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We formulate a model that describes the escape dynamics in a leaky chaotic system in which the size of the leak
depends on the number of the in-falling particles. The basic motivation of this work is the astrophysical process,
which describes the planetary accretion. In order to study the dynamics generally, the standard map is investigated
in two cases when the dynamics is fully hyperbolic and in the presence of Kolmogorov–Arnold–Moser islands. In
addition to the numerical calculations, an analytic solution to the temporal behavior of the model is also derived.
We show that in the early phase of the leak expansion, as long as there are enough particles in the system, the
number of survivors deviates from the well-known exponential decay. Furthermore, the analytic solution returns
the classical result in the limiting case when the number of particles does not affect the leak size.
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I. INTRODUCTION

Simple nonlinear dynamical systems in which trajectories
may escape through an artificial leak [1] placed in the phase
space play an important role in recent studies. Various fields of
physics deal with either the escape dynamics of the particles
or the decay rate of other physical quantities such as sound
intensity, light rays, or fractal eigenstates [2–8]. It has been
pointed out that the escape dynamics strongly depends on the
leak size, position, and orientation [9–15] as well as on other
predefined properties of the leak, for instance, the reflection
coefficient [16]. Probably the most interesting question is how
the escape dynamics changes if the size of the leak varies.
Altmann et al. [17] presented numerical results about the
relation between the escape rate and the leak size. In their
study, however, the measure of the leak was adjusted manually
in each case. Recently, Livorati et al. [18] studied the escape
in case of periodically driven holes. The main results of their
work show parameter-dependent (amplitude, initial phases,
and period of the oscillations) fluctuations superimposed to
the classical exponential decay.

Although mathematicians are interested mostly in the
limiting case of vanishing small leaks [19–21], in this work we
present the decay dynamics through a continuously growing
leak, where the size of the leak depends on a given physical
property of the escaping particles. The motivation of this study
comes from the application of leaky chaotic systems [22–24]
and crash tests [25,26] in dynamical astronomy discussed in
detail below.

The model of the growing leak introduced here results in a
survival probability of non-escaped trajectories that is different
from the well-known classical exponential decay [27,28].
Moreover, we found a simple analytical solution describing
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the escape dynamics until the leak’s expansion stops. A
comprehensive numerical investigation is also performed to
confirm our analytic results.

The paper is organized as follows. After the Introduction,
in Sec. II, the motivation as an astrophysical application is
described. Then, we give a detailed description of the model
of a growing leak and its simple numerical implementation to
the standard map. The mathematical background is presented
in Sec. III A. Section III B is devoted to numerical calculations
in order to compare analytic results and simulations. Finally,
we discuss our results and draw some conclusions in Sec. IV.

II. MODEL

A. Motivation

The motivation of the present study [29] is the so-called
planetary accretion process, which is one of the two competing
planet formation scenarios in these days [30]. In this process
the forming planetary embryo accretes particles from its vicin-
ity until this region—the feeding zone [31]—becomes empty.
The increase of the planet depends on the mass of the particles
hitting its surface. Obviously, the smaller the embryo at the
beginning of this process, the more significant the growth by
the accretion. As a very simple model of this process one might
consider the gravitational planar circular restricted three-body
problem (RTBP). In RTBP two point masses (star and planet)
orbiting their barycenter on a circle and a third massless body
(test particle) moves in their gravitational potential in the same
plane. Although the planet (and also the star) is considered as
a point mass, one can define the Hill radius (rH) in which
its gravitational influence is dominant. The particles entering
the Hill radius with an appropriate velocity, i.e., slower
than the escape velocity from this domain, can be removed
from the dynamics and marked as escaped. In addition, rH

grows with the mass of the forming planet, see Eq. (A1).
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FIG. 1. (a) An example of a growing leak in dynamical astron-
omy. The plot shows initial conditions from the annulus around
the planet’s orbit. The end states of the particles are color coded
as described in the text. Particles have been started on circular
Keplerian orbit. The size of the planet and star are enlarged for
better visualization. The triangular Lagrangian points (L4 and L5) are
also marked. (b)–(d) Examples for individual orbits corresponding to
certain initial conditions in (a). Note that the end point of the light
gray (blue) trajectory is outside the plotted region.

Therefore, the growth of the planetary embryo can be con-
sidered as a growing leak in the phase space. Thus, from
dynamical point of view, the accretion stage of the planet
formation can be described via leaky chaotic systems. We give
an estimate how the leak size depends on the mass in RTBP,
see Appendix A.

