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Analytic solutions throughout a period doubling route to chaos
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We show examples of dynamical systems that can be solved analytically at any point along a period doubling
route to chaos. Each system consists of a linear part oscillating about a set point and a nonlinear rule for regularly
updating that set point. Previously it has been shown that such systems can be solved analytically even when
the oscillations are chaotic. However, these solvable systems show few bifurcations, transitioning directly from
a steady state to chaos. Here we show that a simple change to the rule for updating the set point allows for
a greater variety of nonlinear dynamical phenomena, such as period doubling, while maintaining solvability.
Two specific examples are given. The first is an oscillator whose set points are determined by a logistic map.
We present analytic solutions describing an entire period doubling route to chaos. The second example is an
electronic circuit. We show experimental data confirming both solvability and a period doubling route to chaos.
These results suggest that analytic solutions may be a more useful tool in studying nonlinear dynamics than was
previously recognized.
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I. INTRODUCTION

Nonlinear dynamical systems can rarely be solved analyt-
ically. Historically, rapid progress in the study of nonlinear
dynamics followed the widespread availability of digital com-
puters. Numerical approximations to solutions of nonlinear
systems were essential to the work of pioneers such as Lorenz,
Feigenbaum, and Rössler [1–3]. So recent reports of chaotic
dynamical systems with analytic solutions are quite unusual
[4–7]. These analytic solutions have enabled an unprecedented
degree of rigor in the characterization of chaotic dynamics.
For example, exact conjugacies to known chaotic systems
have been found, rigorously proving the chaotic nature of
these solutions. Also, quantities used to describe chaotic
dynamics that are usually estimated numerically, like the
Lyapunov exponent, have been determined exactly. These
successes raise the hope that greater analytic progress might be
possible with familiar chaotic paradigms such as the Lorenz
and Rössler systems. In this paper, we show how a simple
modification of known solvable systems produces a classic
nonlinear phenomenon hitherto unseen in any solvable system.
Specifically, we derive analytic solutions describing the entire
period doubling route to chaos shown in Fig. 1. This classic
bifurcation sequence has been observed in countless chaotic
systems in physics [8,9], chemistry [10,11], biology [12,13],
engineering [14,15], and economics [16,17], but never before
in a solvable system of the type we consider here.

The systems of interest here are described in terms of hybrid
equations containing both a continuous-time linear system that
oscillates about a set point and a rule for updating the value of
the set point at discrete times [4–7,18]. Between instantaneous
transitions of the set point, the evolution is purely linear
and therefore directly solved. Updates to the set point occur
such that the values of the system state at subsequent update
times are related by a one-dimensional map. In previous
studies, these maps were piecewise linear, e.g., the Bernoulli
map or the tent map. Here we modify this scheme to obtain
a smoothly nonlinear map. This change opens the door to a
much greater variety of dynamical phenomena such as the

period doubling route to chaos we focus on in this paper.
We provide two illustrative examples of solvable systems
that display period doubling bifurcations. The first is based
directly on the logistic map and recapitulates its famous route
to chaos. The second is a simple electronic circuit that provides
a physical embodiment of the period doubling route to solvable
chaos. Finally, we discuss period doubling in a larger class of
possible solvable chaotic dynamical systems.

II. ANALYTIC SOLUTIONS FOR PERIOD DOUBLING

Consider the ordinary linear differential equation

ü − 2βu̇ + (ω2 + β2)(u − s) = 0, (1)

where β and ω are constants. Let ω = π so that the natural
period of Eq. (1) is 2. Let β > 0 so that the system is negatively
damped (in contrast to dissipative kicked rotor models [19]).
The variable u(t) ∈ R oscillates harmonically about a set point
s(t) that changes value only at discrete times in which u̇ = 0.
At the ith such instant ti let the value of s be updated according
to the rule

s(ti) = eβπ/ωu(ti) + f (u(ti))
1 + eβπ/ω

, (2)

where f (u) is a function to be specified below. This value
of s is retained until ti+1, i.e., the next time when u̇ = 0. An
analytic solution to Eq. (1) is an expression for u(t) in terms of
known functions that is consistent with some specified initial
data for u(0) and u̇(0). We now proceed to find such an analytic
solution.

