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We present an analysis of the entangling quantum kicked top focusing on the few qubit case and the initial
condition dependence of the time-averaged entanglement SQ for spin-coherent states. We show a very strong
connection between the classical phase space and the initial condition dependence of SQ even for the extreme case
of two spin-1/2 qubits. This correlation is not related directly to chaos in the classical dynamics. We introduce a
measure of the behavior of a classical trajectory which correlates far better with the entanglement and show that
the maps of classical and quantum initial-condition dependence are both organized around the symmetry points
of the Hamiltonian. We also show clear (quasi-)periodicity in entanglement as a function of number of kicks and
of kick strength.
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I. INTRODUCTION

The relationship between the entanglement of a nonlinear
quantum system and the dynamics of its chaotic classical limit
is deeply intriguing since entanglement is quintessentially
quantal and chaos quintessentially classical. It has been
extensively studied both theoretically and experimentally for
over two decades [1–9] and continues to be investigated
today [10,11].

One paradigmatic model system is the “kicked top,” consist-
ing of a nonlinearly evolving spin composed of 2j qubits and
with total spin �J . The quantum behavior is usually mapped
by studying the entanglement dynamics of spin-coherent
states initialized at various locations in the phase space.
While different measures of the quantum entanglement can
be studied, the standard analysis considers the time-dependent
entanglement between any one qubit and the other 2j − 1
qubits. This behavior is then compared with the classical point
dynamics of initial conditions corresponding to the locations
of the centroids of the spin-coherent states. Studies of this
system have considered systems with the quantum number
ranging from j = 8 up to j ≈ 250.

The common wisdom about the broad characteristics of
the system behavior can be summarized as follows: If a
spin-coherent state has an initial centroid location such that
the corresponding classical trajectory is chaotic, then (a) the
quantum entanglement between the subsystems depends on
the classical largest Lyapunov exponent λ (which measures
the degree of classical chaos) and moreover follows changes
in the behavior of λ with system parameters, and (b) more
generally, the asymptotic entanglement and the time-averaged
entanglement for these “chaotic” initial states is significantly
greater than for states with initial centroids corresponding to
regular classical trajectories. Finally, it is understood that (c)
this “entanglement as quantum signature of classical chaos”
becomes more distinct as the number of spins j increases,
that is, as the effective h̄ decreases in the correspondence
limit. The reason for this connection is argued broadly as
follows: Classically chaotic initial conditions explore phase
space more widely. Thus, if a quantum system corresponding
to a classically chaotic initial condition similarly explores
Hilbert space widely, and given that the generic Hilbert space

state is entangled, the average entanglement is consequently
greater for such a quantum system.

Dissenters from this consensus include Lombardi and
Matzkin [9] who have argued with specific counterexam-
ples that high quantum entanglement can occur for initial
conditions with centroids initialized in classically regular
regions. These authors further compare the entanglement with
an analagous quantity for a classical probability distribution,
deriving from the premise that the classical and quantum
(expectation value) dynamics agree with each other for
longer times for classical probability distributions than for
individual classical initial conditions. Unfortunately, the clas-
sical distribution calculations are computationally expensive,
prohibiting a full scan of the phase space and a verification
of this idea. It is worth noting that all arguments to date
have evoked the correspondence principle in explaining the
relationship between the classical and quantum behavior.
Further, statements about “correlations” between measures
have not been quantified and rely on the visual similarity of
various figures.

In this paper, we present results from a somewhat different
perspective on this issue. We work at small j , corresponding
to recent experiments [10] and focusing in particular on two
coupled spin-1/2 qubits (j = 1). For this system we are able
to analytically calculate the infinite-time-averaged quantum
entanglement SQ of initial spin-coherent states. We see that SQ

depends strongly on the initial location of the spin-coherent
state. We also see that the geometry emerging from plots of
the initial condition dependence of SQ correlates strongly with
the geometry of the classical phase space even for this extreme
case where the quantum and classical trajectories disagree im-
mediately and the correspondence principle cannot be evoked.
However, high SQ does not correlate with classical chaos.
In particular, we see that classically regular dynamics corre-
sponds to either high or low entanglement, depending on the
properties of the orbit, while classically chaotic dynamics cor-
respond to entanglement levels about halfway between these
extremes.