To illustrate the leaky RTBP, we plot the evolution of a
large number of noninteracting test particles initially placed
around the planet’s orbit (see Fig. 1). Different colors denote
different end states of particles. Trajectories starting from light
gray (green) points remain the part of the system during the
whole integration (1000 orbits of the planet). Gray (red) points
represent test particles whose destination is the planet, more
precisely, the half of the Hill radius with proper velocity [32].
Dark gray (blue) points indicate trajectories scattered out from
the system by the planet.

Although the effect of the planet’s mass and size evolution
in the RTBP is dominant only in very early stages of the planet
formation, the idea of a growing leak, particularly when the
size of the leak depends on a physical property of the leaving
particles, might shed light on a new kind of escape dynamics
generally in leaky chaotic systems.

B. Growing leak model

The discrete dynamical system we are to consider here
consists of a large number of particles and a leak, where under
certain conditions the particles can escape from the system.

The particles are point masses with the same mass m, their
initial number is N0, while after i iterations we denote the
number of surviving particles by Ni . The leak also has an
initial and an instantaneous mass, M0 and Mi , respectively.
When a particle falls into the leak, its mass is added to that of
the leak, thus

Mi = M0 + (N0 − Ni)m = M − Nim, (1)

where M = M0 + N0m is the total mass of the system.
According to the RTBP (Appendix A) a reasonable choice

is that the volume of the leak depends on its mass Mi in the
form of

Sleak(Mi) = CSM
γ

i , (2)

where γ is a positive constant. The coefficient CS can be
written as CS = CP Stotal. Here CP > 0 denotes a normal-
ization constant while Stotal is the volume of the ergodic
part of the phase space. The factor CP allows us to control
the final size of the leak, (a leak of moderate size avoids
excessive restructuring of the phase space). Let p be the escape
probability that a particle leaves the system (through the leak)
in the next iteration. We suppose that the escape probability
is proportional to the actual size of the leak compared to the
whole phase space, that is, p = Sleak/Stotal. That is, the escape
probability [see Eq. (2)] is given by

p(Mi) = CpM
γ

i . (3)

Generally, the escape probability is changing as the mass (and
size) of the leak is increasing.

At this point, it is useful to introduce some new constants
and variables:

N = M
m

, κ∞ = CpMγ ,

xi = Mi

M , yi = Ni

N = Ni

m

M ,

where N is the number of particles corresponding to the total
mass M, κ∞ is the asymptotic escape rate when all the mass
of the system is in the leak, x is the ratio of the mass of the leak
and the total mass (mass ratio), y is the ratio of the number of
the particles, which are outside the leak to the total number of
the particles N . It is obvious that

xi + yi = 1

for all time instants. We will use these dimensionless quantities
through the rest of the paper.

The assumption of a small leak in our model corresponds
to the pure exponential survival probability, i.e., when the
system shows strong chaotic properties. That is, if a static
leak with size equal to the final size of the evolving leak
(set by CP) produces exponential decay, we consider that
this measure of the leak is small enough for our purposes
and fits to the zero-order approximation p = Sleak/Stotal,

widely used in the literature, see for example Ref. [33]. In
addition, the exponential decay can also be observed in weakly
chaotic systems for short times until the hyperbolic dynamics
dominate.

Furthermore, in case of weak chaos the growing leak in
the model presented should avoid the quasiperiodic domain in
the phase space. On the other hand, if the leak intersects the
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FIG. 2. Visualization of the numerical setup. The invariant curves
(blue), plotted for completeness, are related to different initial condi-
tions than those show by dots representing the chaotic trajectories.

Kolmogorov-Arnold-Moser (KAM) tori during its growth, the
survival probability will decay with a lower different rate. In
other words, since the regular domain behaves as a forbidden
region for trajectories originating outside, the leak biting into it
will have an unreachable part for those trajectories resulting in
a different escape probability. However, this is no longer true
when the leak originally contains islands or more precisely
when the ratio of the regular islands inside and outside the
leak remains constant.

C. Simplified numerical experiment

In order to analyze the escape dynamics through a con-
tinuously growing leak defined by Eq. (3), we introduce a
simple test system. Our numerical experiments are based on
the standard map (mod 2π ), which describes the Poincaré map
of the kicked rotator.

This choice makes it possible to check the leak’s expansion
in both coordinate and velocity directions, respectively. The
standard map (SM) reads as follows:

Ii+1 = Ii + K sin �i,

�i+1 = �i + Ii+1. (4)

In Eq. (4) K denotes the strength of the perturbation and
allows to study either fully hyperbolic dynamics (K = 5.19)
or mixed phase space structure, e.g., K = 2.7. Another reason
we consider the SM is that it allows us to mimic the
conservative dynamics in the RTBP where regular islands are
also embedded in the chaotic sea producing the well-known
structure of the phase space similar to that in Fig. 2.

