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Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed,
or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical
action functions and Maslov indices. For chaotic systems, the relative actions of such orbits can be expressed in
terms of phase-space areas bounded by segments of stable and unstable manifolds and Moser invariant curves.
This also generates direct relations between periodic orbits and homoclinic (heteroclinic) orbit actions. Simpler,
explicit approximate expressions following from the exact relations are given with error estimates. They arise
from asymptotic scaling of certain bounded phase-space areas. The actions of infinite subsets of periodic orbits
are determined by their periods and the locations of the limiting homoclinic points on which they accumulate.
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I. INTRODUCTION

The properties of sets of rare classical orbits can be
extremely important in the study of chaotic dynamical systems
[1]. For example, classical sum rules over unstable periodic
orbits describe various entropies, Lyapunov exponents, escape
rates, and the uniformity principle [2]. The information that en-
ters these classical summations are the stability properties and
densities. Such sets of orbits are also linked to the properties
of the analogous quantized systems through the derivation of
semiclassical sum rules. A few cases are given by periodic
[3–5] and closed-orbit sum rules [6–8], which determine
quantal spectral properties, and homoclinic (heteroclinic) orbit
summations [9,10], generating wave-packet propagation ap-
proximations. The interferences in such sum rules are governed
by the orbits’ classical action functions and Maslov indices,
and thus this information takes on greater importance in the
context of the asymptotic properties of quantum mechanics.
Various resummation techniques have been given to work with
series, which are often divergent in nature [11–13]. Other
studies exploring a fuller understanding of the interferences
have also been carried out [14–20]. Our interest in this paper
is establishing a framework for understanding the relationships
between periodic and homoclinic (heteroclinic) orbit actions
and their action correlations.

A periodic orbit in a two-degree-of-freedom system be-
comes either a single fixed point or an invariant set of points
visited periodically in a two-dimensional Poincaré surface of
section. It is sufficient to concentrate on symplectic mappings
on a plane and study the unstable fixed or periodic points
under their application. The fixed points play an advantageous
role in this work due to convergence theorems in normal form
coordinates. The normal form transformation was first proved
by Moser to converge inside a disk-shaped neighborhood of
the fixed point denoted by D0 hereafter [21]. Later, da Silva
Ritter et al. extended the convergence zone along the stable
and unstable manifolds out to infinity [22].

Within the convergence zone are Moser invariant curves,
which are images of invariant hyperbolas. As already noted
by Birkhoff [21,23,24], the self or mutual intersections
between such invariant curves can support periodic orbits with
arbitrarily large periods. These periodic orbits accumulate
alternatively on one or multiple homoclinic (heteroclinic)

points in a homoclinic (heteroclinic) tangle. In the limit of the
orbital period going to infinity, the invariant curves become
infinitely close to the stable and unstable manifolds of the
fixed points. The periodic orbits of this kind are said to be
satellite to their respective homoclinic (heteroclinic) points
[15,22]. Da Silva Ritter et al. developed a method for the
numerical computation of satellite orbits supported by such
curves in the quadratic map [22]. Therefore, every periodic
orbit inside the convergence zone must be satellite to some
homoclinic points, with its classical action closely related
to that of the homoclinic orbit. Recent work shows that the
size of the convergence zone can be quantified in terms of
the outermost Moser curves [24], i.e., ones with the largest
QP normal form coordinates product, and the convergence
zone can be numerically estimated using the outermost Moser
curves as boundaries [25].

Assuming a system is fully chaotic, the convergence zone
should cover most, if not all, of the accessible phase space. In
that case, nearly all of the periodic orbits lie on Moser invariant
curves, and each one can be treated as a satellite orbit of some
particular set of hyperbolic fixed points. Even if the system
is not fully chaotic, the convergence zone can cover nearly
all of the available phase space. Figure 4 of Ref. [24] gives an
excellent example of the convergence zone covering almost all
of the complex region of the homoclinic tangle of the Hénon
map [26], avoiding only a small region inside the last KAM
curve. Thus, a study of satellite orbits may often encompass
nearly all periodic orbits of the system; i.e., satellite orbits are
not typically a small subset of the periodic orbits.

In the quantum Baker’s map wave-packet autocorrelation
functions can equivalently be expressed as a sum over periodic
fixed points or homoclinic orbit segments with an exact one-
to-one correspondence between terms [27]. Similarly, there is
the same, though not exact, correspondence for the stadium
billiard as there may be problems with orbits which approach
bifurcations points too closely, i.e., some of the orbits that
come too close to the joint between the straight edge and
curved hard walls [10]. Thus, it is of significant interest to
understand how the homoclinic (heteroclinic) and periodic
orbits are related.

This work develops a framework for expressing the actions
of satellite orbits in terms of the relative actions of homoclinic
(heteroclinic) orbits, phase-space areas bounded by stable and
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unstable manifolds, and Moser invariant curves. These areas
scale down with increasing periods, and the determination of
the action of a leading satellite periodic orbit with small period
is sufficient to approximate satellite orbits with larger periods;
the numerical calculation of individual orbits becomes unnec-
essary to an excellent approximation. As a final remark, note
that Maslov indices can be incorporated into this framework
but are not considered in this paper in order to focus on the
classical actions. Previous studies of Maslov indices can be
found in Refs. [28–30].

This paper is organized as follows. Section II sets the
notation and basic definitions of homoclinic (heteroclinic)
orbits and their actions. Section III is a generalization of the
MacKay-Meiss-Percival action principle [31] for heteroclinic
orbits and expresses their actions as phase-space integrals.
Section IV concerns relative actions between two hyperbolic
fixed points and expresses them as phase-space areas bounded
by segments of the stable and unstable manifolds. Section V
studies the satellite periodic orbits and expresses their actions
using phase-space areas bounded by segments of the Moser
invariant curves together with stable and unstable manifolds.
An approximation for orbits with large periods is also given,
together with a numerical calculation with the Hénon map.
Some basic information on homoclinic (heteroclinic) tangles
[32–34], the MacKay-Meiss-Percival action principle [31,35],
and normal form theory with satellite period orbits [22] can be
found in Appendices A and B.

II. HOMOCLINIC (HETEROCLINIC) ORBITS
AND RELATIVE ACTIONS

This section lays out the paper’s notation and a few
basic concepts of homoclinic (heteroclinic) orbits in classical
dynamical systems.

