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From synchronous to one-time delayed dynamics in coupled maps
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We study the completely synchronized states (CSSs) of a system of coupled logistic maps as a function of
three parameters: interaction strength (¢), range of the interaction («), that can vary from first neighbors to
global coupling, and a parameter (8) that allows one to scan continuously from nondelayed to one-time delayed
dynamics. In the «—e plane we identify periodic orbits, limit cycles, and chaotic trajectories, and describe how
these structures change with delay. These features can be explained by studying the bifurcation diagrams of a
two-dimensional nondelayed map. This allows us to understand the effects of one-time delays on CSSs, e.g.,
regularization of chaotic orbits and synchronization of short-range coupled maps, observed when the dynamics
is moderately delayed. Finally, we substitute the logistic map with cubic and logarithmic maps, in order to test

the robustness of our findings.
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I. INTRODUCTION

Coupled-map lattices are paradigmatic models for the study
of complex collective behavior such as synchronization [1-4].
This collective phenomenon presents scientific and techno-
logical interest for such diverse areas as Josephson junction
arrays, multimode lasers, vortex dynamics, even evolutionary
biology [1], and also constitutes good prototypes to investigate
the control of chaos.

Asymptotic collective states can be highly influenced by
asynchronicities, which are present in real systems [5-9].
For instance, asynchronous updating may open windows in
parameter space where synchronization becomes allowed [6]
and induce regularity in coupled systems, in contrast to a
synchronous updating [5,10,11]. Similarly, the introduction
of time delays, to account for finite propagation times in
information transmission among units [12—15], noticeably
impacts the collective patterns, e.g., although synchronization
is still possible, chaos may be suppressed [12].

Within the spatial domain, a realistic ingredient that has an
important impact on the determination of the emergent patterns
in extended systems is the coupling range [13,16-23]. Insofar
as the range of the interactions can affect the propagation of
information, it is important to explore its interplay with the
updating scheme.

In this article we propose a scheme of coupled maps
that integrates these two characteristics, allowing one to
explore its interplay. Namely, the coupling depends both on
the distance among units, covering from nearest-neighbor to
global interactions, as well as on a delay protocol that scans
continuously from the fully synchronous to the fully one-time
delayed dynamics. In particular, we monitor the emergence
and breakdown of phase space structures, such as fixed points,
periodic orbits, limit cycles, etc., in completely synchronized
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states (CSSs), when the contribution of delays and the range
of the interactions change between extreme cases.

II. THE MODEL

We consider a linear chain of N maps with periodic
boundary conditions. The maps are coupled according to the
diffusive scheme and obey the following dynamical equations,

N
X == f(x) +e Y AO[FET)+ FET)] D
r=1

fori =1,...,N. Here, xf describes the state of map i at
discrete time 7, whose uncoupled dynamics is governed by the
chaotic map f(x). Delayed coordinates %/ are defined by

& = pxl + (- B )

Thus, the interpolation parameter § (0 < 8 < 1) allows one
to scan continuously from the synchronous or nondelayed
dynamics (8 = 0), to the pure one-time delayed dynamics
(B = 1). Equation (1) describes a fully connected array where
elements interact through a coupling which depends on f(x),
with intensity A(r), where r is the integer distance between
maps on the ring. Finally, the coupling parameter ¢ (0<e < 1)
sets the relative weights of global and local influences. At each
time step, the N maps are updated simultaneously.

In numerical examples, we will consider A(r) =r~%/n,
where o € [0,00) determines the range of the interactions, and
n(a) =2 Zf’:/l r~%is a normalization factor, with N’ = (N —
1)/2 for odd N. This coupling scheme allows one to switch
smoothly from global (¢ = 0) to nearest-neighbor (¢ — 00)
interactions.

In numerical simulations we will use, as paradigmatic
example, mainly the logistic map f(x) = 4x(1 — x). However,
we will also show results for logarithmic and cubic maps. In
analytical expressions we will keep the generic forms of A(r)
and f(x) as far as possible.
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III. RESULTS

We performed numerical simulations of the coupled-map
lattice defined by Eq. (1), with the forms of A(r) and
f(x) described above, starting from random initial conditions
(uniform in the interval [0, 1]). We considered different values
for the coupling strength ¢, the range of the interactions ruled
by «, and the time delay parameter S.