We first note that the harmonic oscillation of Eq. (1) ensures
that s(t) can only change values at instants regularly spaced by
intervals of width equal to 1, i.e., half the natural period [20].
Without loss of generality, let t = 0 be such an instant. Then
s(t) must take the form

s(t) =
∞∑

n=−∞
s(n)φ(t − n), (3)
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FIG. 1. Bifurcation diagram for the logistic map showing a period
doubling route to chaos. This plot equally represents the bifurcations
of the continuous-time dynamical system of Eqs. (1) and (2) where
the values of u at set point update times are plotted. The periodicities
of the continuous-time orbits shown in Fig. 2 differ from those of the
logistic map and so are indicated above the plot.

where φ(t) is a square pulse of unit height and width 1
beginning at t = 0. Without yet knowing the values of s(n)
for any n except n = 0, we can formally view Eq. (1) as a
linear system driven by this train of square waves. By the
superposition principle, the response of the system to the train
of pulses is equivalent to a sum of responses to each pulse in
isolation. Therefore, the form of the solution must be

u(t) =
∞∑

n=−∞
s(n)Q(t − n), (4)

where Q(t) is the response to a single square pulse φ(t) [6].
This expression is analogous to the general solution of a linear
ordinary differential equation. What remains in constructing
an analytic solution is to determine the values of s(n) such that
Eq. (4) is consistent with the initial conditions.

In general, the values of s(n) for all n can be determined as
follows. It can be shown that the value u(n + 1) is related to
u(n) by the equation [5]

u(n + 1) = −eβπ/ωu(n) + (1 + eβπ/ω)s(n). (5)

Setting s(t) according to Eq. (2) we have

u(n + 1) = f (u(n)). (6)

For the initial condition u(0), this map is iterated to produce a
sequence of values u(n) that can be substituted into Eq. (2)
to obtain the values of s(n) needed to make Eq. (4) a
valid solution. Importantly, by choosing f (u) to be a chaotic
map we rigorously ensure that Eq. (1) has chaotic solutions.
For example, with f (u(n)) = ru(n)[1 − u(n)] with r a fixed
parameter, Eqs. (1) and (2) produce a continuous oscillation
u(t) whose samples at integer values of t are governed by the
well known logistic map. A map can similarly be suspended in
a continuous-time kicked rotor system [19]. We now explore
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FIG. 2. Typical analytic solutions where the oscillation is
(a) period 1 (r = 3.4), (b) period 2 (r = 3.52), (c) period 4 (r =
3.562), (d) chaotic (r = 3.795), (e) period 1 (r = 3.82843), and (f)
period 2 (r = 3.90558). Points at which u̇ = 0 are marked by dots.
To the right of each solution is the corresponding phase portrait.

the example of Eq. (1) with f (u(n)) = ru(n)[1 − u(n)] in
detail.

The logistic map displays a sequence of period doubling
bifurcations leading from stable oscillation to chaos that is
treated in virtually every book on the subject of chaos. We
can now observe this same phenomenon through the analytic
solutions of Eqs. (1) and (2). From typical initial conditions,
we have constructed solutions of Eqs. (1) and (2) displaying
period-1, period-2, and period-4 oscillations as well as chaos,
as shown in Fig. 2. Points where the slope of u(t) is zero
are indicated by dots. By design, these are also iterates of the
logistic map. Along with each solution for u(t), a phase portrait
is presented that makes plain the periodicity.

Some features of these solutions are worth noting. The
period doubling bifurcations of Eq. (1) occur at the same
values of r at which bifurcations occur in the logistic map.
Nevertheless, for a given value of r the periodicity of u(t)
(defined as the number of piercings of a Poincaré surface of
section) is not the same as the periodicity of the corresponding
logistic map iterates. At r = 3.4 the map is period 2, while u(t)
is period 1. At r = 3.52 the map is period 4, while u(t) is period
2. In fact, because each extremum of u(t) is an iterate of the
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FIG. 3. Schematic diagram of an electronic circuit modeled by a
solvable chaotic system with a period doubling route to chaos. The
inset shows the measured nonlinear transfer function H (u).

map, the period of the map throughout the sequence is twice
the period of the continuous solution u(t). Nonetheless, we
observe the same accumulation point near r = 3.57 marking
the onset of chaos in both bifurcation sequences. Beyond the
accumulation point, the relation between the periods is even
more surprising. For example, the period-3 orbit in the map
coincides with a continuous orbit that is period 1. The period-5
orbit in the map corresponds to a period-2 orbit in Eq. (1). Thus,
the dynamics of the hybrid system are not entirely dictated by
the underlying map.

Interestingly, the analytic solution of Eq. (4) takes an espe-
cially concise form for two specific values of the parameter r .
For both r = 2 and r = 4, exact solutions are known for the
logistic map [21]. In these atypical cases, the values of s(n)
need not be determined by iteration of the logistic map, but
can be calculated directly. For example, if r = 4 the values of
u(n) are given exactly by

u(n) = sin2(2nθπ ), (7)

where θ = π−1 sin−1[u(0)1/2]. These values can be substituted
directly into Eq. (2) to obtain the s(n) coefficients in Eq. (4).
Any initial condition u(0) yielding an irrational value of θ

produces a chaotic orbit of the logistic map as well as a chaotic
analytic solution to the hybrid system.