A. Homoclinic (heteroclinic) orbits

Let M be an analytic and area-preserving map on the
two-dimensional (2D) phase space (q,p), and x = (q,p) be
a hyperbolic fixed point under M with stability exponent μ.
Denote the unstable and stable manifolds of x by U (x) and
S(x), respectively. Typically, its unstable and stable manifolds
intersect infinitely many times and form a complicated pattern
called a homoclinic tangle [1,33,34] as partially shown in
Fig. 1. The intersection points belong to both U (x) and S(x)
for all times. The homoclinic orbit, denoted by {h0}, is the
bi-infinite collection of images:

{h0} = {M−∞h0, · · · ,M−1h0,h0,Mh0, · · · ,M∞h0}
= {h−∞, · · · ,h−1,h0,h1, · · · ,h∞}, (1)

where both h−∞ and h∞ converge to x. If the unstable and
stable segments connecting x with h0 intersect only at h0,
then {h0} is a primary homoclinic orbit. There must be at
least two such orbits [32], such as {h0} and {g0} in Fig. 1.
Of particular interest are the unstable segments U [gi−1,gi]
and stable segments S[gi,gi−1], which enclose the so-called
“lobe regions” Li and L′

i , which are extensively studied in
transport problems [31,32,34,36]. The region bounded by
U [x,g0] and S[x,g0] is called the complex region, which is
the main region of interest in transport theory. More recent

FIG. 1. Example partial homoclinic tangle from the Hénon map
[26]. The unstable (stable) manifold is the solid (dashed) curve. There
are two primary homoclinic orbits {h0} and {g0}. The lobe regions L0

and L′
0 form a turnstile and govern the transport. In an open system,

the lobes Li (L′
−i) may extend out to infinity never to reenter the

complex region for i � 1.

works on the topological behavior of lobes resulted in what is
termed homotopic lobe dynamics [37–39], which gives rise to
fractals in escape time graphs and has been applied to problems
such as ionization of hydrogen atoms [40] and escape from a
vase-shaped cavity [41,42]. Notice that for open systems such
as the Hénon map, any point outside the complex region will
escape to inifinity, and thus the lobes Li and L′

−i with i � 1
will extend to infinity and never come back into the complex
region. This ensures that there are no homoclinic points on
segments U (gi,hi+1) and S(gi,hi). The homoclinic points in
such systems are distributed only on segments U [hi,gi] and
S[hi,gi−1].

A more general scenario is to have two hyperbolic fixed
points with their own stable and unstable manifolds intersect-
ing one another, forming a heteroclinic tangle [32]. Consider
x(α) and x(β), with their unstable [stable] manifolds U (x(α))
[S(x(α))] and U (x(β)) [S(x(β))]; see Fig. 2. The intersecting
stable and unstable manifolds of different fixed points generate
heteroclinic orbits. In Fig. 2, {h(α)

0 } and {h(β)
0 } have the limiting

FIG. 2. Schematic partial heteroclinic tangle between x(α)

and x(β). The unstable (stable) manifolds are plotted in solid
(dashed) curves. The “parallelogram” region bounded by segments
U [x(α),h

(β)
0 ], S[h(β)

0 ,x(β)], U [x(β),h
(α)
0 ], and S[h(α)

0 ,x(α)] is the complex
region. The lobes {L0,L

′
0} and {K0,K

′
0} form the irreducible structures

that can be mapped successively to form the entire tangle.
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points:

h(α)
∞ , h

(β)
−∞ → x(α),

(2)
h

(α)
−∞, h(β)

∞ → x(β).

Unlike homoclinic tangles, there may be only one primary
heteroclinic orbit; an example is shown ahead. Homoclinic and
heteroclinic orbits play an important role in chaotic dynamics
as they provide clues for the entire structure of the chaotic
region. As shown in Refs. [22,23], infinite families of satellite
periodic orbits accumulate on the homoclinic (heteroclinic)
orbits, and the determination of the periodic orbit actions rely
on those of the homoclinic (heteroclinic) orbits.

B. Relative actions

The mapping M can be viewed as a canonical transforma-
tion that maps a point (qn,pn) to (qn+1,pn+1), while preserving
the symplectic area, therefore a generating (action) function
F (qn,qn+1) can be associated with this process such that
[31,35]:

pn = −∂F/∂qn,
(3)

pn+1 = ∂F/∂qn+1.

The total action of an orbit F is the sum of the generating
functions,

F =
∞∑

n=−∞
F (qn,qn+1), (4)

and is divergent, in general. However, the MacKay-Meiss-
Percival action principle [31,35] can be applied to obtain well-
defined action differences for particular pairs of orbits. An
important and simple case is the relative action between a
fixed point x and any of its homoclinic orbits {h0}, which
turns out to be equal to an area bounded by unstable and stable
manifold segments as

�F{h0}x =
+∞∑

n=−∞

[
F{h0}(qn,qn+1) − Fx(q,q)

]

=
∫

U [x,h0]
pdq +

∫
S[h0,x]

pdq =
∮

US[xh0]
pdq

= A◦
US[xh0], (5)

where U [x,h0] is the segment of the unstable manifold from x

to h0, and S[h0,x] is the segment of the stable manifold from h0

to x. The ◦ superscript from the last line indicates that the area
is interior to a path that forms a closed loop, and the subscript
indicates the path: US[xh0] = U [x,h0] + S[h0,x]. As usual,
clockwise enclosure of an area is positive, counterclockwise is
negative. F{h0}(qn,qn+1) denotes the generating function along
{h0} that maps hn to hn+1, and Fx(q,q) denotes the generating
function of x in one iteration. Likewise, a second important

case is for homoclinic orbit pairs, which results in

�F{h′
0}{h0} =

∞∑
n=−∞

[
F{h′

0}(qn,qn+1) − F{h0}(qn,qn+1)
]

=
∫

U [h0,h
′
0]

pdq +
∫

S[h′
0,h0]

pdq = A◦
US[h0h

′
0],

(6)

where U [h0,h
′
0] is the segment of the unstable manifold from

h0 to h′
0, and S[h′

0,h0] is the segment of the stable manifold
from h′

0 to h0. See Appendix A for further details.
It is also desirable to have geometric relations for the

differences of any pair of periodic orbits. Since they may
not have the same period, comparing each over its primitive
period relative to a fixed point suffices. For an l-period orbit,
i.e., Ml(x0) = xl = x0 and {x0} = {x0,x1,...xl},

�F{x0}x =
l−1∑
n=0

[
F{x0}(qn,qn+1) − Fx(q,q)

]
. (7)

However, ahead it is shown that the geometric form also
requires homoclinic orbits and Moser invariant curves.

III. RELATIVE HETEROCLINIC ORBIT ACTIONS

Consider two hyperbolic fixed points x(α) and x(β), and a
heteroclinic intersection h

(β)
0 ; see Fig. 2. Since the infinite past

h
(β)
−∞ and the infinite future h

(β)
∞ are asymptotic to different

fixed points, it is convenient to consider the heteroclinic orbit
in two semi-infinite halves, where h

(β)
0 is the dividing point.