In order to better explore and understand this unusual
result, we first systematize the so far loose notion of the
correlation between the various functions of initial conditions
that we use to characterize the systems. That is, the strength
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of correlations between various measures is quantified using a
generalized Kullback-Liebler distance rather than the usual
visual inspection. Second, we introduce a measure IC of
the “ignorance” associated with the time-averaged location
of a classical trajectory. IC incorporates insights similar to
Ref. [9] about orbit delocalization but is significantly easier
to compute. We see that IC correlates well with SQ across
a wide range of system dynamical behaviors and certainly
does better than any attempt to correlate the entanglement
with measures of chaos. We argue that the roots of this
correlation may be traced to the fact that SQ is equal to
the sum of “diagonal” (IQ) and “off-diagonal” (RQ) matrix
elements of the angular momentum operators computed with
the Floquet eigenstates of the system, where IC is the classical
limit of IQ, and RQ has no classical analog. These operator
averages resolve features at significantly smaller scale than
naively expected from considering just the Floquet eigenstates
alone.

Further, both the classical and quantum geometries reflect
the symmetry properties of the underlying Hamiltonian. That
is, both are organized around phase-space points of high
symmetry [12]. Classically these are the stable and unstable
classical periodic orbits. Since IQ and RQ also reflect the
location of phase-space points of high symmetry, we obtain the
observed correlations between classical and quantum behavior.
We emphasize that our empirical results on the correlation
between quantum and classical measures at small j make
it necessarily true that the semiclassical perspective cannot
apply; we develop a new explanation for the correlation we
see, and we consider the possible applicability to higher j as
well. However, the higher j regime is not the central focus of
this paper.

In short, we show a strong correlation between clas-
sical dynamics and quantum entanglement. In contrast to
the standard understanding we find that (a) this exists for
the extreme quantum limit of a two-qubit system, where the
correspondence principle cannot be evoked, (b) persists in
the absence of chaos, and (c) is visible via single trajectory
measures. We argue that this is (d) due to symmetry consid-
erations alone. We also see other interesting features of the
quantum entanglement dynamics not previously considered,
specifically that these dynamics are demonstrably periodic
or quasiperiodic as a function of number of kicks and κ .
We discuss these issues in detail below, starting with a short
introduction to the kicked top Hamiltonian.

II. BACKGROUND: THE KICKED TOP

The kicked top is a spin �J evolving under the Hamiltonian

H = h̄
π

2τ
Ĵy + h̄

κ

2j
Ĵ 2

z

∞∑
n=−∞

δ(t − nτ ), (1)

which describes the precession of �J around the y axis
combined with a periodic shearing kick around the z axis.
κ parametrizes the strength (nonlinearity) of the kick, while
τ is the time between kicks. We pay attention to the system
only immediately following each kick at times Tn = nτ and
thus obtain a map (understood as the Poincaré map of the

Hamiltonian flow) and a discrete unit of time n defined by the
number of kicks that have occurred.

Using this discrete time description, the quantum system is
most conveniently studied via the Floquet operator [12]

Û = exp

(
− i

κ

2j
Ĵ 2

z

)
exp

(
− i

π

2
Ĵy

)
. (2)

If we expand an initial state |ψ(0)〉 in terms of eigenvalues {ξi}
and eigenvectors [13] {|ξi〉} of Û , then we can write the state
at time n as

|ψ(n)〉 = Ûn |ψ(0)〉 =
∑

i

〈ξi |ψ(0)〉n |ξi〉 . (3)

As is standard, to allow for meaningful comparison with the
classical limit, we restrict our attention to the behavior of states
which are initially spin-coherent states, which are minimum
uncertainty states for spin systems. These states are generated
from the angular momentum eigenstate |j,j 〉

|ψ(0)〉 = |θ,φ〉 = R̂(θ,φ) |j,j 〉 . (4)

Here the labels j indicate eigenvalues for Ĵ 2 and Ĵz, and the
rotation R̂ is defined as

R̂(θ,φ) = exp[iθ (Ĵx sin φ − Ĵy cos φ)], (5)

where φ ∈ [−π,π ), θ ∈ [0,π ). These spin-coherent states are
thus centered at some location on the sphere (θ,φ), and these
locations are the classical initial conditions against which their
behavior is to be compared.

Following previous studies, we study the entanglement of
the system by considering the situation where the spin J is
composed of 2j spin-1/2 particles, or qubits, such that �J =∑2j

i=1 �si for individual spins �si . While several different types
of entanglement measures can be considered, all of them have
been shown to have essentially the same broad behavior. We
focus on the measure most studied, the bipartite entanglement
between any one of the qubits and the subsystem made up of
the remaining 2j − 1 qubits. This entanglement is quantified
by computing the linear entropy

S = 1 − Trρ2
1 , (6)

where ρ1 denotes the density operator for any one of the qubits,
obtained by taking the partial trace over the 2j − 1 other
qubits. Since the dynamics are restricted to the symmetric
subspace of the total spin, the entropy can also be written
as [6]

S = 1

2

[
1 − 1

j 2
(〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2)