We monitored the collective behavior by means of the
instantaneous mean field %, defined as [12,22]

hl=%zx;'. 3)

In order to measure the degree of synchronization, we use the
time average (o;) of the instantaneous standard deviation of
h;, namely,

N

1 .
o= |5 3 (= ne). (4)

i=1

When o = (0;) = 0, it means that the system is completely
synchronized, i.e., for all ¢, it holds xtl = )c,2 =.. ~xtN =x;,
where x;" can trace a chaotic or a regular trajectory. In the latter
case, we measured the period of the short orbits.

Another relevant parameter, which allows one to character-
ize the orbits of a dynamical system, is the largest Lyapunov
exponent Amax [24]. If Ayax i8S positive, the system displays a
chaotic behavior, while if it is negative, the dynamics is regular.
We computed Anax using the Benettin algorithm [25].

In Fig. 1, we present phase diagrams in the e-o plane
obtained from numerical simulations, for the local dynamics
given by the logistic map f(x) = 4x(1 — x), and for different
values of . For each pair (¢,«) we calculated o by averaging
over 100 time steps, after a transient of ¢ > 103. We consid-
ered the state as fully synchronized if o < 1073, Only the
parameter regions where complete synchronization occurs are
colored. Shown are regions containing periodic orbits up to
period-16. Green regions may contain periodic (period > 16),
quasiperiodic, intermittent, or chaotic trajectories (see below).

Figure 1 shows several known features such as the existence
of an interval of the coupling strength ¢ for the system to
synchronize, and that long-range interactions favor synchro-
nization, i.e., the stability of completely synchronized (CS)
regions shrinks as o grows. Besides these features, Fig. 1 also
exhibits important changes with 8. In particular, there is a
qualitative change of the stability regions around 8 ~ 0.5.

Letus firstlook the case § = 0.0in Fig. 1(a): Here, CSSs are
fully chaotic; however, these states only exist above minimum
values of (1) interaction strength and (2) interaction range.
By increasing the contribution of delayed states (8 > 0),
windows of regular behavior are introduced. For instance, in
the case B = 0.1, the visible windows of regularity correspond
to period-doubling cascades (from right to left) of periods
3 x 2% and 5 x 2%, with k = 0,1,2, ..., around € ~ 0.55 and
0.83, respectively. In the case § = 0.2, shown in Fig. 1(c), we
neatly notice a period-doubling cascade from the right to the
left of periods 2k with k =1,2, ... leading to chaos below
& ~ 0.67. This cascade is shifted to the left as 8 increases.
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FIG. 1. Phase diagrams in the ¢-o plane for (a) § = 0.0, (b) 0.1,
() 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.8, (i) 0.9, and (j) 1.0.
Only regions where coupled maps fully synchronize are colored.
The color scale indicates the period of the synchronized orbits. The
local dynamics corresponds to the logistic map f(x) = 4x(1 — x).
The black lines indicate the frontiers of the regions of period-1
orbits: Vertical solid lines are given by the longitudinal stability
condition (12) and point-dashed lines by the transverse stability
condition (13). The dotted line in the first panel is given by Eq. (19).
In all cases, the array size is N = 201. We chose initial conditions x;,
and x! randomly in [0, 1].

The larger the delay contribution, the shorter is the range of
the interactions that gives rise to CSSs. Moreover, when 8 €
(~0.3,%0.6), i.e., moderate delay contribution, even nearest-
neighbor couplings allow complete synchronization of regular
trajectories. When the contribution of delays is large enough,
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the structure of the bifurcations becomes more complex, and
this will be discussed in Sec. IV.

These qualitative changes, that for the logistic map occur
around B ~ 0.5, can be understood heuristically as follows.
When complete synchronization occurs, all maps share the
same state x;" at each time step, then, substituting x/ by x into
Eq. (1), the summation becomes ¢ f (£}). Thus, the dependence
on o and N embodied in 5 cancels out. Finally, using the
definition of X} given by Eq. (2), Eq. (1) becomes

xig == fG) +ef(Bx_ +{1 - Blx)). (5

The stability of a given trajectory x;* depends only on ¢ and B.
However, when thought of as a CSS of the coupled-map lattice,
its stability is also governed by o and N, while parameters &
and B only determine the longitudinal stability of CSSs.