The past orbit relative to h
(β)
0 is

{
h

(β)
0

}− = {
h

(β)
−∞, · · · ,h

(β)
0

}
. (8)

The future orbit is similarly{
h

(β)
0

}+ = {
h

(β)
0 , · · · ,h(β)

∞
}
. (9)

The action of the past [future] orbit is given relative to x(α)

[x(β)]. In particular, the relative action between {h(β)
0 }− and

{x(α)} is defined as

�F{h(β)
0 }−x(α) =

0∑
n=−∞

[
F{h(β)

0 }(qn−1,qn) − Fx(α) (q,q)
]
, (10)

and similarly for the future orbit history,

�F{h(β)
0 }+x(β) =

∞∑
n=0

[
F{h(β)

0 }(qn,qn+1) − Fx(β) (q,q)
]
. (11)

The total relative action of {h(β)
0 } is just the sum of the two

relative parts. Following Refs. [31,35] again yields, finally,

�F{h(β)
0 }−x(α) + �F{h(β)

0 }+x(β)

=
∫

U [x(α),h
(β)
0 ]

pdq +
∫

S[h(β)
0 ,x(β)]

pdq

= A
US[x(α)h

(β)
0 x(β)], (12)

where the subscript US[x(α)h
(β)
0 x(β)] = U [x(α),h

(β)
0 ] +

S[h(β)
0 ,x(β)]. Since this path is not closed, the final point is
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FIG. 3. A primary heteroclinic orbit of the standard map. x(α) =
(0,0) and x(β) = (0.5,0) are fixed points of the map, and U [x(α),h0]
and S[h0,x

(β)] make a primary intersection at h0. The relative action
of {h0} should be equal to the area A.

added to the area notation. The integral gives the algebraic
area A in Fig. 3.

This result can be generalized by considering a change in
the dividing point h

(β)
0 to some other point h

(β)
k . The form of

Eq. (12) must be unchanged. Thus,

�F{h(β)
k }−x(α) + �F{h(β)

k }+x(β) = A
US[x(α)h

(β)
k x(β)], (13)

where now the past and future relative actions are defined with
respect to h

(β)
k and the unstable and stable manifold integral

paths change accordingly. This simple extension is quite useful
ahead.

At this point we would like to make a remark on the
difference between the areas defined in Eqs. (5) and (12):
upon canonical transformations, the former is a closed area,
thus invariant; while the latter is an open algebraic area,
therefore not invariant. This is also consistent with the action
functions on the left sides of the equations. Despite that the
action functions are modified by the canonical transforma-
tions, the modifications cancel out between successive steps
for the relative homoclinic actions, but not for the heteroclinics,
the net change from which should match the change in the
algebraic area.

A. Standard map example

Consider the action of a primary heteroclinic orbit of the
standard map as an example. The mapping equations are [43]

pn+1 = pn − K

2π
sin 2πqn,

(14)
qn+1 = qn + pn+1,

where our example is for the parameter K = 8.25, a value for
which the system dynamics are overwhelmingly dominated
by chaotic motion. Perhaps the simplest case is that of the
two hyperbolic fixed points x(α) = (0,0) and x(β) = (0.5,0).
The first point is hyperbolic with inversion, which adds a
new element to relations coming further ahead. The primary
intersection of x(α)’s unstable manifold with x(β)’s stable
manifold, and the area A defined in Eq. (12) are drawn in
Fig. 3. Calculating numerically the left-hand side of Eq. (12)
using the action function for {h0}, and the right-hand side
using a construction of the manifolds gives A − �F{h0}−x(α) −

�F{h0}+x(β) = 9.4 × 10−15, which is as accurate as one could
expect using double precision computation. In this example,
the two fixed points both lie on the p = 0 axis, and the
algebraic area defined by Eq. (12) is relatively simple.
Examples of more complicated heteroclinic orbits connecting
fixed points with nonzero p values can be found in Fig. 11 of
Ref. [44].

The area-relative-action relation has the advantage of giving
results without the necessity of calculating the heteroclinic
orbit. Only the intersection point h0 and manifold segments
are needed. Otherwise, a long orbit segment of {h0} centered
at h0 must be determined to get high accuracy. As numerical
iterations forward and backward of h0 fail to follow {h0}
after a logarithmically short time in the precision divided
by the Lyapunov exponent, numerical orbits diverge in this
example after just a few iterations. Although techniques can
be constructed to evade the divergence problem [44], Eq. (12)
makes it unnecessary.

IV. RELATIVE ACTIONS BETWEEN HYPERBOLIC
FIXED POINTS

A very interesting relation derives from comparing
Eqs. (12) and (13). Subtraction generates a relation between the
relative action between two fixed points with an area bounded
by unstable and stable manifolds. Defining

�Fx(β)x(α) (k) = k[Fx(β) (q,q) − Fx(α) (q,q)] (15)

gives

�Fx(β)x(α) (k) = A
US[x(α)h

(β)
k x(β)] − A

US[x(α)h
(β)
0 x(β)]. (16)

Since∫
U [x(α),h

(β)
k ]

pdq −
∫

U [x(α),h
(β)
0 ]

pdq =
∫

U [h(β)
0 ,h

(β)
k ]

pdq (17)

and similarly for the stable manifold segments, Eq. (16)
simplifies to (�k = k2 − k1)

�Fx(β)x(α) (k) = A◦
US[h(β)

0 h
(β)
k ]

,

(18)
�Fx(β)x(α) (�k) = A◦

US[h(β)
k1

h
(β)
k2

]
.

The k = 1 case is schematically illustrated in Fig. 4.

FIG. 4. Schematic partial heteroclinic tangle. The unstable mani-
fold of x(α) and the stable manifold of x(β) intersect at h0, which maps
to h1. Notice that this image requires a second primary heteroclinic
orbit, which is not labeled. The algebraic area A1 − A2 gives the
relative action between x(β) and x(α).
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FIG. 5. The fundamental lobe structure of the heteroclinic tangle
of x(α) and x(β) in the standard map with the torus unfolded. The area
of the lobe is enclosed by Ux(α) [h0,h2] and Sx(β) [h2,h0]. The relative
action given by the area is A = 0.835899764985, which is to be
compared with the analytic result using the generating functions of
K/π 2. The difference is −6.43 × 10−11 showing that the boundaries
of A are well determined numerically. The numerical agreement using
double precision is reasonable given the long thin shape of part of the
area.

In this case, Eq. (18) reads

�Fx(β)x(α) (1) = A◦
US[h0,h1] = A1 − A2, (19)

where the last form is using the areas assigned in Fig. 4. A
homoclinic tangle requires A1 = A2 since x(α) = x(β) [31].

A. Standard map example

Applying Eq. (18) to the standard map with the same fixed
points as before highlights an intriguing situation due to x(α)

being hyperbolic with inversion. It turns out to be convenient to
consider the twice-iterated map M2, under which heteroclinic
orbits stay on the same branch of the unstable manifold of x(α).
Therefore, to calculate the action difference between the two
fixed points, we consider only the �k-even cases. In addition,
there is only one primary heteroclinic orbit, one lobe, and thus
one area, not two; see Fig. 5. The fundamental lobe structure
for the heteroclinic tangle does not look like a turnstile as it
would for a homoclinic tangle [44]. Though not visible in the
figure, the unstable manifold wraps counterclockwise around
the fixed point x(α) in order for this to be possible.