For simplicity, we presume that the leak grows equally in
I and � directions, i.e., it conserves its original shape. In
order to avoid the early irregular effects in escape rate due to
the location and density of the initial conditions, a threshold
time is obtained before the leak is opened. Thus, we have a
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FIG. 3. Escape dynamics in SM. Parameters of the simulation:
K = 2.7, γ = 1, m = 1, Cp = 10−7/(2π )2, N0 = 106, and M0 = 1000.
The leak reaches its final mass at t ≈ 6000. For more details see the
text.

uniform distribution of the trajectories in the ergodic region of
the phase space. The threshold time is set to be i = 250 in all
simulations.

Figure 2 shows the phase space portrait of the SM for K =
2.7. We place a square-shaped leak centered at point (I,�) =
(5,5) with initial size (�I,��) = (0.01,0.01) (S(0)

leak = 10−4)
[34] and store the number of escaped trajectories at every
iteration step. The semidiagonals indicate the expansion until
the leak reaches its final size (�I,��) ≈ (0.316,0.316)
(S(∞)

leak = 0.1). Initial conditions are placed uniformly in the
black square (3.2 � � � 3.7, 3.2 � I � 3.7) far from KAM
islands as well as the final leak.

The result of a test run is displayed in Fig. 3. It is
clearly visible that the well-known exponential decay of the
nonescaped trajectories starts after ∼3000 iterations (blue
squares). Red triangles denote the instantaneous leak size,
Sleak, which is growing rapidly until it reaches its final (∼90%)
size. One can also observe that the exponential decay starts
roughly when the expansion of the leak ceases. We can, thus,
presume that the exponential behavior is a consequence of the
stationary leak size with escape rate κ∞. The semilogarithmic
plot of the nonescaped trajectories allows one to find the
asymptotic escape rate, κ∞ as t → ∞ (for strong chaotic
regime). This simulation yields κ∞ = 0.00254.

Furthermore, the numerical investigation confirms the naive
idea that until the leak’s expansion is present, the instantaneous
escape rate, κ(t), and also the escape probability is changing
in time according to d(ln yn)/dt = −κ(t). However, when the
growth slows down significantly κ(t) reaches the asymptotic
escape rate κ∞ (green asterisks), see Fig. 3. This behavior can
be explained as follows. At the beginning of the simulation
(t < 2000) a very large number of escaping trajectories feed
the small leak in one iteration step and, therefore, its mass (size)
growth is accelerating. Beyond a certain limit the mass (or
equivalently the number) of escaping particles in one iteration
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compared to the mass of the leak becomes small, i.e., escape
is present with moderate increase of the leak size. In this case
(2000 � t � 5000), however, there are enough particles in the
system to observe the exponential decay.

The reason for the larger dispersion in κ(t) and its deviation
from κ∞ beyond t ≈ 5000 is twofold. On the one hand,
the number of nonescaped trajectories, after 5000 iterations,
becomes so small (∼100) that the statistic is unreliable. On
the other hand, Fig. 3 shows the simulation for K = 2.7,
in which case KAM tori are responsible for stickiness and
consequently a power-law decay of trajectories for longer
escape times (not shown). In other words, κ(t) would follow the
horizontal dashed line in case of the fully hyperbolic dynamics,
for instance, K � 5.19, with an arbitrarily large N0.

III. RESULTS

A. Analytic solution

After having some impression about the escape dynamics
from numerical simulations, in this section, we show that a
continuous approximation of the temporal behavior of the
model can be described by analytic formulas.

We consider the particle number Ni and all the other
related discrete functions Mi , xi , and yi as being continuous
functions N (t), M(t), x(t), and y(t). Practically, we can do that
because the particle number and the typical timescale (number
of iterations) of the process is also much higher than unity
(N0 � 1).

The time derivative of N (t) is approximately the negative
of the average number of escaping particles �N during one
iteration, which is pN , so we can write

dN

dt
≈ �N = −pN = −CpMγ N, (5)

where we used Eq. (3). As �M = −�Nm, the time derivative
of M(t) is

dM

dt
≈ CpMγ Nm. (6)

Combining Eq. (6), M(t) = x(t)M, and N (t) = y(t)N =
[1 − x(t)]M/m, we get a first-order separable ordinary
differential equation for x(t):

dx

dt
= κ∞xγ (1 − x), (7)

Derivation of the solution can be found in Appendix B.
Equation (7) is a continuous approximation of the recursive
difference equation

xi+1 = xi + �xi, (8)

where �xi = κ∞x
γ

i (1 − xi), which gives the exact description
of the discrete-time problem.

