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In this paper we show that in the semiclassical regime of periodic potential large enough, the Stark-Wannier
ladders become a dense energy spectrum because of a cascade of bifurcations while increasing the ratio between
the effective nonlinearity strength and the tilt of the external field; this fact is associated to a transition from
regular to quantum chaotic dynamics. The sequence of bifurcation points is explicitly given.
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The dynamics of a quantum particle in a periodic potential
under a homogeneous external field is one of the most
important problems in solid-state physics. When the periodic
potential is strong enough then we are in the semiclassical
regime where tunneling between adjacent wells of the periodic
potential is practically forbidden; in the opposite situation tun-
neling may occur and the particle performs Bloch oscillations.
Dynamics of particles become more interesting when we take
into account the interaction among them, as we must do in
the case of interacting ultracold atoms. In fact, accelerated
ultracold atoms moving in an optical lattice [1–5] have opened
the field to multiple applications, as well as the measurements
of the value of the gravity acceleration g using ultracold
strontium atoms confined in a vertical optical lattice [6,7],
and direct measurement of the universal Newton gravitation
constant G [8] and of the gravity-field curvature [9].

Because of the periodicity of the potential associated to
the optical lattice, the existence of families of stationary
states with associated energies displaced on regular ladders,
the so-called Stark-Wannier ladders [10,11], is expected
(see also [12] for numerical computation of Stark-Wannier
states for Bose-Einstein condensates (BECs) in an accelerated
optical lattice); this picture implies, at least for a single-particle
model, Bloch oscillations. When one takes into account the
binary particle interaction of the condensate, nonlinear effects
occur and new subharmonic oscillations appear [13–15]. More
recently, Meinert et al. [16] observed that when the strength
of the uniform acceleration is reduced a transition from
regular to quantum chaotic dynamics is observed; in their
experiments evidence of the fact that the energy spectrum
emerges densely packed, as predicted by [17] by means of a
numerical simulation for a lattice with a finite number of wells,
is given.

In fact, such a problem has been intensively studied in
the recent years by means of numerical methods. In [18] the
authors consider a one-dimensional BEC of particles described
by the Gross-Pitaevskii equation; they reduce the problem to
a quasi-integrable dynamical system which displays classical-
like Kolmogorov-Arnold-Moser structured chaos. In [19] the
authors model the cloud of ultracold bosons in a tilted lattice
by means of the Bose-Hubbard Hamiltonian that incorporates
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both the tunneling between neighboring sites and the on-site
interaction; by means of such an approach they are able to
identify regular structures in a globally chaotic spectrum and
the associated eigenstates exhibit strong localization properties
in the lattice. In [20] the authors, making use of the mean-field
and single band approximations, describe the dynamics of a
BEC in a tilted optical lattice by means of a discrete nonlinear
Schrödinger equation; in the strong field limit they demonstrate
the existence of (almost) nonspreading states which remain
localized on the lattice region populated initially. Finally, [21]
can give numerical evidence of the quasiclassical chaos on the
emergence of nonlinear dynamics.

In this paper we consider the dynamics of ultracold inter-
acting atoms in a periodic potential subjected to an external
force. We can show a transition from the semiclassical picture,
where each atom is localized on a single well of the periodic
potential, to a chaotic picture, for strength of the nonlinearity
term large enough, associated to a cascade of bifurcations
of the energy spectrum; in particular, we can see that when
the ratio between the effective strength of the nonlinearity
interaction term and the strength of the external homogeneous
field becomes larger than some given values then bifurcations
of the stationary solutions occur and new stationary solutions
localized on a larger number of wells appear. In our model the
structure of bifurcation trees arising from the Wannier-Stark
ladders clearly emerges and the sequence of bifurcation points
is explicitly given.

Transversely confined BECs in a periodic optical lattice
under the effect of the gravitational force are governed by
the one-dimensional time-dependent Gross-Pitaevskii (GP)
equation with a periodic potential and a Stark potential,

ih̄∂tψ = − h̄2

2m
∂2
xx + V (x)ψ + mgxψ + γ |ψ |2ψ, (1)

where the BEC’s wave function ψ(x,t) has a constant norm
‖ψ(·,t)‖L2 = ‖ψ0(·)‖L2 , where ψ0(x) is the initial wave
function of the BEC, m is the mass of the atoms, g is the
gravity acceleration, γ is the one-dimensional nonlinearity
strength, and V (x) is the periodic potential associated to
the optical lattice potential. In typical experiments [1] the
periodic potential has the usual shape V (x) = V0 sin2(kLx),
where b = π/kL is the period, and V0 = �0ER , where ER is
the photon recoil energy.
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If one looks for stationary solutions