For k-even all the heteroclinic points map back onto the
same branch of the unstable manifold of x(α). Therefore, with
k = 2, and h0 and h2 in Eq. (18),

�Fx(β)x(α) (2) = A◦
US[h0h2] = −A = −K

π2
, (20)

where A is defined in Fig. 5, and K
π2 comes from the generating

function of the standard map. �Fx(β)x(α) (2) is the action
difference between the two fixed points under M2, the equality
is verified to a high accuracy (∼10−11).

V. SATELLITE PERIODIC ORBIT ACTIONS

In chaotic dynamical systems there is another generic class
of unstable periodic orbits that are of great interest. They
are identified as successive points on Moser invariant curves.
Certain sequences of these orbits accumulate on particular
homoclinic or heteroclinic orbits [15,21–23] and have been

FIG. 6. A satellite orbit {y0} of period-4 associated with the
homoclinic orbit segment {h−2, · · · ,h2} supported by an invariant
Moser curve. Upper panel: U (x) and S(x) intersect at h0. The
Moser curve which supports a periodic-4 satellite orbit {y0}, thinner
dashed line, is plotted inside the complex region. The orbit segment
{y0,y1,y2} follows the stable manifold segment {h0,h1,h2} for the
first 2 iterations, then switches to the unstable manifold segment,
such that {y2,y3,y0} follows {h−2,h−1,h0}. y2 is thus a switching
point on {y0}, where the orbit switches from the future to the past
homoclinic segment. Lower panel: Normal form coordinates (Q,P ).
h0 is on both axes. y4 and y0 correspond to the same point in phase
space. y2 is the switching point, which is associated either with h2 or
h−2.

referred to as satellite periodic orbits [15]; see Appendix B for
more details.

A. Satellite periodic orbits

Let us consider a periodic orbit associated with a homo-
clinic orbit segment and supported by an invariant Moser
curve; see Fig. 6 for a schematically illustrated example. The
Moser curve extends along U (x) and S(x) out to infinity and
converges to them. Every homoclinic intersection between the
manifolds will produce a self-intersection point on the Moser
curve. As argued by Birkhoff [23] and numerically computed
by da Silva Ritter et al. [22], special choices can be found
for each sufficiently large integer N to make {y0} a period-N
periodic orbit. As N increases, the corresponding y0 converges
to h0, and the homoclinic orbit {h0} is itself the limiting case
of the period-N periodic orbit {y0} for N → ∞. The set of
y0(N ) taken from all integer N periodic orbits gives a sequence
converging to h0. In practice, for any homoclinic orbit,
{h0}, a truncation into finite segments {h−l , · · · ,h0, · · · ,hk}
(k,l > 0) is possible, for which a Newton-Raphson search in
its neighborhood can be used to construct the satellite orbit
of period (k + l) associated with {h−l , · · · ,h0, · · · ,hk}. This
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FIG. 7. (Schematic) Expanded view of the homoclinic tangle in
Fig. 1. The manifold segments extending out of the drawing are
simply connected and left out of this figure. A Moser invariant curve,
light dashed line, is shown giving rise to a satellite periodic orbit {y0}
of period 4. The invariant curve has been drawn more distant from the
actual stable and unstable manifolds for illustration purposes. Every
yi is a self-intersection of the Moser curve. The curve intersects with
U (x) [S(x)] at bi [ci] near its self-intersection at yi .

provides a convenient way to construct the satellite orbits
without the need to calculate the normal form series or the
Moser curves.

The relative action difference between a given {h0} and its
satellite {y0} is determined by a roughly parallelogram shaped
region bounded by the manifolds and the Moser curve. To see
how this area arises, consider the homoclinic tangle in Fig. 7,
which is an expanded view of the tangle in Fig. 1. A Moser
invariant curve is drawn which supports a period-4 orbit {y0},
satellite to the homoclinic orbit {h0}. y2 is the switching point
from the future to the past homoclinic segment. The orbit
segment {y0,y1,y2} follows {h0,h1,h2}, then switches at y2,
after which {y2,y3,y0} follows {h−2,h−1,h0}.

The relative-action-area-relation derivation makes direct
use of Eq. (A3) four times, once for each iteration of the
map M:

(1) Starting from the initial point y0, and map M(y0) = y1,
follow the path S[x,c0] + I [c0,y0]; I [c0,y0] is the segment of
the Moser invariant curve from c0 to y0. The path maps to
S[x,c1] + I [c1,y1]. Substituting the paths into Eq. (A3) yields

F{y0}(q0,q1) − Fx(q,q) = AISI[y0c0c1y1]. (21)

(2) M(y1) = y2: Let the paths be S[x,c1] + I [c1,y1] and
S[x,c2] + I [c2,y2], giving

F{y0}(q1,q2) − Fx(q,q) = AISI[y1c1c2y2]. (22)

(3) M(y2) = y3: Let the paths be U [x,b−2] + I [b−2,y2]
and U [x,b−1] + I [b−1,y3], giving

F{y0}(q2,q3) − Fx(q,q) = AIUI[y2b−2b−1y3]. (23)

(4) M(y3) = y0: Let the paths be U [x,b−1] + I [b−1,y3]
and U [x,b0] + I [b0,y0]. This gives

F{y0}(q3,q0) − Fx(q,q) = AIUI[y3b−1b0y0]. (24)

The total relative action is, thus,

�F{y0}x = A◦
L, (25)

FIG. 8. (Schematic) Satellite orbit {y0} associated with a non-
primary homoclinic orbit segment {f−l , · · · ,f0, · · · ,fk}. Since the
Moser curve approaches the stable and unstable manifolds, it must
intersect with U (x) [S(x)] in the same way that S(x) [U (x)] does.
It is under this sense that the homoclinic point f0 will force two
intersections b0 and c0 between the Moser curve and the unstable and
stable manifolds, respectively.

where the compound closed path L is

L = I [y0,c0] + S[c0,c2] + I [c2,y2] + I [y2,b−2]

+U [b−2,b0] + I [b0,y0]. (26)

By adding and subtracting certain path segments, it is
possible to deform L such that it separates into a path for the
relative action of the homoclinic orbit and two parallelogram
like correction terms. This gives the final desired relation
between the relative action of the periodic and homoclinic
orbits,

�F{y0}x − �F{h0}x
= A◦

SIIU[xc2y2b−2] − A◦
SIIU[h0c0y0b0]. (27)

The two areas in the above equation resembles two near-
parallelograms bounded by the manifolds and the Moser
curves. The satellite orbit action is then