The implicit solution of (7) can be given by

t(x) = x1−γ

κ∞(1 − γ )
2F1(1 − γ,1; 2 − γ ; x) − τ, (9)

where the constant of integration τ follows from the initial
value x0 as

τ = x
1−γ

0

κ∞(1 − γ )
2F1(1 − γ,1; 2 − γ ; x0). (10)
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FIG. 4. The mass growth of the leak x(t) for different γ s. For
better visibility, the constants of integration (τ ) are chosen with
x0 = xPoI taken at 0 see Eq. (10). Parameter κ∞ is taken equal to
1/(2π )2 ≈ 0.0253.

The solution of Eq. (7), x(t), has a point of inflection (PoI)
for all γ > 0. The second derivative of x from (7)

d2x

dt2
= κ∞xγ−1 dx

dt
[γ − (1 + γ )x],

from which the x coordinate of the inflection point (xPoI) can
be obtained

xPoI = γ

1 + γ
. (11)

We further elaborate on the error properties of the above
solution in Appendix C.

We can distinguish two parts of the leak-growing process.
The separatrix is the point of inflection of the x(t) function.
Figure 4 shows the functions x(t) for different γ s. For the
sake of comparison the graphs are shifted leftward, thus, the
inflection points are placed exactly above a row at t = 0.

The mass growth x(t) beyond the point xPoI (or t = 0)
has the same characteristic for different γ s. The reason is
that in the limit t → ∞, x → 1, Eq. (7) can be written as
dx/dt ≈ −κ∞x, which means that function x(t) approximates
1 exponentially with exponent −κ∞ and the process does not
depend on γ.

This is, however, not the case to the left of the point
of inflection. In the limit of x → 0, Eq. (7) can be written
as dx/dt ≈ κ∞xγ , which means that the solution x(t) ≈
[κ∞(1 − γ )(t + τ )]

1
1−γ follows a power law and contains both

κ∞ and γ.

Furthermore, in this regime γ defines two different behav-
iors. Considering the case of γ < 1 we have a point where
x(−τ ) = 0. That is, the integration constant τ is suitable to
determine a time instant in the past when the mass of the leak
was zero, i.e., when the whole growing process began. While
in the case of γ � 1 the function x(t) approaches zero only in
the limit of t → −∞. In summary

lim
x→0

t =
{−τ for 0 � γ < 1,

−∞ for 1 � γ.
(12)
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Nevertheless, it is obvious from Eq. (7) that κ∞ is inversely
proportional to the timescale of the process. The condition that
the timescale have to be much higher than unity is equivalent to
1/κ∞ � 1. This fact is important to ensure that the continuous
time approximation, Eqs. (5) and (6), is valid in our model.

The adopted model of growing leak defines a stochastic
process, whose complete description is possible only by using
the probability theory. The question arises naturally, how
the probability mass function of the particle number can be
calculated after the ith iteration if the initial one is known. The
question is important because if the standard deviations are
considerable, then we need the probability mass functions in
order to have a complete description. Otherwise, the averaged
behavior, studied previously, describes the process well. In
Appendix D we derive the probability mass functions, and
study its properties this problem.

We should mention that during the calculation we assumed
that γ > 0. However, it is obvious that solutions of Eq. (7)
can also be found for negative exponents in a similar way. The
discussion of the case γ < 0 is beyond the scope of the present
study.

B. Numerical tests

After discussing the analytic description of the survival
probability, we confirm the validity of our calculations by
running several numerical simulations. In order to demonstrate
the general phenomenon of escape dynamics, we use different
γ values in our calculations.

First, the results of the hyperbolic and mixed dynamics
are compared. In this calculation we show that for different
system parameters K = 2.7 and 5.19 the analytical solution
works very well. Figure 5(a) shows the ratio of nonescaping
trajectories y(t) for the γ = 1 case, i.e., the leak size depends
linearly on mass. One can easily see that the analytical solution
(dashed and dotted dashed lines) fit the numerical data fairly
accurately, especially for small iteration numbers, t < 2000.

In order to be able to compare the accuracy of the results
quantitatively, we calculate the relative difference between the
simulated data (S) and the analytic solution (C). The difference
S − C in percentages is plotted in Fig. 5(b). It shows the same
tendency that we can observe by naked eye in Fig. 5(a). The
S − C diagram remains under 4% level until t ≈ 2500. In
addition, S − C shows that in the case of γ = 1 the analytic
solution is more accurate for fully hyperbolic dynamics (K =
5.19) than for mixed phase space (K = 2.7) for t > 2500. The
reason for that comes from Eq. (B3), since it turns out to be
purely exponential for t � 1, that is, y(t) ∼ exp(−κ∞t). In
addition, the decay of y(t) in the latter case starts to deviate
from the exponential due to the sticky effect of the KAM tori.