ψ(x,t) = eiλt/h̄ψ(x)

to the time-dependent GP equation (1) it turns out that λ is real
valued and that ψ(x) is a solution to the time-independent GP
equation; then, we may assume that ψ(x) is a real-valued
function by means of a gauge argument (see Lemma 3.7
in [22]). Hence, the time-independent GP equation becomes

λψ = − h̄2

2m
∂2
xxψ + V (x)ψ + mgxψ + γψ3, (2)

where ψ(x) is a real-valued function. First of all let us remark
that the stationary solutions to Eq. (2), if there, must be
displaced on regular ladders. Indeed Eq. (2) is invariant by
translation x → x + b and λ → λ − mgb, because V (x +
b) = V (x), where b is the lattice’s period. Thus, we have
families of stationary solutions (λj ,ψj (x)), j ∈ Z, where
λj = λ0 + jmgb and ψj (x) = ψ0(x − jb) for some λ0 and
ψ0(x). Therefore, we can restrict our analysis to just one rung
of the ladder and then we replicate the obtained results to all
other rungs.

By means of the tight-binding approach we reduce Eq. (2)
to a discrete nonlinear Schrödinger equation. The idea is
basically simple [23] and it consists in assuming that the wave
function ψ(x), when restricted to the first band of the periodic
Schrödinger operator, may be written as a superposition
of vectors u�(x) localized on the �th well of the periodic
potential; i.e., ψ(x) = ∑

�∈Z c�u�(x), for some c�. If u�(x) are
real-valued functions then the parameters c� are real valued too.
For instance u�(x) = W1(x − x�), where W1(x) is the Wannier
function associated to the first band and x� = �b is the center
of the �th well. Let c = {c�}�∈Z ∈ �2(Z) be the representation
of the wave vector ψ(x) in the tight-binding approximation.
Therefore, the tight-binding approach leads us to a system of
discrete nonlinear Schrödinger equations, for which dominant
terms are given by

λc� = (λD + mgC0)c� − β(c�+1 + c�−1)

+ γ ‖u0‖4
L4c

3
� + mgb�c�, � ∈ Z, (3)

where λD is the ground state of a single well potential and
where β is the hopping matrix element between neighboring
wells, and C0 = ∫

R x|u0(x)|2 dx. By means of a simple re-
casting μ = λ − μ
, μ
 = (λD + mgC0 + 2β), ν = γ ‖u0‖4

L4 ,
and f = mgb, then Eq. (3) takes the form

μc� = −β(c�+1 + c�−1 + 2c�) + νc3
� + f �c�, � ∈ Z, (4)

where c� are real valued and such that
∑

�∈Z c2
� = 1. The

parameter ν plays the role of the effective strength of the
nonlinearity interacting term. The theoretical question about
the validity of the nearest-neighbor model (4) has been largely
debated. In particular, numerical experiments [24,25] suggest
that the nearest-neighbor model properly works when �0 is
large enough, typically �0 � 10.

Localized modes of the discrete nonlinear Schrödinger
equation (4) have been already studied [23,26,27] when the
external homogeneous external field is absent (i.e., when
f = 0). In particular we should mention the contribution given
by [28] where all the solutions obtained in the anticontinuous
limit can be classified and where bifurcations are observed.

As far as we know the same analysis is still missing for
Eq. (4) when f �= 0. We look for solutions to the stationary
equation (4) when �0 is large enough; in such a case, by means
of semiclassical arguments, it turns out that β becomes small
and the stationary solutions are close to the ones obtained in
the anticontinuum limit of β → 0, where Eq. (4) reduces to

μc� = νc3
� + f �c�, � ∈ Z. (5)

When the nonlinear term is absent, that is, ν = 0, then we
simply obtain a family of solutions μj = fj , for any j ∈ Z,
with associated stationary solutions c = ±{δ�

j }�∈Z. In this case
we recover the Wannier-Stark ladders [10,11].

Assume now that the nonlinear term is not zero; that is,
ν > 0 for argument’s sake. In general Eq. (5) has finite mode
solutions cS = {cS

� }�∈Z, associated to sets S ⊂ Z (hereafter
called solution sets) with finite cardinality N = 
S < ∞,
given by

cS
� =

{
0 if � /∈ S

±[
μS−f �

ν

]1/2
if � ∈ S,

(6)

with the condition

μS

f
> max S, (7)

because we have assumed that cS
� are real valued and ν > 0.

Furthermore, since the stationary problem (5) is translation
invariant, � → � + 1 and μ → μ − f , then we can always
restrict ourselves to the rung of the ladder such that min S = 0;
that is, the solution set has the form S = {0,�1, . . . ,�N−1} with
0 < �1 < �2 < · · · < �N−1 positive and integer numbers. The
normalization condition reads

1 =
∑
�∈S

(
cS
�

)2 =
∑
�∈S

[
μS − f �

ν

]
, (8)

from which it follows that the energy μ is given by

μS = ν

N + f

N
∑
�∈S

�.