F{y0} =
3∑

n=0

F{y0}(qn,qn+1) = 4Fx(q,q) + A◦
US[xh0]

+A◦
SIIU[xc2y2b−2] − A◦

SIIU[h0c0y0b0], (28)

where �F{h0}x is given by area A◦
US[xh0]. Although the {h0}

segment used here is a primary homoclinic orbit, with a careful
definition of the points bi and ci near each orbit point yi , a
generalized Eq. (28) applies to satellite orbits associated with
any homoclinic orbit segment. Take the example of Fig. 8,
where a period-(k + l) satellite orbit {y0} is associated with a
nonprimary homoclinic orbit segment {f−l , · · · ,f0, · · · ,fk}.
Since the Moser curve approaches the stable and unstable
manifolds as it extends along them to infinity, it is forced
to make a self-intersection at y0 as the stable and unstable
manifolds intersect at f0. The particular Moser curve is the one
for which the (k + l)th mapping of y0 gives back y0. Therefore,
y0 can be thought as being induced by f0. Following the same
logic, define b0 to be the intersection between U (x) and the
Moser curve that is induced by f0: as the Moser curve extends
along S(x), it intersects with U (x) in the same way that S(x)
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intersects, so the homoclinic point f0 induces a b0 on the Moser
curve. Similarly, c0 is defined as the intersection between S(x)
and the Moser curve that is induced by f0. All bi and ci can
be located in the same way, using fi as the inducing point. It
follows that all previous derivation steps continue to hold with
the resulting more general expression of satellite orbit action:

F{y0} =
k+l−1∑
n=0

F{y0}(qn,qn+1) = (k + l)Fx(q,q) + A◦
US[xf0]

+A◦
SIIU[xckykb−l ] − A◦

SIIU[f0c0y0b0], (29)

where f0 can be any homoclinic point. This formula expresses
the satellite action in terms of the fixed point action, the
homoclinic relative action, and two four-segmented simple
closed curves bounded by stable and unstable manifolds and
the Moser curves. The calculation of the two areas requires the
construction of the Moser curve, as well as the orbit points y0

and yk , which can be difficult to compute. However, a simple
approximation scheme is possible.

B. Geometric area approximation

Equation (29) can be approximated with a wedge product
form that only requires the location of the homoclinic points
fk and f−l . In this way, it is possible to calculate the full
action of a period-N (N = k + l) satellite orbit {y0} without
its reconstruction or its Moser invariant curve. Assuming
the action Fx(q,q) and the area A◦

US[xf0] = �F{f0}x of some
homoclinic orbit point f0 are known, then the first two terms
on the right-hand side of Eq. (29) do not depend on knowing
{y0}, and only the two areas are needed. Notice from Fig. 8 that
A◦

SIIU[f0c0y0b0] is mapped to A◦
SIIU[fkckykbk ] under k iterations, so

that the areas of the two are identical. Thus,

A◦
SIIU[xckykb−l ] − A◦

SIIU[f0c0y0b0]

= A◦
SIIU[xckykb−l ] − A◦

SIIU[fkckykbk ]

≈ A◦
SUIU[xfkb′b−l ]. (30)

The final approximate closed path has only one side that
depends on a Moser invariant curve. Furthermore, as shown in
Fig. 8, I [b′,b−l] is exceedingly close to S[f ′,f−l], where f ′
is a point on a different homoclinic orbit. Consider that

A◦
SUIU[xfkb′b−l ] = A◦

SUSU[xfkf ′f−l ] + A◦
UIUS[f ′b′b−lf−l ] (31)

and the mean expansion rate of the map is estimated by the
positive stability exponent of the fixed point under one iteration
of the map, eμ. After k + l iterations, the unstable segment
U [f−l ,b−l] is stretched into U [fk,bk] with an expansion factor
of roughly e(k+l)μ. This implies that the ratio of areas is

A◦
UIUS[f ′b′b−lf−l ]

A◦
SUSU[xfkf ′f−l ]

∼ O(e−(k+l)μ). (32)

For all but the smallest values of (k + l), the small final area
term of Eq. (31) can be dropped.

At this point, one can calculate A◦
SUSU[xfkf ′f−l ]

just by
following the manifolds, which is very straightforward. How-
ever, there is a further approximation one can make. The
manifolds are highly constrained in their behaviors in the local
neighborhood of x. They must run along nearly parallel, nearly

straight lines. This is approximately a parallelogram with area

A◦
SUSU[xfkf ′f−l ] ≈ δq−lδpk − δp−lδqk = δf−l ∧ δfk, (33)

where δqk = qk − q, δpk = pk − p and similarly for
(δq−l ,δp−l); i.e., the δ coordinates are just those of fk and
f−l relative to x. With this approximation, to a high degree
of accuracy the full satellite orbit action F{y0} is determined
knowing only Fx(q,q), A◦

US[x,f0], fk , and f−l , in general,

F{y0} ≈ (k + l)Fx(q,q) + A◦
US[xf0] + δf−l ∧ δfk, (34)

where {y0} is the satellite orbit associated with
{f−l , · · · ,f0, · · · ,fk}. yk is the switching point at which the
orbit switches from {f0, · · · ,fk} to {f−l , · · · ,f0}.

A possible confusion arises from the fact that the
same satellite orbit {y0} can also be viewed as asso-
ciated with any shift in the truncation of the homo-
clinic orbit: {f−l+n, · · · ,fn, · · · ,fk+n}, where n is any in-
teger. Furthermore, for n 	 l,k, the Newton iteration using
{f−l+n, · · · ,fn, · · · ,fk+n} as trail orbit will also converge,
and one can verify that it leads to the same satellite orbit
as using {f−l , · · · ,f0, · · · ,fk}. Therefore, the choice of the
switching point along the satellite orbit seems not unique. This
ambiguity can be resolved by defining the switching point to be
the one that minimizes the error from approximation Eq. (34)
in the original coordinate system, which is the error from
replacing A◦

SUSU[xfkf ′f−l ]
by the wedge product δf−l ∧ δfk . In

practice, the switching point is easy to identify. Since the error
is the difference between the curvy “trapezoid” and its linear
interpolation, the minimization is achieved by choosing the
orbit point that is “closest” to the fixed point. Therefore, in
the example of Fig. 7, the switching point can be identified
graphically to be y2, which is the closest point along {y0}
relative to x. By ranging over all possible choices of f0, l,
and k, Eq. (34) suffices to calculate the classical actions of all
periodic orbits inside the convergence zone.