Physically more interesting cases are when γ �= 1 but
rational. Let us recall our motivation, the planet formation
analogy in the planar RTBP. The size of the leak in the
phase space in this particular case is proportional to m

4/3
p ,

see Eq. (A3) in the Appendix.
Figure 6(a) shows the number of surviving particles, x(t),

and the mass growth of the leak, y(t), for γ = 4/3 (squares and
triangles, respectively). The analytic solution goes together
with the numerical simulation also for this value of γ. As is
well seen in Fig. 6(b) the S − C diagram remains under the
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FIG. 5. (a) Survival probabilities for different parameters K =
5.19 and 2.7 in SM. Parameters of the simulation: γ = 1, m = 1,
Cp = 10−7/(2π )2, N0 = 106, and M0 = 1000. The gray dashed
(K = 5.19) and dashed-dotted (K = 2.7) lines represent the analytic
formula (B4) with κ∞ = 0.1/(2π )2 ≈ 0.00253, x0 = 10−3 and κ∞ =
0.00285, x0 = 10−3, respectively. (b) The difference between the
numerical simulation and the analytic formula for K = 5.19.

5% level until the leak reaches its final mass, t ≈ 8000. This
is not true, however, at the very beginning of the iteration,
t < 10 after opening the leak. In this regime sudden changes
in the number of escaping trajectories appear. Trajectories
situated exactly above the leak and its preimages disappear
immediately from the system. This rapid change in the number
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FIG. 6. (a) The growth of the leak’s mass and the decay of
particles for K = 2.7. The other parameters are γ = 4/3, m = 1,
Cp = 0.2845, N0 = 106, and M0 = 5631. The dashed lines illus-
trate the analytic solutions with κ∞ = 0.1/(2π )2 ≈ 0.002533, x0 =
0.0055. (b) S − C curve shows the difference in leak mass.
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of particles is, however, not covered by the analytic solution
and, consequently, large differences may show up in the first
phase of the S − C diagram.

In the previous two examples we considered particles with
equal masses, m = 1. A more realistic scenario is when
the particles in various physical problems have different
masses corresponding to a certain distribution. The log-normal
distribution is a good choice to describe the particle size (and
mass). We present a simulation for γ = 2/3 with different
kinds of mass distributions, see Fig. 7. The numerical results in
Fig. 7(a) show what can also be derived directly from Eqs. (5)
and (6): the mass growth of the leak does not depend on the
mass of the individual particles but only on the mean value of
the distribution. Consequently, the leak’s mass changes in time
with the same rate for both equal mass particles (pink squares)
and log-normal distribution (red triangles), and also for other
distributions such as uniform and normal [stars and circles
in Fig. 7(a), respectively]. The statistical fluctuations in the
leak’s mass, smaller than 15%, disappear after 200 iterations,
Fig. 7(b).

IV. SUMMARY AND DISCUSSION

The model Eqs. (5) and (6) describe the escape dynamics
in a leaky chaotic system when the size of the leak is growing
in time and the expansion depends on the particles’ mass.
Consequently, the escape probability is time dependent. The
analytic solution to the problem provides a power-law behavior
at the very early stage (x ≈ 0) of the dynamical evolution. This
phase depends on the exponent γ in Eq. (2). However, for larger
t, when the feeding of the leak diminishes, the survival decay
turns to be exponential. Between these two limits the escape
rate is time dependent.
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FIG. 8. (a) Number of nonescaped particles and leak size and
growth vs time for K = 2.7, γ = 1/2, mi = 1. (b) Magnification
during growing process.

The qualitative picture is the following. After the leak
reaches roughly the 90% of its final measure, or more precisely,
beyond the point of inflection of x(t), the speed of the growth
slows down. After this point the growth of the leak is so slow
that it can be thought of as a static leak, and the decay rate
turns to be exponential, see Fig. 8(a). Numerical simulations
verify that the escape rate κ∞ (short, thick solid line) for a
static leak (red triangles) of size 0.1 is the same as in the case
of a growing leak (blue squares) when it reaches 90% of its
final size (also 0.1), Fig. 8(a).