]
. (7)

In the classical limit j → ∞, the system is described by
the point dynamics of an angular momentum vector which we
describe by its coordinates (x,y,z). Reference [12] gives the
classical map F from time step n to n + 1 for this vector:

xn+1 = zn cos(κxn) + yn sin(κxn), (8)

yn+1 = −zn sin(κxn) + yn cos(κxn), (9)

zn+1 = −xn. (10)
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FIG. 1. (a) Classical Poincaré section for κ = 0.5. (b) Same but for κ = 2.5. (c) Same but for κ = 2π + 0.5. (d) Infinite-time averaged
entanglement SQ as a function of initial condition for two qubits for κ = 0.5. (e) Same but for κ = 2.5. (f) Same but for κ = 2π + 0.5. (g)
Numerically computed (over 200 kicks) average entanglement SQ as a function of initial condition for three qubits for κ = 0.5. (h) Same but
for κ = 2.5. (i) Same but for κ = 2π + 0.5. (j) Finite time Lyapunov exponent (calculated over 2600 kicks) as a function of initial condition
for κ = 0.5. (k) Same but for κ = 2.5. (l) Same but for κ = 2π + 0.5. Note that these are images of a sphere projected onto the plane, so that
the left and right edges are connected and area is distorted. In particular, the polar regions around θ = 0 and θ = π are the same size and shape
as the regions around (θ,φ) = (π/2,0) and (π/2,π ). Also note the different scales for each plot.

Since total angular momentum is conserved [12], these dy-
namics occur on the surface of a sphere of unit radius, with the
usual relation (x,y,z) = (sin θ cos φ, sin θ sin φ, cos θ ). The
restriction to the surface of the sphere means that there are
effectively two phase-space variables (θ,φ). For low κ all
initial conditions in the phase space show regular behavior.
Around κ ≈ 1.0, chaos emerges for certain initial conditions
near unstable fixed points. The effect of increasing κ beyond
this value is to increase both (a) the extent of phase space
displaying chaotic behavior (the number of initial conditions
displaying chaos) and (b) the degree of chaos—the rapidity
with which initially infinitesimally close initial conditions
separate in their trajectories. The behavior of a set of initial

conditions is shown for three different values of κ in the
first row (a–c) of Fig. 1. We quantify the chaotic behavior
in detail later when comparing the behavior with the quantum
entanglement dynamics.

III. ENTANGLEMENT DYNAMICS OF THE TWO-QUBIT
KICKED TOP

One of the advantages of working at small j is that for
the smallest nontrivial quantum system (j = 1), we can carry
out many calculations analytically that must be considered
numerically even for j = 3/2. In particular, we find a closed-
form solution for the entanglement S(θ,φ,κ,n) as a function
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FIG. 2. (a) Entanglement entropy S plotted as a color (color coding shown in the bar on the right of both figures) for a two-qubit system
(j = 1). It is plotted as a function of time n on the vertical axis and kick strength κ on the horizontal axis for an arbitrarily chosen initial condition
(θ,φ) = (1.2,0.3). (b) The same, computed numerically for three qubits (j = 3/2) with initial condition (2.5,1.1). Note the (quasi-)periodicity
in both κ and n, and the longer periods in both κ and n for three qubits compared to two qubits.

of initial position, kick strength, and time; this also allows
an expression of its infinite-time average. If we examine the
quantum “orbit” of the vector 〈 �J 〉 = (〈Ĵx〉,〈Ĵy〉,〈Ĵz〉), we can
gain insight into the entropy as expressed in Eq. (7), since the
length of this vector is the quantity of interest. The orbits are
most easily understood by splitting them up into even and odd
time steps, for kicking strength κ and initial condition |θ,φ〉:

〈Ĵx(n)〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)n/2
[

sin θ cos φ cos
(

κ
2

n
2

)
− sin θ cos θ sin φ sin

(
κ
2

n
2

)]
n is even

(−1)(n+1)/2
[

cos θ cos( κ
2

n+1
2 )

+ cos φ sin φ sin2 θ sin( κ
2

n+1
2 )

]
n is odd

(11)

〈Ĵy(n)〉 =
{

sin θ sin φ n is even

sin θ
(

sin φ cos κ
2 − cos θ cos φ sin κ

2

)
n is odd

(12)

〈Ĵz(n)〉 = −〈Ĵx(n − 1)〉. (13)

The expression for 〈Ĵy(n)〉 does not depend on n beyond
its parity, which causes the orbits to lie in planes parallel to
the xz plane in the shape of two deformed ellipses (at even n

it is exactly an ellipse). When κ is an irrational fraction of π ,
the dynamics are quasiperiodic in n and this orbit is explored
ergodically. If κ is a rational fraction of π , then the dynamics
are periodic and a finite subset of the orbit is explored. This
(quasi-)periodicity holds for higher values of j , as can be
seen from the form of the Floquet operator [Eq. (2)] and
the resulting eigenvalues. In general, the length of the period
increases with increasing j , which is why this periodicity has
not been observed in previous studies that focus on higher j .