C. Hénon map example

Consider the action of a satellite orbit in the area-preserving
Hénon map [45]:

pn+1 = qn,

qn+1 = a − q2
n − pn,

(35)

with parameter value a = 10. We have numerically computed
a period-8 orbit {y0} satellite to one of the primary
homoclinic orbit segments {h−4, · · · ,h4}, where y0 =
(3.1835765543,3.1835765543) and h0 = (3.183580560,

3.183580560). This gives

F{y0} − 8Fx(q,q) − A◦
US[x,h0] = 1.92729 × 10−4, (36)

whereas the wedge product gives

δh−4 ∧ δh4 = 1.92688 × 10−4. (37)

The difference is in the 4th decimal place. On the other hand,
without the knowledge of {y0}, the full action can be calculated
using Eq. (34),

F{y0} = 138.940538512, (38)
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to be compared with the actual action,

F{y0} = 138.940538553. (39)

The relative error equals 3 × 10−10, demonstrating the high
accuracy of the wedge product approximation.

VI. CONCLUSION

The information about classical actions associated with
homoclinic, heteroclinic, and periodic orbits that come into
various semiclassical sum rules play an important role in the
study of quantum chaotic dynamical systems. Although the
orbit actions can be calculated from the generating functions,
the relations and correlations among their values cannot be
discovered without an analysis of the type given in this
paper. Furthermore, in the asymptotic limit of semiclassical
mechanics, the actions must be known to high precision to
understand the interferences that arise in quantum dynamics,
and that otherwise requires the accurate determination of long
orbit segments. Since any initial deviation due to the machine
precision will diverge exponentially, it is a priori difficult to
compute periodic orbits with long periods. The analysis given
here gives an explicit mechanism from which correlations
could emerge and avoids the numerical difficulties by making
the detailed long orbit calculations unnecessary.

One interesting example is given by the heteroclinic tangle
of the standard map, which arises from the two unstable fixed
points of the map on the p = 0 line. One of the fixed points
is hyperbolic with reflection, which generates a single lobe
fundamental structure in the tangle under a double iteration of
the map. This lobe’s area must equal twice the action difference
of the fixed points, a nontrivial relation to imagine without
generating Eqs. (12) and (13).

For fully chaotic systems, the convergence zone can cover
most of the accessible phase space [24], and in that case nearly
all of the periodic orbits fall into the category of satellite orbits,
to which our analysis applies. Action differences between any
pair of the satellite periodic orbits or between them and par-
ticular homoclinic (heteroclinic) orbits follow naturally. The
simple, rather accurate geometric approximation involving a
wedge product generates expressions that do not require the
construction of the orbits or Moser invariant curves, only short
sections of the stable and unstable manifolds (very simple
and stable to calculate) and the endpoints of the homoclinic
segments concerned. The error of this approximation scheme
decreases exponentially as the length of the orbit increases and
the instability exponent of the system increases.

All Moser invariant curves intersect in the untransformed
phase space and as shown in Refs. [15,22,23], some satellite
orbits lie on more than one Moser curve. In those cases, the
actions of the satellite orbits are also related to homoclinic
(heteroclinic) orbit actions, and possibly multiple fixed point
actions [15]. It is of significant interest to understand the
connections of the resulting multiple possible action relations,
and this subject is left for future publication.
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APPENDIX A: MACKAY-MEISS-PERCIVAL
ACTION PRINCIPLE

The MacKay-Meiss-Percival action principle discussed in
this section was first developed in Ref. [31] for transport
theory. A comprehensive review can be found in Ref. [35].
Generalization of the original principle beyond the “twist”
and area-preserving conditions is discussed in Ref. [46]. A
higher-dimensional generalization using generating 1-forms
and phase-space volume forms is discussed in Ref. [47].

Consider an arbitrary point a0 = (q0,p0) and its orbit {a0}
in phase space. The twist condition indicates the existence of a
generating (action) function F (qn,qn+1), which brings an into
an+1 under the mapping M , such that

pn = −∂F/∂qn,

pn+1 = ∂F/∂qn+1.
(A1)

The total action F is the sum

F =
∞∑

n=−∞
F (qn,qn+1). (A2)

The central step to obtain the MacKay-Meiss-Percival
action principle is demonstrated by Fig. 39 along with Eq.
(5.6) in Ref. [35]. Shown here in Fig. 9 are two arbitrary
points a = (qa,pa), b = (qb,pb) and their images a′ = M(a),
b′ = M(b). Let c be an arbitrary curve connecting a and b,
which is mapped to a curve c′ = M(c), connecting a′ and
b′. Let A and A′ denote the algebraic area under c and c′,
respectively. Then the difference between these areas is

A′ − A =
∫

c′
pdq −

∫
c

pdq

= F (qb,qb′ ) − F (qa,qa′ ), (A3)

i.e., the difference between the two algebraic areas gives the
difference between the action functions for one iteration of the
map. Starting from this, MacKay et al. [31] derived a formula
relating the action difference between a pair of homoclinic
orbits to the phase space area of a region bounded by stable
and unstable manifolds, as demonstrated by Fig. 10. In this

FIG. 9. a and b are arbitrary points and c is a curve connecting
them. a′ = M(a), b′ = M(b), and c′ = M(c). Then: A′ − A =
F (qb,qb′ ) − F (qa,qa′ ).
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FIG. 10. a0 and b0 is a homoclinic pair. They are connected by
an unstable segment U [a0,b0] (solid) and a stable segment S[b0,a0]
(dashed). Then the action difference between the homoclinic orbit
pair is �F{b0}{a0} = A.

figure, a0 and b0 is a pair of homoclinic points:

a±∞ → b±∞. (A4)

There exist unstable and stable manifolds connecting the
two points shown by the solid and dashed curves. Those
manifolds could be the manifolds of other fixed points or
manifolds associated with a0 and b0 themselves. Let U [a0,b0]
and S[b0,a0] be the corresponding segments, then the action
difference between {a0} and {b0} is given by

�F{b0}{a0} =
∞∑

n=−∞

[
F{b0}(qn,qn+1) − F{a0}(qn,qn+1)

]

=
∫

U [a0,b0]
pdq +

∫
S[b0,a0]

pdq = A, (A5)

where A denotes the area shown in Fig. 10.

APPENDIX B: NORMAL FORM COORDINATES,
MOSER INVARIANT CURVES, AND SATELLITE

PERIODIC ORBITS

There are infinite families of unstable periodic obits
accumulating on every homoclinic orbit [15,22]. These orbits
are supported by Moser invariant curves, with the orbit points
being successive self- or mutual-intersections between the
invariant curves. The existence of such curves and orbits is
a consequence of the Birkhoff-Moser theorem [21–23]. If the
Poincaré map is invertible and analytic, there exists an analytic
transformation (normal form transformation) from the normal
form coordinates (Q,P ) to the neighborhood of stable and
unstable manifolds of the hyperbolic fixed point, for which the
map takes the simple form

Qn+1 = �(QnPn)Qn,

Pn+1 = [�(QnPn)]−1Pn,
(B1)

where �(QnPn) is a polynomial function of the product
QnPn [24]:

�(QP ) = λ + w2(QP ) + w3(QP )2 + . . . , (B2)

with λ = eμ, where μ is the Lyapunov exponent of the fixed
point. The normal form convergence zone was first proved
by Moser [21] to be a small disk-shaped region centered at
the fixed point and later proved by da Silva Ritter et al.
[22] to extend along the stable and unstable manifolds into
infinity. The extended convergence zone follows hyperbolas
to the manifolds (“gets exponentially close” the further out
along the manifolds). The stable and unstable manifolds are
just images of the P and Q axes, respectively, under the
normal form transformation. Every homoclinic intersection
point in phase space is mapped to two points, HP = (0,PH )
and HQ = (QH,0).