In addition, this behavior is in a very good agreement
with the analytical solution describing the early stage escape
dynamics. The effect is considerable for relatively short times
only as long as enough particles are in the system, therefore,
the presence of the well-known power-law decay of stickiness
(tail of the distribution) in mixed phase space is not affected
by the size variation of the leak. However, the crossover time,
when the nonhyperbolic part of the chaotic saddle starts to
dominate, can be updated.

The crossover time tcross in weakly chaotic regime is written
as follows (Eq. (89) in Ref. [16])

tcross ∼ 1/κ∞

with the assumption that the leak size is small. The growing
leak model provides a simple generalization of this naive
approximation in the γ � 1 case

tcross ∼ 1

κ∞

[
1 + x1−γ

1 − γ
+ (1 + γ )1+γ

γ γ

γ

1 + γ

]
, (13)
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where the second and the third terms in the bracket define the
shift (tshift) the crossover experiences, see the schematic view
in Fig. 8(b). The second term is the time of the growth until the
leak mass is moderate, see the approximation of Eq. (7) when
x � 1, while the third term can be derived from the slope of
the function x(t) at point xPoI, Fig. 4. It can be easily obtained
that tshift → 0 when γ → 0 and x � 1.

Equation (B7) properly describes also the limit case
mi → 0. Namely, if the mass of the particles tends to zero,
i.e., the growth of the leak is fairly slow, one recovers the
classical exponential decay for the surviving trajectories. We
note that the same effect can be seen when the initial mass
of the leak x0 is set so large that even the massive particles
(mi > 0) falling into it do not have any effect on the leak’s
mass and, therefore, it can be considered as a static leak.

Due to the leak expansion we can consider an instantaneous
chaotic saddle in our model at every time step. This object
is reducing as the leak is growing and converges to that
invariant set, which corresponds to the final leak size. This
process results in a temporally changing chaotic saddle and a
nonstationary exponent of the survival probability [escape rate
κ(t)]. A similar phenomenon can be found in Ref. [35] where
the exponent is also time dependent (see Eq. (1) in Ref. [35]).
In contrast to the similarity, the temporarily changing chaotic
saddle should not be confused with the transient chaotic saddle
introduced in Ref. [35].

In summary, we have presented an analytic description of
the escape of the trajectories through a continuously growing
leak both in fully hyperbolic and in mixed phase space. We
stress, however, that during the whole calculation we did not
utilize explicitly the fact that m is the mass of the particle,
though the basic motivation is related to the mass growth of a
planetary embryo. Therefore, one can reformulate the model in
a more general way. Let us write Eqs. (1), (2), and (3) together
as follows

Mi = M0 + (N0 − Ni)m = M − Nim,

Sleak,i = CSM
γ

i ,

pi = CpM
γ

i ,

where now m is a physical property of the particles, Mn and M0

are the evolved and initial additive property of the leak, and
M = M0 + N0m. Other quantities are the same as given in
the introduction of the model in Sec. II B. This means that the
analytical method presented in this paper might be suitable to
predict the characteristics of the escape dynamics in different
kinds of systems where the leak size depends on some specific
physical property of the particles (charge, spin, energy level,
chemical composition, etc.).

We also would like to draw attention to the limitation of
present model. In fact, the dynamics in the standard map does
not depend on the size of the leak. In other words, the leak
affects only the escape rate but not the individual survival
trajectories themselves. This is not the case, for instance,
in the restricted three-body problem, where the growing
planetary mass governs the dynamics of the surviving particles
and, therefore, should also modify the escape dynamics.
Considering such an extension in the SM, a natural choice
could be the introduction of a variable nonlinearity parameter

K(M) whose value could also depend on the leak mass and
size. Studying this effect is postponed to future studies.
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APPENDIX A: EXPONENT γ IN THE PLANAR RTBP

In this section we show a short derivation for how the size
of the leak in the RTBP depends on the mass of the planetary
embryo. First, we can introduce a four-dimensional leak in the
phase space of the RTBP. Two dimensions out of four cover
the physical extent of the planet (0.5rH) in the configuration
space, i.e., the small gray circle at the position (−1,0) in Fig. 1.
The remaining two components whose absolute value is the
escape velocity at half of rH describe the size of the leak in the
velocity space. In fact, the Hill radius and the escape velocity,
as described above, can be written as a function of the planet’s
mass. Hence, the size of the four-dimensional leak in phase
space depends only on the mass of the planet (mp).

The Hill radius rH is defined

rH = a

(
μ

3

)1/3

, (A1)

where μ = mp/Ms is the planet-to-star mass ratio and a is the
planet’s semimajor axis. In addition, a particle must have a
smaller velocity than the escape velocity in order to be trapped
in a predefined region, e.g., in one half of the Hill radius. The
escape velocity from 0.5rH reads

vesc =
√

4Gmp

rH
, (A2)

where G denotes the gravitational constant and mp is the
planetary embryo’s mass.