For weakly delayed dynamics, the map (5) resembles
the logistic map and its bifurcation diagram is logisticlike.
However, for delay-dominated dynamics (8 > 0.5 in this
case), the dynamics of CSSs becomes really two dimensional
and the family of bifurcations expands. We return to this issue
in Sec. IV.

Now, let us analyze the stability of CSSs, starting by
periodic motion.

A. Stability of CS fixed points

If the system synchronizes at a fixed point X°, then for each
element i, one has xti = xLl =x = X9, hence )?t’ = ,BxL] +
(1 —B)x!_, = X°. Since, from Eq. (1), each equation in the
array verifies the single map relation X° = f(X?), then the
fixed points of the array are identical to the fixed points of the
uncoupled maps. For instance, in the case f(x) = 4x(1 — x),
the fixed points are X° = 0 and X° = %, which are unstable in
the uncoupled map, since in both cases | f/(X°)| > 1. However,
their stability is expected to change in the array.

In order to study the stability (both longitudinal and
transversal) of the fixed points of the coupled system, we
consider the linearized form of Eq. (1) around a fixed point
X, which reads

N
Sxi,, =1 —e)D%x +¢ Z A(r)D° (817" + 82177),  (6)
r=1
where D° = f/(X°) and 8%/ = Box/_, + (1 — B)sx]_,. The
system of linear equations (6) can be cast in the form

8%, = FU5%, (7)

by defining the 2N-dimensional tangent vector &%, =
(6X;,6X,_1)", and the 2N x 2N (time-independent) matrix F*:

F°=< D°[(1 — &)1 + (1 — B)eA] | D°BeA ) ®)

1 [0

where A is the N x N matrix whose elements are A;; = (1 —
8;j)A(r;;) and r;; is the distance between elements i and j on
the circle, i.e., r;; = ming|i — j + kN|. The eigenvalues of A
are obtained by Fourier diagonalization [17],

v
ay =2 A(m)cosQ2rkm/N), 9)

m=1

PHYSICAL REVIEW E 95, 062213 (2017)

for 1 <k < N. By setting F'(u,v)’ = A(u,v)’, and using
Eq. (8), we obtain

D[(1 — &)+ (1 — B)eAlu + D°BeAv = Au,
u=2xv. (10)

Simple algebra shows that the eigenvalues A of the block
matrix F? are related to the eigenvalues a; (k=1,...,N)
of A, through the characteristic equations

22— AD[1 —e+e(l — B)ax] — D°Beay =0,  (11)

each a; giving two values of 1. The conditions |A| < 1 for all
eigenvalue a; determine the region of stability of the fixed
point in the parameter space («,B,&). The spectrum of A
has been analyzed elsewhere [17]. The largest eigenvalue
of A is ay =1 for all «. The corresponding eigenvector
is proportional to ey = (1,1,1,...,1), that is, it belongs to
the completely synchronized subspace. Therefore, |Ay| < 1
is the condition for longitudinal stability (along the CS
subspace). The remaining eigenvalues provide the conditions
for transverse stability.

For the logistic map, the fixed point X° =0 remains
longitudinally unstable in the array for any (e, 8). For X° = %,
using ay = 1 in Eq. (11), and setting || < 1, we obtain the
condition

}1 < Be < %, (12)
which guarantees longitudinal stability. Therefore, depending
on ¢ and B, this fixed point can gain stability. In particular,
for B =0 (no delay), the fixed point X° :% cannot be
stable for any coupling strength ¢, but as § grows beyond
B = i, there appears an interval of values of ¢ for which
the fixed point becomes stable. This shows the emergence
of the longitudinal stability of the locally unstable fixed
point as the delay increases. Concerning transverse stability,
we checked numerically that eigenvalues 0 < a; < 1 do not
add restrictions to the region of stability defined by ay = 1.
Eigenvalues api, < ar < 0 set the frontier

1 3

<EeE< ——m—, (13)
2[1 — amin(1 — 28)] 2(1 — amin)

recalling that ayin = ay  (for N odd). This restriction depends
both on o and N through ay,;,. However, the N dependence
is very weak for N large, e.g., N = 100. These frontiers are
represented by lines in Fig. 1.