All points inside the extended convergence zone near the Q

or P axis move along invariant hyperbolas, which are mapped
to Moser invariant curves in phase space. Being confined in the
extended convergence zone, the Moser invariant curves also
get exponentially close to the stable and unstable manifolds
while extending along them outward to infinity. In fact, as
shown by Ref. [24], the convergence zone can be quantified
using the outermost Moser curve with the largest QP product.

Self- and mutual intersections between certain Moser
invariant curves give rise to infinite families of periodic orbits.
A simple example is shown in Fig. 6. Since the Moser
invariant curve (dotted line) extends along S(x) and U (x),
intersections between S(x) and U (x) will “force” it to make
self-intersections. Its topological behavior is thus determined
by the topology of the homoclinic tangle. For example, when
S(x) and U (x) make an intersection h0, it is forced to make a
self-intersection at y0. Thus, one can say that y0 is induced by
h0. Special choices of Moser curve can be found for each large
enough integer N to make {y0} a period-N orbit. The detailed
numerical technique is demonstrated in Ref. [22], where the
position of y0 is explicitly calculated using a linearization in
the neighborhood of the homoclinic point. The upper panel
of Fig. 6 shows a period-4 orbit {y0}. The lower panel is the
picture in (Q,P ). Under four iterations, y0 is mapped along
the hyperbola into y4. Under the normal form transformation,
the P and Q axis become S(x) and U (x), respectively, folding
back to intersect each other at h0. The invariant hyperbolae fold
in the same way, with the image of y4 being identical to one
of the images of y0 due to their being at the self-intersection
point. The solution for y0 is unique for every period N . As N

becomes larger, y0 gets closer to h0. The homoclinic orbit {h0}
is the limiting case of the period-N orbit {y0} when N → ∞:

lim
N→∞

{y0} = {h0}. (B3)

The terminology of Refs. [15,22] refers to these {y0} as satellite
orbits induced by h0.
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[12] P. Cvitanović and B. Eckhardt, Phys. Rev. Lett. 63, 823 (1989).

062224-9

https://doi.org/10.4249/scholarpedia.1353
https://doi.org/10.4249/scholarpedia.1353
https://doi.org/10.4249/scholarpedia.1353
https://doi.org/10.4249/scholarpedia.1353
https://doi.org/10.1063/1.1665596
https://doi.org/10.1063/1.1665596
https://doi.org/10.1063/1.1665596
https://doi.org/10.1063/1.1665596
https://doi.org/10.1016/0003-4916(71)90032-7
https://doi.org/10.1016/0003-4916(71)90032-7
https://doi.org/10.1016/0003-4916(71)90032-7
https://doi.org/10.1016/0003-4916(71)90032-7
https://doi.org/10.1098/rspa.1976.0062
https://doi.org/10.1098/rspa.1976.0062
https://doi.org/10.1098/rspa.1976.0062
https://doi.org/10.1098/rspa.1976.0062
https://doi.org/10.1103/PhysRevA.38.1896
https://doi.org/10.1103/PhysRevA.38.1896
https://doi.org/10.1103/PhysRevA.38.1896
https://doi.org/10.1103/PhysRevA.38.1896
https://doi.org/10.1103/PhysRevA.38.1913
https://doi.org/10.1103/PhysRevA.38.1913
https://doi.org/10.1103/PhysRevA.38.1913
https://doi.org/10.1103/PhysRevA.38.1913
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1103/PhysRevLett.67.664
https://doi.org/10.1103/PhysRevLett.67.664
https://doi.org/10.1103/PhysRevLett.67.664
https://doi.org/10.1103/PhysRevLett.67.664
https://doi.org/10.1103/PhysRevE.47.282
https://doi.org/10.1103/PhysRevE.47.282
https://doi.org/10.1103/PhysRevE.47.282
https://doi.org/10.1103/PhysRevE.47.282
https://doi.org/10.1103/PhysRevLett.67.2410
https://doi.org/10.1103/PhysRevLett.67.2410
https://doi.org/10.1103/PhysRevLett.67.2410
https://doi.org/10.1103/PhysRevLett.67.2410
https://doi.org/10.1103/PhysRevLett.63.823
https://doi.org/10.1103/PhysRevLett.63.823
https://doi.org/10.1103/PhysRevLett.63.823
https://doi.org/10.1103/PhysRevLett.63.823


JIZHOU LI AND STEVEN TOMSOVIC PHYSICAL REVIEW E 95, 062224 (2017)

[13] M. V. Berry and J. P. Keating, J. Phys. A: Math. Gen. 23, 4839
(1990).

[14] N. Argaman, F.-M. Dittes, E. Doron, J. P. Keating, A. Y.
Kitaev, M. Sieber, and U. Smilansky, Phys. Rev. Lett. 71, 4326
(1993).

[15] A. M. Ozorio de Almeida, Nonlinearity 2, 519 (1989).
[16] E. B. Bogomolny, Chaos 2, 5 (1992).
[17] M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001).
[18] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys.

Rev. Lett. 93, 014103 (2004).
[19] M. Turek, D. Spehner, S. Müller, and K. Richter, Phys. Rev. E

71, 016210 (2005).
[20] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys.

Rev. E 72, 046207 (2005).
[21] J. Moser, Commun. Pure Appl. Math. 9, 673 (1956).
[22] G. L. da Silva Ritter, A. M. Ozorio de Almeida, and R. Douady,

Physica D 29, 181 (1987).
[23] G. D. Birkhoff, Acta Math. 50, 359 (1927).
[24] M. Harsoula, G. Contopoulos, and C. Efthymiopoulos, J. Phys.

A: Math. Theor. 48, 135102 (2015).
[25] G. Contopoulos and M. Harsoula, J. Phys. A: Math. Theor. 48,

335101 (2015).
[26] M. Hénon, Quart. Appl. Math. 27, 291 (1969).
[27] P. W. O’Connor, S. Tomsovic, and E. J. Heller, Physica D 55,

340 (1992).
[28] S. C. Creagh, J. M. Robbins, and R. G. Littlejohn, Phys. Rev. A

42, 1907 (1990).

[29] I. Esterlis, H. M. Haggard, A. Hedeman, and R. G. Littlejohn,
Europhys. Lett. 106, 50002 (2014).