Thus, the size of the leak (Sleak) in the phase space of the
RTBP is obtained as the product of the spatial (Ar = πr2

H) and
velocity extensions (Av = πv2

esc). That is, we have a leak size
with γ = 4/3

Sleak = ArAv ∼ r2
Hv2

esc ∝ m4/3
p . (A3)

APPENDIX B: SOLUTION OF EQ. (7)

Let us recall Eq. (7)

dx

dt
= κ∞xγ (1 − x). (B1)

After arrangement and integration we have

1

κ∞

∫
1

xγ

1

1 − x
dx =

∫
1 dt. (B2)

In the special case of γ = 1∫
1

x

1

1 − x
dx = ln

x

1 − x
, (B3)
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and

x(t) = 1

1 + e−κ∞(t+τ )
, (B4)

where

τ = ln
x0

1 − x0
(B5)

is the constant of integration. In the case of γ �= 1, first, we
consider the fact that

1

1 − x
=

∞∑
i=0

xi. (B6)

Now, the integral on the left-hand side of Eq. (B2) can be
written as∫

1

xγ

1

1 − x
dx =

∫ ∞∑
i=0

xi−γ dx

= x1−γ

∞∑
i=0

xi

i − γ + 1

= x1−γ

1 − γ

∞∑
i=0

(1 − γ )(i)1(i)

(2 − γ )(i)

xi

i!

= x1−γ

1 − γ
2F1(1 − γ,1; 2 − γ ; x),

where q(i) is the rising Pochhammer symbol

q(i) = q(q + 1), . . . ,(q + i − 1)

and

2F1(a,b; c; x) =
∞∑
i=0

a(i) b(i)

c(i)

xi

i!

is the Gaussian hypergeometric function [36,37]. Taking 1/κ∞
on the left-hand side and performing the integration on the
right-hand side, the solution as given by Eq. (9) is obtained.
For certain rational γ values the implicit solutions of Eq. (7)
[corresponding to the integral on the left-hand side of (B2)]
are summarized in Table I.

Interestingly, in addition to γ = 1, the solutions for γ = 0
and γ = 1/2 can also be given in explicit forms as follows:

x(t) = 1 − (1 − x0)e−κ∞t (B7)

TABLE I. The integral on the left-hand side of (B2) expressed by
elementary functions.

γ
∫

1
xγ

1
1−x

dx

0 − ln (1 − x)

1/2 2 tanh−1 (
√

x)

3/4 ln ( 1+ 4√x

1− 4√x
) + 2 tanh−1 ( 4

√
x)

1 ln ( x

1−x
)

4/3 ln (
√

1+ 3√x+ 3√
x2

1− 3√x
) − √

3 tanh−1 ( 1+2 3√x√
3

) − 3
3√x

3/2 2 tanh−1 (
√

x) − 2√
x

2 ln ( x

1−x
) − 1

x

and

x(t) = tanh2

[
κ∞(t + τ )

2

]
, (B8)

respectively. Equation (B7) provides the classical exponential
decay for γ = 0, when the leak is stationary.

APPENDIX C: ERROR ANALYSIS

During the simulation, the sequence of the averaged mass
ratios (xi)∞i=0 is governed by the recursive formula (8).
The differential equation (7) and its implicit solution (9)
give only a continuous approximate solution of the original
discrete problem. The question arises naturally, how good the
approximation (9) is.

Let us consider two successive terms of the original
sequence xi and xi+1 (see the inset of Fig. 9). According
to the approximation t(x), the time interval between the two
states is t(xi+1) − t(xi) instead of 1. The difference �t(xi) =
1 − [t(xi+1) − t(xi)] is the (relative) error of the approximation
caused by one iteration. As xi+1 = xi + 1/t ′(xi), function �t

can be expressed as

�t(x) = 1 −
[
t

(
x + 1

t ′(x)

)
− t(x)

]
. (C1)

Figure 9 shows the functions �t(x) for different γ s. In the
cases of γ = 4/3 and γ = 1 the relative errors remain under
1.2% (in general under κ∞/2).