Hence, condition (7) implies the following condition on the
solution set S:

ν

f
> N max S −

∑
�∈S

� =
∑
�∈S

[max S − �]. (9)

In order to characterize the solution -sets S let us introduce the
complementary set S
 of S defined as follows:

S
 = {�
 := max S − � : � ∈ S}.
Hence, condition (9) becomes

ν

f
>

∑
�
∈S


�
. (10)

Let us now denote by S
(ν/f ) the collection of sets S


satisfying Eq. (10); let us also denote by Q
(n) the collection
of sets of all non-negative integer numbers, including the
number 0, for which the sum is equal to n, without regard
to order with the constraint that all integers in a given
partition are distinct; e.g., Q
(1) = {{0,1}}, Q
(2) = {{0,2}},

062212-2



BIFURCATION TREES OF STARK-WANNIER LADDERS . . . PHYSICAL REVIEW E 95, 062212 (2017)

FIG. 1. Here we plot the values of the energy μ/f associated to
stationary solution sets S such that min S = 0; we can see a cascade
of bifurcations when ν/f increases. This picture occurs for each rung
of the ladder.

and Q
(3) = {{0,3}, {0,1,2}}. Hence, by construction

S
(n + 1) = S
(n) ∪ Q
(n).

In conclusion, we have shown that the counting function
F (ν/f ) given by the number of solution sets S of integer
numbers satisfying the condition (9), and such that min S = 0,
is given by

F (ν/f ) =
∑

0<n<ν/f

Q(n), (11)

where Q(n) (see p. 825 of [29]) gives the number of ways
of writing the integer n as a sum of positive integers without
regard to order with the constraint that all integers in a given
partition are distinct; e.g., F (3.1) = Q(1) + Q(2) + Q(3) =
1 + 1 + 2 = 4.

It turns out that F (ν/f ) grows quite fast; indeed the
following asymptotic behavior holds true [29]:

Q(n) ∼ eπ
√

n/3

4 × 31/4n3/4
as n → ∞.

Hence,

F (n) ∼ exp[π (n/3)1/2]

2π (n/3)1/4

as n goes to infinity.
A cascade of bifurcation points, when ν/f takes the value

of any positive integer, occurs; indeed, when the ratio ν/f

becomes larger than a positive integer n then Q(n) new
stationary solutions appear. This fact can be seen in Fig. 1,
where we plot the values of the energy μ, when ν/f belongs
to the interval [0,10], associated to the solution sets S such
that min S = 0. By translation μ → μ + jf , j ∈ Z, we must

replicate this picture to the general situation where min S = j ,
j ∈ Z; that is, this picture occurs for each rung of the ladder
and then the collection of values of μ associated to stationary
solutions is going to densely cover the whole real axis.

If one looks with more detail at the bifurcation cascade
one can see that we have N -mode solutions for any value
of N . For instance, for N = 1 we have one-mode solutions
associated to solution sets S = {j}, for any j ∈ Z, given by
μ{j} = ν + fj and c{j} = ±{δj

� }�∈Z. That is, we recover the
(perturbed) Wannier-Stark ladder.

For N = 2 we have two-mode stationary solutions associ-
ated to solution sets of the form S = {j,j + �1} for any j ∈ Z
and �1 ∈ N, where

μ{j,j+�1} = 1
2ν + jf + 1

2f �1

under the condition �1 > ν/f . Therefore, we can conclude that
two-mode solutions exist only if ν/f > 1, and the elements of
the vector c{j,j+�1} are given by

c
{j,j+�1}
� =

⎧⎪⎨
⎪⎩

0 if � �= j,j + �1

±[
1
2 + 1

2
f

ν
�1

]1/2
if � = j

±[
1
2 − 1

2
f

ν
�1

]1/2
if � = j + �1.

In general, N -mode stationary solutions are associated to
solution sets of the form

S = {j,j + �1, . . . ,j + �N−1}, (12)

where j ∈ Z and 0 < �1 < �2 < · · · < �N−1 ∈ N, and the
value of μS is given by

μS = ν

N + jf + f

N

N−1∑
r=1

�r

under condition (7). As a particular family of N -mode
solutions we consider solution sets of the form (12) for any
j ∈ Z and �r+1 − �r = 1. They are associated to

μS = ν

N + fj + 1

2
f (N − 1)

and then condition (7) implies that

N (N − 1)

2
<

ν

f
.

Hence, we can observe a second bifurcation phenomenon:
stationary solutions associated to solution sets with N ele-
ments arises from solution sets with N − 1 elements when
ν/f becomes bigger than the critical value N (N − 1)/2.