These results allow an explicit evaluation of S, which we
plot in Fig. 2 as a function of both κ and n for an arbitrary initial

condition |θ,φ〉; the (quasi-)periodicity is clearly visible in
these “butterfly wing” plots. We can also take an infinite-time
average SQ(θ,φ,κ) = S(θ,φ,n,κ) that relies on the ergodic
exploration of these orbits in the quasiperiodic case. We show
SQ for a selection of κ values in the second row (d–f) of
Fig. 1. SQ is also periodic in κ , and in fact the Floquet
expansion shows that any finite-j system is also periodic
in κ where this period increases with increasing j . For
example, the Floquet eigenvalues of the two-qubit system are
{e−iκ/2, − ie−iκ/4,ie−iκ/4}, so the dynamics are unchanged if
κ → κ + 8mπ for any integer m. In particular, since there is no
entanglement at all at κ = 0, there is also no entanglement for
κ = 8mπ . In fact, due to averaging effects, SQ has period 2π in
κ , which is confirmed by comparing the first and third columns
of Fig. 1. We can also calculate the average entanglement for
three qubits numerically, as shown in the third row (g–i) of
Fig. 1. This calculation is necessarily a finite-time average, but
it allows comparison with recent experiment [10] and shows
that our observations are not unique to the two-qubit case.

As an alternative, for any number of qubits, SQ can be writ-
ten in terms of the Floquet eigenbasis (with Ck = 〈ξk|θ,φ〉) as

SQ = 1

2
− 1

2j 2

∑
i

[〈ψ(n)|Ĵi |ψ(n)〉2]

= 1

2
− 1

2j 2

∑
i

[∑
k,l

(ξ ∗
k ξl)nC∗

k Cl〈ξk|Ĵi |ξl〉
]2

= 1

2
− 1

2j 2

∑
k,l,p,q

∑
i

C∗
k ClC

∗
pCq〈ξk|Ĵi |ξl〉〈ξp|Ĵi |ξq〉

≡ 1

2
− 1

2j 2

∑
k,l,p,q

E(k,l,p,q)

× for {k,l,p,q : ξ ∗
k ξlξ

∗
pξq = 1}, (14)
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where the last line defines the E(k,l,p,q) that we will discuss
later. This essentially separates the “AC” components from
the “DC” components (that is, the “AC” terms average to
zero). Since the only time dependence is in the power of the
product of the eigenvalues, which are all modulus 1 complex
numbers, we have to satisfy the condition ξ ∗

k ξlξ
∗
pξq = 1 to

find the DC components. However, since this is an exact
condition, it is not trivial to use this equation for numerical
work. The two-qubit case is the only one in which we can
diagonalize Û entirely analytically, and hence the only case
in which we can perform a straightforward computation of
the “DC” results. However, this expansion yields theoretical
insight, as we discuss in Sec. IV A.

IV. CLASSICAL CHAOS AND
QUANTUM-CLASSICAL SIMILARITIES

To proceed further in comparing the quantum and classical
initial condition dependence and behaviors, we start with
quantifying the degree of chaos in the classical kicked top.
To do this we use the (largest) Lyapunov exponent, which
characterizes the time dependence of how two orbits initialized
close together in phase space diverge. After choosing an
initial point (θ,φ), we evolve both the map and the tangent
vector to the map, rescaling the tangent vector to a unit
vector at each step. At each step the scale change in length
is recorded and then averaged. Formally, the Lyapunov
exponent is calculated as the average computed in the limit
as n → ∞. For an ergodic system, the infinite-time Lyapunov
exponent is independent of initial condition. However for a
generic classical Hamiltonian system Lyapunov exponents
depend on the initial condition. Studies of this dependence,
particularly as computed for finite-time Lyapunov exponents
and their time-dependent convergence, have proved very useful
in characterizing the phase-space geometry of dynamical
instability in generic chaotic systems (see, for example, the
discussion in Ref. [14]). In this system we see regular, mixed
(regular and chaotic regions coexisting in phase space) and
completely chaotic behavior as κ increases. We characterize
these different behaviors by computing a finite time Lyapunov
exponent (using n = 2600 and with transient behavior rejected
by discarding the first 100 steps) and mapping the finite time
Lyapunov exponent as a function of initial condition.