[30] J.-M. Mao, J. Shaw, and J. B. Delos, J. Stat. Phys. 68, 51 (1992).
[31] R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D 13, 55

(1984).
[32] S. Wiggins, Chaotic Transport in Dynamical Systems (Springer,

New York, 1992).
[33] R. Easton, Trans. Am. Math. Soc. 294, 719 (1986).
[34] V. Rom-Kedar, Physica D 43, 229 (1990).
[35] J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).
[36] D. Bensimon and L. P. Kadanoff, Physica D 13, 82 (1984).
[37] K. A. Mitchell, J. P. Handley, B. Tighe, J. B. Delos, and S. K.

Knudson, Chaos 13, 880 (2003).
[38] K. A. Mitchell, J. P. Handley, J. B. Delos, and S. K. Knudson,

Chaos 13, 892 (2003).
[39] K. A. Mitchell and J. B. Delos, Physica D 221, 170 (2006).
[40] K. A. Mitchell, J. P. Handley, B. Tighe, A. Flower, and J. B.

Delos, Phys. Rev. Lett. 92, 073001 (2004).
[41] J. Novick, M. L. Keeler, J. Giefer, and J. B. Delos, Phys. Rev. E

85, 016205 (2012).
[42] J. Novick and J. B. Delos, Phys. Rev. E 85, 016206 (2012).
[43] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[44] J. Li and S. Tomsovic, J. Phys. A: Math. Theor. 50, 135101

(2017); arXiv:1507.06455
[45] M. Hénon, Comm. Math. Phys. 50, 69 (1976).
[46] R. Easton, Nonlinearity 4, 583 (1991).
[47] H. E. Lomelí and J. D. Meiss, Nonlinearity 22, 1761 (2009).

062224-10

https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1103/PhysRevLett.71.4326
https://doi.org/10.1103/PhysRevLett.71.4326
https://doi.org/10.1103/PhysRevLett.71.4326
https://doi.org/10.1103/PhysRevLett.71.4326
https://doi.org/10.1088/0951-7715/2/4/002
https://doi.org/10.1088/0951-7715/2/4/002
https://doi.org/10.1088/0951-7715/2/4/002
https://doi.org/10.1088/0951-7715/2/4/002
https://doi.org/10.1063/1.165898
https://doi.org/10.1063/1.165898
https://doi.org/10.1063/1.165898
https://doi.org/10.1063/1.165898
https://doi.org/10.1238/Physica.Topical.090a00128
https://doi.org/10.1238/Physica.Topical.090a00128
https://doi.org/10.1238/Physica.Topical.090a00128
https://doi.org/10.1238/Physica.Topical.090a00128
https://doi.org/10.1103/PhysRevLett.93.014103
https://doi.org/10.1103/PhysRevLett.93.014103
https://doi.org/10.1103/PhysRevLett.93.014103
https://doi.org/10.1103/PhysRevLett.93.014103
https://doi.org/10.1103/PhysRevE.71.016210
https://doi.org/10.1103/PhysRevE.71.016210
https://doi.org/10.1103/PhysRevE.71.016210
https://doi.org/10.1103/PhysRevE.71.016210
https://doi.org/10.1103/PhysRevE.72.046207
https://doi.org/10.1103/PhysRevE.72.046207
https://doi.org/10.1103/PhysRevE.72.046207
https://doi.org/10.1103/PhysRevE.72.046207
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1002/cpa.3160090404
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1016/0167-2789(87)90054-6
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1007/BF02421325
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/13/135102
https://doi.org/10.1088/1751-8113/48/33/335101
https://doi.org/10.1088/1751-8113/48/33/335101
https://doi.org/10.1088/1751-8113/48/33/335101
https://doi.org/10.1088/1751-8113/48/33/335101
https://doi.org/10.1090/qam/253513
https://doi.org/10.1090/qam/253513
https://doi.org/10.1090/qam/253513
https://doi.org/10.1090/qam/253513
https://doi.org/10.1016/0167-2789(92)90064-T
https://doi.org/10.1016/0167-2789(92)90064-T
https://doi.org/10.1016/0167-2789(92)90064-T
https://doi.org/10.1016/0167-2789(92)90064-T
https://doi.org/10.1103/PhysRevA.42.1907
https://doi.org/10.1103/PhysRevA.42.1907
https://doi.org/10.1103/PhysRevA.42.1907
https://doi.org/10.1103/PhysRevA.42.1907
https://doi.org/10.1209/0295-5075/106/50002
https://doi.org/10.1209/0295-5075/106/50002
https://doi.org/10.1209/0295-5075/106/50002
https://doi.org/10.1209/0295-5075/106/50002
https://doi.org/10.1007/BF01048837
https://doi.org/10.1007/BF01048837
https://doi.org/10.1007/BF01048837
https://doi.org/10.1007/BF01048837
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1016/0167-2789(84)90270-7
https://doi.org/10.1090/S0002-9947-1986-0825732-X
https://doi.org/10.1090/S0002-9947-1986-0825732-X
https://doi.org/10.1090/S0002-9947-1986-0825732-X
https://doi.org/10.1090/S0002-9947-1986-0825732-X
https://doi.org/10.1016/0167-2789(90)90135-C
https://doi.org/10.1016/0167-2789(90)90135-C
https://doi.org/10.1016/0167-2789(90)90135-C
https://doi.org/10.1016/0167-2789(90)90135-C
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1016/0167-2789(84)90271-9
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598311
https://doi.org/10.1063/1.1598312
https://doi.org/10.1063/1.1598312
https://doi.org/10.1063/1.1598312
https://doi.org/10.1063/1.1598312
https://doi.org/10.1016/j.physd.2006.07.027
https://doi.org/10.1016/j.physd.2006.07.027
https://doi.org/10.1016/j.physd.2006.07.027
https://doi.org/10.1016/j.physd.2006.07.027
https://doi.org/10.1103/PhysRevLett.92.073001
https://doi.org/10.1103/PhysRevLett.92.073001
https://doi.org/10.1103/PhysRevLett.92.073001
https://doi.org/10.1103/PhysRevLett.92.073001
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016205
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1103/PhysRevE.85.016206
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1088/1751-8121/aa5fe6
https://doi.org/10.1088/1751-8121/aa5fe6
https://doi.org/10.1088/1751-8121/aa5fe6
https://doi.org/10.1088/1751-8121/aa5fe6
http://arxiv.org/abs/arXiv:1507.06455
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1007/BF01608556
https://doi.org/10.1088/0951-7715/4/2/017
https://doi.org/10.1088/0951-7715/4/2/017
https://doi.org/10.1088/0951-7715/4/2/017
https://doi.org/10.1088/0951-7715/4/2/017
https://doi.org/10.1088/0951-7715/22/8/001
https://doi.org/10.1088/0951-7715/22/8/001
https://doi.org/10.1088/0951-7715/22/8/001
https://doi.org/10.1088/0951-7715/22/8/001