Equation (12) shows how the contribution of delays,
through B, directly influences the longitudinal stability of fixed
points, which occurs for a moderate range of values of B.
Moreover, Eq. (13) shows how g influences the lower bound
of transverse stability, turning complete synchronization at the
fixed point visible. This condition is relevant only for 8 > 0.5,
because the condition of longitudinal stability ¢ > 1/(48) is
more restrictive in such a case.

Complete synchronization at the fixed point X° = % can be
seen in Fig. 2(a), for § = 0.3, and in Fig. 2(b) for g = 0.8,
when o = 0.5. The intervals of stability as a function of &
coincide with the analytical calculation, i.e., ¢ > 0.833 (8 =
0.3) and 0.510 < ¢ < 0.625 (B = 0.8).
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FIG. 2. Order parameter o (black dots), mean field %, (red light
dots; for each value of ¢ we plot 100 consecutive values after a
transient of ¢ > 10°), and largest Lyapunov exponent A, vs coupling
e, fora = 0.5, with (a) 8 = 0.3 and (b) 8 = 0.8. The local dynamics
is given by the logistic map. In all cases the array sizeis N = 201. The
inset is a zoom of the main frame to show the coexistence of period-1
and period-3 orbits. At the point where two branches of period-3
orbits cross, two of the three values become equal, but remaining
period-3. This is possible because the state of the system depends on
two previous times.

B. Stability of CS period-2 trajectories

A period-2 trajectory of the coupled system (with values
X' and X?) must verify

X'=1-e)f(X)+ef(BX' +[1 - BIXD),
X2 =1 -ofXH+ef(BX*+[1-p1XYH. (14

For the logistic map, besides the trivial solutions (X', X?) =
(0,0) and (?T’ %), there are the (equivalent) nontrivial solutions
(X',X?),(X%, X"y with X' # X2, which are a function of &
and B. In order to study the stability of period-2 orbits, we
write the evolution of the tangent vectors as

8%,47 = FIF?8%,, 15)
where
k _ Nk _ Nk
F":( D1 s)]l—i—ﬂD (1 — B)eA] I D gsA ) (16)
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with D¥ = f/(X*) and D* = f'(BX/ + [1 — B]1XY), for k =
1,2 and j # k. Again, the condition |A| < 1 for all g; (with
A eigenvalue of F2F') provides the region of stability of
the period-2 orbits. This case, however, is not amenable to
analytical treatment because the trajectories must be found
numerically.

Stable period-2 orbits can be observed in Fig. 2(a) for
B = 0.3, within the interval 0.52 < ¢ < 0.83. This result is
in full agreement with that calculated from the eigenvalues
A(ay) of the matrix F?>F! (details not shown). It is apparent
that the period-2 family disappears through an inverse period-
doubling bifurcation, where a fixed point is born. We already
calculated analytically where this bifurcation occurs (see the
preceding section), namely, € &~ 0.833, which also agrees with
the previous values.

C. Stability of CS period-p trajectories

In the coupled system, a period-p trajectory (with values
X', X%, ..., XP) must verify

X'= (1 —e)f(XP)+ef(BXP~" +[1 — BIXP),
X =1 —e)f(X"H)+ef(BX? +[1 - BIXY),

X =1 —e)f(XP )+ ef(BXP2+[1—p1X"7N. (17)

Its stability matrix is given by the product F? - . . F*F!, where
we have used the natural extension of the notation of the
previous section.

In the particular case p = 3, a stable family can be observed
in Fig. 2(b) in the interval 0.6077 < ¢ < 0.6401 (we checked
that this interval coincides with the calculation based on the
stability matrix). The latter interval overlaps partially with
the family of fixed points (0.510 < & < 0.625), indicating
the coexistence of two different families of periodic orbits
(bistability).