An example of how this finite time exponent is useful
in ways the infinite time exponent may not be is visible in
the figure at κ = 0.5. Here λ is not identically zero, even
though the classical system is completely regular. All the
deviations from zero are very small, and these can be shown to
converge to 0 for t → ∞. However, these “slow-to-converge”
regions mark the invariant manifolds of the fixed points of
the classical dynamics. The locations of these manifolds
in fact determine the phase-space separation into stability
“islands” and “chaotic sea” as κ increases. This underlines the
idea (which we explore further below) that the phase space
is organized around the fixed points of the map dynamics
(simple periodic orbits of the flow).

With direct measures of both entanglement and chaos in
hand, we now compare the entanglement of the quantum
system to the chaos in the classical system as previously done
in the literature. First, in comparing the first and second rows

of Fig. 1, it is immediately clear that the entanglement average
has signatures of the classical orbits. That is, both classically
and quantum mechanically, different initial conditions lead to
very different behavior, and the boundaries between different
behavior have approximately the same location and shape
in both figures. This would seem initially to validate the
previous consensus in the literature. However, the fact that this
resemblance remains even in this extreme quantum limit means
that all previous arguments—which relied on the semiclassical
nature of the quantum system being studied—cannot hold.
Further, this resemblance between the two different geometries
exists without classical chaos, as evidenced by the similarities
between graphs of the entanglement and the classical phase
space [Figs. 1(d)–1(f) and 1(a)–1(c), respectively] at κ = 0.5.
Finally, the plot of λ for the classical system at κ = 2.5
(third row) shows that although the shapes of regions around
(θ,φ) = (π

2 ,0), (π
2 ,π ), (0,0), and (π,0) are similar to the shapes

of regions in the entanglement plot, these regions have a
low Lyapunov exponent but high entanglement. Both this
anticorrelation and the similarity of region boundaries are
particularly visible in Fig. 3, where SQ and λ are plotted
together along a line of initial conditions.

In general, we therefore see that both very high and very low
levels of entanglement are correlated with different types of
regular classical dynamics, but chaotic dynamics correspond
to a level of entanglement about halfway between these
extremes [15].

We also show a comparison at κ = 0.5 + 2π . Here the
quantum entanglement geometry is clearly different from
the classical phase-space geometry. This clear break in the
similarities of the systems can be easily understood as arising
from the fact that the quantum system is periodic in κ

while classical phase space becomes increasingly chaotic as κ

increases.

A. Classical and quantum “ignorance” (delocalization)

Since the similarities between the maps of initial-condition
dependence of the entanglement and the classical Poincaré
map cannot be explained by a direct connection between chaos
and entanglement, we need to understand what other features
of the dynamics renders the two so similar. In the following
we argue that it is broad geometric features of the dynamics
which provides this connection.

We start by considering that Eq. (14) can be rewritten as

SQ = IQ + RQ, (15)

IQ = 1

2
− 1

2j 2

∑
i

〈ψ(t)|Ĵi |ψ(t)〉2

= 1

2
− 1

2j 2

∑
k,q

E(k,k,q,q), (16)

RQ = − 1

2j 2

∑
k,l,p,q

∑
i

C∗
k ClC

∗
pCq〈ξk|Ĵi |ξl〉〈ξp|Ĵi |ξq〉

= −1

2

∑
k,l,p,q

E(k,l,p,q)

for {k,l,p,q : ξ ∗
k ξlξ

∗
pξq = 1,k �= l or p �= q} (17)
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FIG. 3. (a) A slices of the plots of time-averaged entanglement SQ and Lyapunov exponent λ at κ = 2.5. The slice taken is shown by the
black line θ = (π/2)(φ/φ0 + 1) superimposed on the plot of SQ with φ0 = −0.666018. (b) Same except φ0 = 2.29965. Note the anticorrelation
at the center and edges of both plots.

with the overbar indicating time averaging over an entire
trajectory. IQ is a global “ignorance” about the angular
momentum for the trajectory-averaged distribution associated
with a given initial condition. It is essentially a measure of the
delocalization across the entire orbit, as the classical version
below makes clear. The other “off-diaognal” remainder term is
what we call RQ and has no possible classical equivalent. These
two measures are plotted in Fig. 4(d)–4(f) and Fig. 4(g)–4(i),
respectively. We conjecture that if a correlation exists between
SQ and a classical quantity, it should be with classical limit of
IQ. This classical quantity can be written as

IC = 1
2 − 1

2 [x(n)
2 + y(n)

2 + z(n)
2
], (18)

which is plotted in Fig. 4(a)–4(c). Using this measure to
compare with quantum dynamics incorporates the core idea
of Ref. [9] that a classical orbit’s delocalization is relevant
to the average entanglement of the corresponding quantum
state. However, this does not evoke a correspondence prin-
ciple assumption about the quantum and classical dynamics
agreeing for any length of time. It also has the advantage of
not needing the use of classical distributions, from which it is
computationally exceedingly difficult to get converged results.
Our conjecture relies on global averages correlating even when
local in time behaviors are different. In fact, the plots of IC

show a remarkable similarity to the plots for SQ that persists
for κ = 0.5,2.5 at least until the disconnect due to the quantum
κ periodicity seen at κ = 0.5 + 2π .

