k)|t=0 ∼ n3.

Im〈Ak1Ak2A
∗
k3

A∗
k〉/〈|Ak1Ak2A

∗
k3

A∗
k|〉 which reduces the level

of noise at small k where the modes have high amplitudes.
Figure 4 shows again the formation of a peak at k = 36.

The negative sign of the peak [Fig. 4(d)] is in accordance
with f1234 ∼ |k4|2 + |k3|2 − |k2|2 − |k1|2 < 0. Again we get
the corresponding results with a positive peak for σ = −1.
The smaller ensemble leads to the higher level of random
background fluctuations in Fig. 4.

Finally, we check the scaling ImJ1234 ∼ n3 of Eq. (4) as
opposed to ImJ1234 ∼ n2 of Eqs. (6) and (7). This can be tested
by repeating the experiment of the formation of correlations
in one dimension for initial conditions with various amounts
of wave action. We measure d

dt
Im(c1234) at Im(c1234) = 0 as

a proxy for Im(c(stat)
1234 ). Both quantities scale ∼ n3 according

to wave turbulence theory, but Im(c1234) has the disadvantage
that it is influenced by the decay of total wave action in the
damped system. Figure 5 gives the growth rate of Im(c1234)
in one dimension at t = 0 that is derived numerically from
an integration of Eq. (1) over a short period of time. The
random phase initial conditions imply Im(c1234(t = 0)) = 0.
Simulations are carried out for five different ensembles with
initial conditions nk = k−1, nk = (2k)−1, nk = (4k)−1, nk =
(8k)−1, nk = (16k)−1. The measured growth rates for σ = ±1
confirm the scaling ∼ n3 (Fig. 5).

IV. CONCLUSIONS

Our study confirms central predictions of wave turbulence
theory in one and two dimensions:

(i) We find the Kolmogorov-Zakharov spectra nk ∼ k−1 in
one (Fig. 1) and nk ∼ |k|−2 in two dimensions (Fig. 2). These
spectra are obtained for time averages of a single trajectory.

(ii) Numerical computations of ensemble averages of
states of decaying wave turbulence confirm the δ-shape
Eqs. (3), (4) of the imaginary part of the fourth-order
correlation [Figs. 3(d) and 4(d)] which is central to the closure
of the kinetic equations.

(iii) The sign of the δ-peak in the correlation depends on
σ as predicted by wave turbulence theory (5).

(iv) The time evolution of the correlations [Figs. 3(a)
and 4(a)] is in agreement with d

dt
Im(c1234) ∼ Im(c(stat)

1234 ) −
Im(c1234) as expected from wave turbulence theory. The
evolution of these correlations in time is computed by tracking
an ensemble of trajectories that emanate from a set of initial
conditions whose statistical properties are similar to wave
turbulence, but with random phases. From this initial state the
system approaches the wave turbulence state exponentially in
time as it builds up the correlations.

(v) The amplitude of the correlation scales ∼n3 with
the wave action (Fig. 5) as predicted by wave turbulence
theory (5). More precisely, we infer this scaling from mea-
suring d

dt
Im(c1234) for a random-phase initial condition where

Im(c1234) = 0. The results are obtained for decaying turbu-
lence in Eq. (1) for either sign (σ = ±1) of the nonlinearity.

While this study confirms wave turbulence in one and
two dimensions, significantly different behavior (in particular
a steeper spectrum) has been observed in externally driven
one-dimensional systems with σ = 1. We attribute this to
instabilities of wave turbulence under circumstances that
we have avoided in this study. First, an external driving
force can create waves with high amplitudes at the driving
range. A monochromatic wave of Eq. (1) with σ = 1 is
unstable under two bands of modulations [24]: one where
the modulations has a wavelength that is long compared to the
carrier wave, and one where the wavelength of the modulation
is shorter than the carrier wavelength. For σ = −1 there is
no instability under long-wave modulations, but a wave is
unstable under shortwave modulations [24]. Such unstable
waves with sufficiently high-amplitudes could be created, e.g.,
by an external driving force, which we avoid in our simulations.

There is an analogous instability of states where the power
is not gathered at one mode, but spread out over many
random waves [23]. This instability enhances small spatial
inhomogeneities of ensembles of turbulent systems. The effect
of this breaking of spatial homogeneity is that the ensemble
average 〈ψ(x,t)ψ∗(x + r,t)〉 and its Fourier transform nk(x,t)
depend on the base coordinate x. It has been shown [23]
that this type of instability can affect the state of wave
turbulence for the one-dimensional version of Eq. (1) for
σ = 1. As a result, wave turbulence that relies on spatial
homogeneity is superseded by a coherent process, namely
the formation of pulses (narrow bright quasisolitons [22]).
These pulses emit long-wave radiation that transfers wave
action towards small k analogously to the inverse cascade
in wave turbulence. The pulse itself moves towards high k,
which corresponds to a direct cascade of energy. A coherent
process of evolving radiating pulses is then a new attractor that
replaces wave turbulence. The spectrum derived in [22] for this
process is nk ∼ k1/

√
2−2 ≈ k−1.29, which is in good agreement

with the numerically observed steep spectra nk near k−1.25

[12,18–21]. Similar structures (quasiparticles) are known to
be an important energy transfer mechanism between different
length scales in plasma turbulence apart from conventional
energy cascades [26,27].

We avoid the modulational instability [23] of random waves
by applying dissipation only to the homogeneous mode k = 0.
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This means that waves near the edge of the spectrum at |k| = 1
have lengths of the order of the system size; long modulations
of these waves are obviously not supported by the system size
so that this modulational instability is suppressed. This type of
instability has been predicted not to exist in one dimension for
σ = −1 and in two dimensions for any sign of σ [23], which
is consistent with our simulations.

While this work relies on decaying turbulence without an
external driving force, the statistically stationary nonequilib-
rium can be studied when the system is externally driven.
A recent study [28] has shown that wave turbulence can
prevail in this system when a sufficiently weak driving force
is applied. Such nonequilibrium systems allow to measure
the relationship between the amplitude of the wave action
(the coefficient of the Kolmogorov-Zakharov spectrum) and
the energy transfer rate. These quantities can be measured
numerically, and compared to the Kolmogorov-constant that

can be computed analytically. In a related system that does not
support coherent structures this method verified the predictions
of wave turbulence theory [29].

To conclude, tracking ensembles of trajectories can detect
the low-dimensional dynamics of correlations [Figs. 3(a) and
4(a)] that is inherent in high-dimensional wave turbulence.
This can also be a promising tool for studying interactions
between nearly resonant sets of waves [25] as well as the
formation of coherent structures within wave turbulence.
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