D. Stability of an arbitrary CS trajectory

For calculating the stability of long trajectories (periodic,
quasiperiodic, chaotic, etc.), in principle one must resort to
purely numerical calculations. Consider an arbitrary orbit of
length L generated by the map of Eq. (5), starting from
appropriate initial conditions for selecting the desired orbit.
L must be large enough for the orbit to fall onto the attractor;
a transient of length M may be discarded. The stability
matrix of such an orbit reads FVFL—1... FM+2FM+1 Upon
diagonalization, this matrix product decouples into N matrices
of 2 x 2, each one corresponding to one eigenvalue a; of A.
By analyzing the eigenvalues of all 2 x 2 matrices we obtain
the stability of the trajectory.

Concerning the possibility of analytical calculations, some
results can be obtained in the case of chaotic orbits. In the
particular case 8 = 0 (no delay) each map evolves with the
uncoupled local chaotic dynamics. All maps are in the same
state X' at time ¢: The full interval [0, 1] is a smooth attractor.
The one-step stability matrix reads

F' = [(1—&)+eAlf'(X"). (18)
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This leads to the well-known stability condition (see, e.g.,
Refs. [17,22])

—1<eMl—e(l—a)] <1, forallk <N, (19)

where A, is the Lyapunov exponent of the uncoupled map.
The domain of chaotic synchronization defined by the double
inequality (19) defines the region in the e-o plane below
the dashed line in Fig. 1(a) (case B = 0). The critical
strength &, increases with «. For instance, for o« = 0 (global
coupling, mean field), ¢, = 0.5. The synchronization interval
shrinks as o grows and collapses at o =~ 0.8. Therefore, too
short-range interactions are not able to fully synchronize the
system [6,17].

For B > 0, from a technical point of view, the stability
matrices acquire the 2 x 2 block structure shown in Eq. (8)
and it is not possible to extract the factor f'(X'). At a more
intuitive level, as soon as g is non-null, the bifurcation diagram
becomes fractal, and it is clear that analytical treatments are
extremely difficult: 8 is not a perturbation parameter.

IV. TWO-DIMENSIONAL MAP

We have shown that in CSSs the dynamics is governed
by Eq. (5), which is independent on « and N, although these
parameters still rule the stability of CSSs. Then, Eq. (5), which
in essence is a two-dimensional (2D) map (since it depends on
two times), determines the structure of bifurcations of CSSs.
In Fig. 3(a) we plot the period of the asymptotic solutions in
the B-¢ plane (up to period-16); longer-period or nonperiodic
trajectories are represented by green pixels. For comparison
we have drawn analogous figures for the system of coupled
maps at full coupling, i.e., « = 0 [Fig. 3(b)] and first-neighbor
coupling, @ = oo [Fig. 3(c)]. White regions in Figs. 3(b)
and 3(c) consist of values of (8,¢) which do not generate
stable CSSs for random initial conditions in [0,1]. Note that
white regions spread as o grows. In particular, the region of
period-1 synchronization shrinks as the range of the interaction
decreases. For o = co only a trianglelike stability region
remains, corresponding to low-period orbits (mainly period-1).
In order to look into the structure of Fig. 3(a) with greater detail
we plotted bifurcation diagrams at 8 = 0.3 and g = 0.8 for
the 2D map. See Figs. 4(a) and 4(b), respectively. Bifurcation
diagrams as a function of 8 for fixed « are qualitatively similar
to those shown in Fig. 4, since both parameters play a similar
role for the 2D map. This feature is evident in Fig. 3(a),
by observing the approximate symmetry with respect to the
diagonal.