Before proceeding further in exploring this possibly useful
approach, we need to strengthen the claim that the visual
resemblance between the plots of IC and SQ gives us more
insight than the visual resemblance of the SQ plots with the
λ plots. To do so, we need to quantify a distance measure
between the various figures.

B. Comparison of correlations

To make concrete the visual similarities and differences of
the many plots in Fig. 1, we quantify the correlation between

any two quantities f (θ,φ) and g(θ,φ) as

D(f,g) = ln

[
Tr(f )Tr(g)

Tr(fg)

]
, (19)

a generalized Kullback-Liebler distance [16]. Here Tr denotes
the trace or double integral over the variables (θ,φ). A small
distance D implies good correlation, and vice versa. The
behavior of this distance is shown in Fig. 5 for various
quantities; note that we are plotting D on a logarithmic scale.
This plot confirms that indeed D(SQ,λ) is large, that is, the
entanglement and chaos are uncorrelated or weakly correlated.
On the other hand, SQ, IQ, and IC all show good correlation
with one another, supporting our conjecture that if there is a
connection between SQ and a classical measure, it should be
our ignorance or delocalization measure IC . The extremely
good correlation between IQ and IC for κ < 1 is due to the
fact that the limits j → ∞ and κ → 0 are related, as can be
seen from the Hamiltonian [Eq. (1)].

A source of disagreement (for larger κ values) between the
classical and quantum measures is due to the κ-periodicity of
the quantum dynamics as noted in Sec. III. Thus the quantum
and classical geometries part company as the quantum system
cycles through different behaviors in contrast to the increasing
classical chaos. In general, this implies a distinct break in
the quantum-classical connection after a specific κmax(2j )
depending on the number of qubits 2j . Thus, when evaluating
the correlation of various quantities we focus on κ < κmax.

We also see that although the entirely quantum terms
comprising RQ can be quite large compared to IQ, this does
not seem to significantly affect the correlation seen between
SQ and IC . A clue to this may perhaps be found in the fact that
although RQ has no classical analog, its limiting behavior is
determined by SQ and IQ. As j → ∞ we must have SQ → 0
and IQ → IC . Since SQ = IQ + RQ, it therefore must be true
that RQ → −IC in the classical limit. Thus, arguably any
global reason for the correlation between SQ and IC could
also apply to RQ, although it is difficult to extend this further
given that there is no classical analog for RQ. Consequently,
we focus below on SC and IC .
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FIG. 4. (a) Ignorance measure IC as a function of initial condition (θ,φ) for κ = 0.5. (b) Same but for κ = 2.5. (c) Same but for
κ = 2π + 0.5. (d) Quantum ignorance measure IQ as a function of initial condition for κ = 0.5. (e) Same but for κ = 2.5. (f) Same but for
κ = 2π + 0.5. (g) Quantum remainder term RQ as a function of initial condition for κ = 0.5. (h) Same but for κ = 2.5. (i) Same but for
κ = 2π + 0.5. Note that although SQ (Fig. 1) has κ period of 2π , IQ and RQ both have period 4π and so do not have the same behavior at
κ = 0.5 and κ = 0.5 + π . Note the different scales for the different plots.

V. SHARED SYMMETRY

Some insights about these similarities that we have ob-
served obtain from considering the symmetries associated with
both the classical and quantum dynamics. Specifically, there
are four classical symmetries [12] associated with the kicked

0 1 2 3 4

10−4

10−3

10−2

10−1

100

κ

D(SQ, λ)

D(IQ, IC)

D(SQ, IC)

D(SQ, IQ)

FIG. 5. Correlation distances D between entanglement and other
measures. Values are only shown up to κ = 4, which is where the
break due to quantum periodicity occurs for two qubits.

top dynamics. These arise from the fact that the classical map F

is invariant under two nonstandard time reversals and rotation
by π about the y axis, and F 2 is invariant under rotations by
π about the x axis. Exact analogues of all four symmetries
exist in the quantum map Û (see Ref. [12] for an extended
discussion of these symmetries).