III. PERIOD DOUBLING IN A SOLVABLE
CHAOTIC CIRCUIT

Besides the logistic map, many other choices of the
function f (u) are imaginable. We next consider a physically
motivated choice of f (u) arising from a simple electronic
circuit implementation of Eqs. (1) and (2). Figure 3 shows
a schematic diagram of the circuit. Specific implementation
details are given in the Supplemental Material [22]. Here
we provide a functional description of how the circuit
works.
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FIG. 4. (a) Typical time series of a measured circuit waveform in
a chaotic region. (b) Corresponding analytic solution of the measured
waveform. In both plots, dots indicate points where u̇ = 0.

The linear dynamics of Eq. (1) are implemented by
a series capacitor-inductor-negative resistance circuit (with
components labeled C, L, and −R, respectively). The voltage
across the capacitor is the analog of the continuous state
u(t). The rest of the circuit regulates the set point value. A
comparator (U1) monitors u̇ for zero crossings and triggers
a one shot (U2) to emit a narrow pulse. This pulse briefly
enables a sample-and-hold chip (U3) whose updated output
voltage drives the linear part of the system and is analogous to
s(t). The value of the set point at each update is supplied to the
sample-and-hold chip by a nonlinear circuit consisting of two
stages. The first is a linear amplifier (U4) with a gain g. The
second is an amplifier (U5) whose output is limited by diodes
in the feedback loop. The measured voltage transfer function
H for the complete nonlinear circuit is shown in the inset in
Fig. 3 for g = 1.89. At time tn, the nth instant when u̇ crosses
zero, the set point value becomes s(tn) = H (tn) and remains
so until the next update.

A typical chaotic time series of u(t), i.e., the voltage above
capacitor C, is shown in Fig. 4(a). The gain g = 1.89. Points
on the waveform are marked by circles at times tn. A stored
record of the values of s(tn) provides the coefficients needed
to construct the corresponding analytic solution of the form of
Eq. (4). The resulting constructed solution, shown in Fig. 4(b),
closely matches the experimental waveform.

The points on the waveform where u̇ = 0 are shown as
circles on a return map in Fig. 5. The map is a one-dimensional
unimodal curve similar to the logistic map. Since set points for
this circuit are directly determined by the nonlinear transfer
function H , Eq. (2) can be solved for f (u) to obtain

f (u) = (1 + eβπ/ω)H (u) − eβπ/ωu. (8)

The function f (u) based on the measured values of H (u) is
shown by the blue line in Fig. 5. As expected, the return map
iterates fall on this curve.

Figures 4 and 5 confirm that the circuit is accurately
modeled by Eqs. (1) and (2) with set points determined by
a unimodal map. We should therefore expect the circuit to
display a period doubling route to chaos. By varying the
gain g, we observe this very result as shown by values of u(tn)
plotted in Fig. 6. This bifurcation plot begins with two-valued
solutions corresponding to a continuous period-1 solution as
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FIG. 5. Experimental return map for the chaotic electronic circuit
of Fig. 3. The return values (indicated by circles) are drawn from the
same data set as the time series in Fig. 4(a). The solid line is a curve
derived from the measured transfer function shown in the inset in
Fig. 3.

in Fig. 2(a). Two or three period doubling bifurcations are
discernible before chaos set in as g is increased. This plot
demonstrates an experimental observation of period doubling
in a solvable chaotic oscillator.

The two examples of period doubling reported here do
not exhaust the possible solvable system that may display
this phenomenon. For example, an analytic solution for a
hybrid system based on a first-order linear system was recently
reported [7]. The role played by Eq. (1) in our examples is filled
by the equation

u̇ = u − s. (9)

The set point s(t) changes only at discrete times as defined by
an external clock. At the nth such instant tn let the set point
value be updated according to the rule

s(tn) = eT un − f (un)

eT − 1
, (10)

where T is the clock period. Then, once again, the samples
u(tn) satisfy the map of Eq. (6).
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FIG. 6. Experimentally recorded bifurcation diagram for the
circuit showing a period doubling route to chaos.

IV. CONCLUSION

In conclusion, we have shown how the update rule for
the set points in solvable chaotic hybrid oscillators can be
generalized to produce a classic phenomenon of nonlinear
dynamics, the period doubling route to chaos. The scheme
allows for any one-dimensional map to regulate the set point
updates. Generation of an analytic solution to an initial-value
problem requires only the iteration of the map, a process that is
computationally more efficient than numerical integration of
the differential equation. Generally, this approach may provide
new insights into familiar nonlinear dynamical phenomena,
such as intermittency, boundary crises, etc., where previously
only numerical approximations were available. Additionally,
these results may have technological relevance as chaotic
analytic solutions have been put to practical use in designing
optimal methods for communication and remote sensing in
noisy environments [23–28].
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