A first look at Fig. 3(b), corresponding to the globally
coupled case, shows that most of the synchronized states of
the system of coupled maps lie above ¢ = 0.4-0.5. In fact, a
minimum coupling is expected for complete synchronization.
There is a small island of stability at ¢ &~ 0.2, and the existence
of other small structures is not discarded. However, very
small regions are difficult to detect numerically because,
presumably, they possess very small basins of attraction,
then fine tuning of initial conditions would be required.
Consider, for instance, the surprising Fig. 1(f), for 8 = 0.5.
This figure suggests that only period-1 orbits are stable.
However, the associated bifurcation diagram for the 2D map
(not shown) exhibits an inverse period-doubling cascade for
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FIG. 3. (a) Asymptotic states of the map of Eq. (5). (b) Stable
completely synchronized states of the globally coupled-map system
(N =201, a = 0). (c) Same as (b), but for nearest-neighbor couplings
(N =201, a = o0). The local dynamics is that of the logistic map
f(x) = 4x(1 — x). The region of stability of the fixed point X° = % is
depicted in light blue. This region is bounded by the arcs of hyperbola
given by 1 < Be < 1 and Egs. (13) [« = 0 (solid black); a« = 2.4
(long-dashed red); « = oo (short-dashed blue)].

& < 0.5 (analogous to those depicted in Fig. 4) and we verified
that some of these orbits are indeed stable (e.g., a period-2
orbit at ¢ = 0.4 and o = 0.25). So, because of limitations of
computing time, Figs. 1 and 3 only exhibit coarse-grained
structures. Nonetheless, by complementing these figures with
finely detailed bifurcation diagrams we can explain several
features of the synchronized states.

For weak delays (8 < 0.5), the bifurcation diagrams are
logisticlike, i.e., typical of one-dimensional maps. This can be
clearly seen in Fig. 4(a), for 8 = 0.3. However, for stronger
delays the dynamics of synchronized states becomes really
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FIG. 4. Bifurcation diagram of the completely synchronized map
of Eq. (5) for (a) 8 = 0.3 and (b) 8 = 0.8.

two dimensional. As a consequence, e.g., for 8 = 0.8 (and ¢ >
0.5), we see in Fig. 4(b) bifurcations which are characteristic
of 2D maps, e.g., Neimark-Sacker bifurcations [26]. Notice
that the light-green region observed in Fig. 1(h) at @« = 0.5
when B = 0.8, contains diverse structures, as can be seen in
Fig. 3(a) and also in Fig. 4(b), where the additional infor-
mation provided by the largest Lyapunov exponent indicates
that there are quasiperiodic, long-periodic, and also chaotic
orbits.

V. OTHER LOCAL DYNAMICS

In order to test the robustness of our findings, we substituted
the logistic map in the local dynamics by either cubic or
logarithmic maps.

(i) Cubic map [27,28]:

x = f(x) = —x>+ax +b, (20)

with @ = 1.5 and b = —1. Initial conditions were taken
random in [—1,1]. By solving x = f(x), we find the fixed
point X ~ —1.16537, with D° ~ —2.5742.

(i1) Logarithmic map [29]:

x = f(x)=c+1In|x|, 21

with ¢ = 0.0. In this case the initial conditions for each map
were random in [—10, 10]. This map has the fixed point X ~
—0.567 143, with D° = f/(X°) = 1/ X%~ — 1.763223. The
longitudinal stability condition is 0.216 < Be < 0.567.

The cubic map is not unimodal and the logarithmic map
is neither unimodal nor bounded [29]. The cubic map has

PHYSICAL REVIEW E 95, 062213 (2017)

o

- N 0 A O O N ©

-
=)

- N W AR O N ®

FIG. 5. Phase diagram in the parameter plane (e,«) for the (a)
cubic and (b) logarithmic delayed 2D maps [cf. Fig. 3(a)]. The color
scale shows the period of the orbits in the 2D maps, starting from
random initial values in [—1,1] and [—10,10] for the cubic and
logarithmic maps, respectively. The lines, given by Eqs. (22) and (23),
delimit the region of period-1 complete synchronization.

bifurcation diagrams similar to the logistic one, both as a
function of a and b. In the logarithmic map bifurcation
diagram, as a function of ¢, there is a single fixed point
that loses stability for ¢ € [—1,1] and chaos emerges, without
windows of regularity. We built phase diagrams for these maps,
shown in Fig. 5, where the frontiers for the fixed point stability
in CS states are highlighted.