FIG. 6. Periodic orbits and surrounding stable islands for the
classical system at κ = 2.5.
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FIG. 7. The Husimi phase-space representation for the three
eigenstates of the Floquet operator U .

The relevant aspect of these symmetries for our con-
sideration here is to consider how different classical orbits
organize. In Fig. 6 we plot the classical periodic orbits of
different period, along with the associated islands of stability.
The locations of these periodic orbits are determined by the
classical symmetries. The actual locations of the periodic
orbits change with κ , while the size of the stability islands
around the periodic orbits also shrinks with increasing κ .
Further, we expect that the Floquet eigenstates of Û naturally
carry the same dynamical symmetries as the quantum map.
While this is true (Fig. 7), what is striking about these states
is that they seem far too large to resolve the smaller island
structures seen in the classical phase space and the quantum
entanglement figures.

We can unfold this apparent paradox by focusing attention
on the actual operator averages we need to compute. As we
see in Fig. 8, the dynamical symmetries of the quantum map
(which are shared with the classical map) are also reflected in
the plots of the various E(k,l,p,q) that sum to IQ (diagonal
terms) and RQ (“off-diagonal” terms). That is, the ability to
resolve smaller-scale structures for the E(k,l,p,q) is more
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FIG. 8. Compact representation of the non-zero terms from the
81 different E(k,l,p,q): we add the E(k,l,p,q) that are identical
or conjugates of one another. These are plotted as a function of θ ,
φ, at κ = 2.5. (a) The sum of E(2,3,2,3) + E(3,2,3,2) (which are
conjugates of each other, thus yielding a real result); (b) the sum
E(1,2,2,1) + E(2,1,1,2) (which are identical to each other); (c) the
sum E(1,3,3,1) + E(3,1,1,3) (which are identical to each other); (d)
the sum E(2,3,3,2) + E(3,2,2,3) (which are identical to each other);
(e) the sum E(2,2,3,3) + E(3,3,2,2) (which are identical to each
other); (f) E(2,2,2,2) (g) E(3,3,3,3). Thus panels (b)–(e) sum to RQ,
and (a), (f), and (g) sum to IQ. Note the different scales on each
plot.

critical than the more spread-out shape of the eigenfunctions
themselves. Comparing Fig. 8 of the various E(k,l,p,q) with
Fig. 6, and further comparing these plots with all the plots in
Fig. 1 also makes clear that (a) both classical and quantum
dynamics show signatures of the same symmetries and (b)
quantities such as E(k,l,p,q) and consequently SQ as well
as IC reflect these phase-space symmetries. This leads to our
argument that the long-observed correlation between measures
of the classical and quantum systems arises from both kinds
of phase space being organized around the symmetries of the
dynamical system rather than any particular dynamical prop-
erty such as the classical trajectories’ degree of chaos. Since
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FIG. 9. (a) A plot of time-averaged entanglement SQ and Lyapunov exponent λ as a function of κ with initial conditions, (θ,φ) =
(2.35, − 0.1). (b) Same but with (θ,φ) = (2.35, − π/2). These two figures demonstrate that although we can pick an initial condition so
entanglement entropy and Lyapunov exponent appear correlated, this is not true in general.

classical stability islands and chaotic “seas” also organize
around phase-space symmetries, this explains how a seeming
association between chaos and entanglement can appear.

Focusing on the symmetries also allows us to separate the
behaviors of those classical regular orbits that correspond to the
highest quantum entanglement from those which correspond
the lowest entanglement—they are indeed orbits of very
different symmetries. The organization of IC around symmetry
points is clear: points that are invariant under symmetries have
IC = 0, and those whose relationship to the symmetries causes
them to move between a few small but distant areas on the
sphere have maximal IC . To relate the quantum entanglement
to the symmetries, we can adapt the argument of Ref. [9] to
relate each of these to the spread of the quantum state. Since
total angular momentum is conserved, Eq. (7) can be rewritten
in terms of the variances σi =

√
〈J 2

i 〉 − 〈Ji〉2 in order to show
that a state with higher spread is more entangled. Then, the
initial states whose relationship to the symmetries is such that
they get highly spread out over the sphere have a much higher
average entanglement; intuitively, these are exactly the same
initial conditions that classically end up with high values of IC .

One effect that is not visible in the classical Poincaré map
jumps out if the specific time period is noted for different
periodic orbits (Fig. 6). For example, the largest islands are
associated with a period-2 orbit for negative φ. This, however,
looks very similar to the two period-1 orbits for positive φ.
This explains the corresponding symmetry breaking in IC

[Fig. 4(a)–4(c)]. This symmetry breaking is not observed in any
of the other plots of Fig. 1. However, this symmetry breaking
was observed in plots of SQ in a three-qubit experiment
[10]. We may legitimately conjecture that this emerges in the
experimental entanglement measures due to the dynamical
difference of the symmetry breaking being enhanced by
experimental noise or decoherence, although modeling that
is beyond the scope of this paper.