Unfortunately, in the third case (γ = 2/3), limx→0 t(x) =
1 (100% relative error). In small x approximation, more

precisely if xi � κ
1

1−γ

∞ , the recursive formula (8) can be
approximated by xi+1 ≈ κ∞ · x

γ

i . This recursive sequence can
be written in explicit form as

xi = κ
1

1−γ

∞
(
x0κ

1
γ−1
∞

)γ i

. (C2)

FIG. 9. The relative error of the approximation Eq. (C1) after a
single iteration as a function of the mass ratio x. The inset helps
to understand the formula of the relative error. The black dots
represent the two successive terms. The black solid line and the
(blue) dashed line display the continuous solution t(x) and its tangent
curve, respectively. The parameters are the same as in Fig. 11.
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This sequence is increasing very fast from any astronom-

ically small value x0 to xi ≈ κ
1

1−γ

∞ . If x0 = 10−aκ
1

1−γ

∞ and

xi = 10−bκ
1

1−γ

∞ then the time period of the growing is

i = log a − log b

log(γ )
. (C3)

For example, in the case of x0 = 10−100κ
1

1−γ

∞ (a = 100) and

xi = 0.98κ
1

1−γ

∞ (b ≈ 0.01), i ≈ 23. The continuous approxi-
mation does not describe this fast growing process.

Although the relative error decreases under 3.7% at x ≈
0.01 (see Fig. 9), according to our numerical results the global

error is acceptable if the initial mass ratio x � κ
1

1−γ

∞ . For
example, in the corresponding case of Fig. 11 in spite of the

initial mass ratio (x0 = 10−6) is slightly smaller than κ
1

1−γ

∞ , the
global error remains under 4%.

APPENDIX D: DISTRIBUTIONS

Let ξi be discrete random variables associated with the
number of particles after the ith iteration. Here we derive
the probability mass function P (ξi+1 = k), k = 0, . . . ,N0 by
assuming that it is known from the earlier iterations P (ξi = j ),
j = 0, . . . ,N0.

The number of escaping particles during one iteration
follows binomial distribution. Let us suppose that there are
j particles in the system (ξi = j ) and after one iteration the
number of particles is k � j (ξi+1 = k), then the number of
escaping particles is j − k. Using the formula of the binomial
distribution, we can write the following conditional probability

P (ξi+1 = k | ξi = j ) =
(

j

j − k

)
p

j−k

j (1 − pj )k, (D1)

where pj is the escape probability, which corresponds to the
particle number N = j, namely

pj = Cp[M0 + (N0 − j )m]γ . (D2)

According to the law of total probability, we can write

P (ξi+1 = k) =
N0∑
j=k

P (ξi+1 = k | ξi = j )P (ξi = j ), (D3)

thus we get a recursive formula for P (ξi+1 = k). If the initial
number of particles is set to be N0 then the initial distribution
reads

P (ξ0 = k) =
{

1 if k = N0,

0 if k �= N0,
(D4)

and any P (ξi+1 = k) probability can be calculated recursively
by using (D1)–(D4).

In order to check whether the analytic model is valid, several
calculations of distribution series were carried out. Figure 10
shows the first, fifth, and ninth deciles (10-quantiles) of the
series of distributions for γ = 4/3. This calculation is suitable
to test the accuracy of the particle number ratio y(t) = 1 − x(t)
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FIG. 10. The first (red), the fifth (green), and the ninth (blue)
deciles of the series of distributions in the case of γ = 4/3. To make
the distinctions of the three curves easier, we cut off their first parts,
t < 900. The black curve shows the particle number y(t). The insets
(a) and (b) show two distributions corresponding to the iterations
indicated by the two vertical black lines.

calculated in the Sec. III A. The analytic solution is also plotted
(black curve) together with the statistical results. One can see
that the function y(t) is close the decile curves, which means
that the analytic solution is suitable to approximate the discrete
process.

We also verified these result by analyzing distributions
for different γ s. Figure 11 illustrates the results for γ =
2/3, 1, and 4/3. The other parameters were N0 = 106,
m = 1, and Cp = (2π )−2N

−γ

0 in all three cases (the initial
escape probabilities were the same, p0 = 10−4(2π )−2 and

0.00

0.25

0.50

0.75

1.00

y

γ=2/3

γ=1
γ=4/3

(a)

0 200 400 600 800 1000 1200
time

0.00
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FIG. 11. (a) The first (red), the fifth (green), and the ninth (blue)
deciles of the three calculated series of distributions The black curves
show the particle number ratio [(1 − x)] calculated in the Sec. III A.
(b) Standard deviations of the distributions for different γ s.
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κ∞ ≈ 1/(2π )2 = 2.53 × 10−2). The distributions were cal-
culated until their averages decreased under 0.1 percent of
the initial particle number [E(ξi) < 10−3N0]. Figure 11(b)

shows the standard deviations in all three cases. In general,
the standard deviations are not negligible but remain relatively
small.
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