The longitudinal stability condition, that generalizes
Eq. (12) for the logistic map, is

1+ D° 1
200 < Be < — 0

These inequalities define the band of CS period-1 orbits
observed in Fig. 5.
The transversal condition generalizing Eq. (13) is given by

1+ D° DY —1
0 <EeE< O—
2DO1 — amin(1 — 2B)] DY(1 — amin)

This condition depends on the range of the interactions, which
restricts the band of period-1 orbits as the range decreases (see
Figs. 3 and 95).

The effect of the delay in coupled cubic maps is qualitatively
similar to that found for the logistic maps. In fact, the
phase diagram of the cubic map, depicted in Fig. 5(a), is
a deformation of Fig. 3(a). In both cases the band of CS
period-1 orbits separates two regions with either one- or

(22)

(23)
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FIG. 6. Cubic maps. Order parameter ¢ (black dots) and mean
field i, (red light dots) vs coupling ¢, for (a) 8 = 0.4 and (b) 8 = 0.8.
In all cases the array size is N = 201 and « = 0.5.

two-dimensional behavior, as one can see in the bifurcation
diagrams in Fig. 6. Incidentally, the structures which appear
in Fig. 5(a) remind us the shrimplike structures found in the
parameter space of the Hénon map [30,31]. However, in order
to certify the existence of such structures, we should select
very small regions with a much finer discretization, a study
that, although interesting, is beyond our present scope.

In the logarithmic case [Fig. 5(b)] there is also a band
of period-1 orbits, and in the region of small B¢, complete
synchronization of periodic windows with periods larger than
1 appear (unstable in the uncoupled map), as for the logistic
and cubic dynamics. The thin colored region within the
period-1 band contains orbits of higher period. For instance,
we checked that for § = 0.8 and ¢ & (.65 there are period-3
orbits coexisting with period-1 ones—a case of bistability also
observed in the logistic system. However, for large Be, the
behavior typical of bidimensional maps, with structures such
as limit cycles, does not emerge. Bifurcation diagrams are
illustrated in Fig. 7, for two different values of 8.

VI. FINAL REMARKS

We selected a coupled system that scans continuously
from synchronized to one-time delayed dynamics. We used
the logistic map local dynamics as a paradigm, but general
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FIG. 7. Logarithmic maps. Order parameter ¢ (black dots) and
mean field &, (red light dots) vs coupling ¢, for (a) 8 = 0.4 and (b)
B = 0.9. In all cases the array size is N = 201 and o« = 0.5.

analytical expressions were obtained and other maps were
also simulated.

We exhibited the phenomenology that appears in the route
of increasing contribution of the delays (increasing ), focus-
ing on complete synchronization. Basically, we distinguish two
scenarios: one where delays are not dominant (small enough g,
namely, 8 < 0.5 in the case of the logistic map), in which case
the bifurcation diagram of the coupled maps is qualitatively
similar to that for the local dynamics, although deformed.
That is, for a small contribution of the delays, the dynamics
of completely synchronized states remains essentially one
dimensional. The other scenario appears when the dynamics
is delay dominated (large enough B, ie., B > 0.5 for the
logistic map), where a scenario typical of 2D maps emerges.
Noticeably, the transition between both kinds of behavior
occurs through a fixed point synchronization.

Although in many cases delays regularize the dynamics,
we clearly see that they can also have the opposite effect,
depending on the coupling parameters. That is, for a small
contribution of delays, by increasing 8, chaos (together with
the full logisticlike bifurcation diagram) shrinks towards ¢ =
0 (see Fig. 4). But for a large contribution of delays, when
increasing 8, chaos can originate from the breakdown of limit
cycles within the 2D scenario. The same portrait was observed
for the cubic map.
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Despite 2D structures not being observed in the case of
local logarithmic dynamics, also here chaos is broken for weak
delays and created by strong ones.

We have also shown the interplay of the delays and the
range of the interactions. Long-range interactions generically
aid complete synchronization, which will not be possible for
short-range interactions, in non-delayed dynamics. However,

PHYSICAL REVIEW E 95, 062213 (2017)

a moderate contribution of delays allows complete synchro-
nization even for nearest neighbors, as displayed, for instance,
in Fig. 3.
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