VI. DISCUSSION

There are several points worth noting about the
semiclassical and high κ limits of this analysis,

although both remain out of the scope of this
paper.

We have remained focused on the observation that the most
extremely quantum system shows shapes in the map of SQ

that resembles shapes in the classical phase space, albeit
appearing as either correlation or anticorrelation between
classical regularity and high or low quantum entanglement.
Arguments previously advanced in the literature, particularly
in the semiclassical limit, cannot apply. That is, a priori there
cannot be a simple link between two-qubit dynamics and
classical dynamics, even while the connection evidenced by
the resolution of the SQ plots invites an explanation. It seems
clear, however, that the arguments we advance about symmetry
and the IQ → IC connection should hold in the semiclassical
case. This suggests that consideration of eigenstates which
have increasingly sharper support in phase space at higher j

values will not alter the overall relationship between quantum
and classical dynamics.

Wang et al. [5] have argued that in the semiclassical
regime, entanglement and chaos show similar dependence
on increasing κ once the system has become fully chaotic
(κ > 3.5). However, due to the small κ periodicity of the
two-qubit quantum system, we do not expect any connection
at all between the classical and quantum systems after κ ≈ 3.
Thus, we cannot examine the fully chaotic classical system in
the context of our system.

Instead, we can explore the following. At higher κ values,
the stability islands surrounding the periodic orbits become
vanishingly small and the phase space is dominated by chaotic
orbits. All chaotic orbits explore phase space in essentially
similar ways, and in the absence of the periodic orbits that
lead to either high or low entanglement, there should be little
variation in the initial condition dependence of entanglement.
However, in considering only the chaotic region, we have
checked to see if at a given location and with varying κ there is
any similarity between how λ changes compared with how SQ

changes. In Fig. 9 we show examples of our findings that there
is essentially no correlation between the κ dependence of λ and
SQ: all initial conditions show essentially the same behavior
for λ, and we can choose an initial condition to find essentially
any behavior we like for SQ. Some previous studies [2,5] have
investigated the time dependence of the entanglement in the
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semiclassical regime and found that quickly entangling initial
conditions correspond with classically chaotic regions. Due to
the very short period observed in the two-qubit case, the rate
of entanglement is not a meaningful quantity in this study, and
so we focus on the initial-condition dependence.

None of this would disagree with correspondence between
quantum and classical behavior for the fully chaotic system
in particular, as has been achieved using random-matrix
theory [17].

We additionally note that both the symmetry observations
and definitions of our ignorance measures are reliant on
the spherical geometry of the phase space of the kicked
top. It is unclear whether there exist analogues for other
geometries, and thus whether such a connection between
quantum entanglement and classical phase space maintains
in other geometries. The restriction of this system to the
symmetric subspace (via angular momentum conservation)
is also essential our argument concerning the ignorance
measures, since it gives the equivalence between entanglement
and delocalization of the quantum state.

VII. CONCLUSION

We have demonstrated through numerical and analytical
calculations consistent with recent experiments that entangle-
ment, a quintessentially quantum phenomenon, is associated
with the geometry of the classical phase space dynamics
through the symmetries of the shared Hamiltonian. There is
also a connection between the time-averaged entanglement of
the quantum system and the ignorance (effectively delocal-
ization) measures IQ and IC . We have seen this connection
for two-qubit systems (the most quantum regime possible).

We also report that the entanglement dynamics are periodic or
quasiperiodic in time depending on the nonlinearity parameter
κ , as well as being a periodic function of κ . All of these results
generalize to higher numbers of qubits.

There are several interesting directions in which this
connection between entanglement and dynamical nonlinearity
could be explored. The first is to understand better how the
behavior changes as j increases. While we do discuss in
general terms how increasing j works, a detailed analysis
explicitly linking the very high j and the low j systems would
be illuminating (albeit ambitious), particularly with regard to
understanding the differences between finite-time and infinite-
time averages of various quantities. A second approach is to
understand the initial condition dependence of out-of-time-
ordered-correlators [11] and determine whether this bridges
some notions of quantum and classical information loss due
to dynamics. It would also be worthwhile to understand the
precise source of the differences in the quantum behavior
of islands associated with different periods; as pointed out
above, this classical difference remarkably seems visible in the
three-qubit experiment [10] but not in the quantum calculations
for either two-qubit or three-qubit systems. These should all
help further clarify the relationship between entanglement and
classical dynamics.
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