In order to understand the effect of such a stationary solution
on the BEC’s dynamics we consider, at first, the case where
ν/f is less than 1; then we have a family of solutions of the
form ψ(x,t) = ei(μ+μ
)t/h̄uj (x), where μ = ν + jf and where
uj (x) is localized on the j th well of the periodic potential,
j ∈ Z. In fact, in such a case there is no interaction among
these solutions, and the density of probability to find the state
in the j th well is time independent. Let us consider now the
case when ν/f is bigger than 1, i.e., ν/f = 3/2 for argument’s
sake; then in such a case we have that different stationary
solutions may be supported on the same well of the periodic
potential. In particular, let us fix our attention on a given well
with index j ; then we have three stationary solutions localized
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(a)

(b)

(c)

FIG. 2. Here we plot the absolute value of the stationary solutions
associated to the solution sets (a) S1, (b) S2, and (c) S3; xj denotes
the center of the j th well of the periodic potential.

on the j th well associated to the solution sets (see Fig. 2)

S1 = {j}, μS1 = ν + fj,

S2 = {j,j + 1}, μS2 = 1
2ν + fj + 1

2f,

S3 = {j − 1,j}, μS3 = 1
2ν + fj − 1

2f.

If we consider the superposition of these stationary solutions
on the j th well then it behaves like

eiμ
t/h̄+iνt/2h̄+ifj t/h̄q(t ′)uj (x), (13)

where we set t ′ = f t/h̄, and

q(t ′) = [
eiνt ′/2f c

S1
j + eit ′/2c

S2
j + e−it ′/2c

S3
j

]
, (14)

where c
S1
j = ± 1, c

S2
j = ± [ 5

6 ]
1/2

, c
S2
j+1 = ±[ 5

6 ]
1/2

, c
S3
j−1 =

±[ 5
6 ]

1/2
, and c

S3
j = ±[ 1

6 ]
1/2

. As we discuss below this is
not in general a solution to Eq. (1) because this equation
is not linear, but Eq. (13) will approximate, under some
circumstances, a solution to Eq. (1). Considering Eq. (14)
we observe a beating behavior of the density of probability
associated to different frequencies: one beating motion has
period 2π , which is ν independent and coincides with the
period of the Bloch oscillations; a second beating motion has
two periods depending on ν/f given by T1 = 4π [1 + ν/f ]−1

and T2 = 4π [−1 + ν/f ]−1. For bigger values of ν/f then we

may consider a larger number of stationary solutions for which
all supports contain a fixed and given well; then the behavior on
this given well of the superposition of such stationary solutions
will be given by means of a periodic function with period
2π , coinciding with the Bloch period, plus a large number of
periodic functions with different periods. Since the number
of these periodic functions will increase when the ratio ν/f

increases then we expect a chaotic behavior for large ν/f .
In fact, we should underline again that a linear combination
[like Eqs. (13) and (14)] of stationary solutions to a nonlinear
equation is not, in general, a solution to the same equation.
However, making use of the ideas already developed in the
seminal paper [30], if we consider the limit of small ν (provided
that ν/f is much bigger than 1) then we can expect that, for
fixed times, the contribution due to the nonlinear perturbation
may be estimated and the linear combination of stationary
solutions approximates a solution to the nonlinear equation.

Now, we only have to show that the stationary solution
to Eq. (5) obtained in the anticontinuum limit goes into a
stationary solution to Eq. (4) when β is small enough. Indeed,
let μS be a solution of the anticontinuum limit (5), where we
can always assume that μS > 0 by means of the translation
� → � + 1. If we rescale c� → [μS/ν]

1/2
c� and if we set

β ′ = β/μS and f ′ = f/μS then Eq. (4) takes the form(
1 − c2

�

)
c� = β ′(c�+1 + c�−1 + 2c�) + f ′�c�.

In conclusion we may extend the solutions to Eq. (5), obtained
in the anticontinuum limit β → 0, to the solutions to Eq. (4)
for β small enough if the tridiagonal matrix

T (β ′) = tridiag
(
β ′,f ′� − 1 + 3c2

� + 2β ′,β ′),
obtained deriving the previous equation by c�, is not singular at
β ′ = 0, where c� is the solution obtained for β ′ = 0 (see, e.g.,
Appendix A of [28]). In particular, it is not hard to see that
T (0) = diag(T�) has a diagonal form, where T� = f �/μS −
1 + 3c2

� and where c� is given by Eq. (6). Hence, a simple
straightforward calculation gives that inf�∈Z |T�| > 0.

In conclusion, in the present contribution we have shown in
the context of BECs in a tilted lattice a relevant phenomenon:
the occurrence of a cascade of bifurcation points in the energy
spectrum on the emergence of the nonlinear dynamics, where
the associated stationary solutions are localized on few lattices’
sites. This fact gives a theoretical justification of the chaotic
behavior for large nonlinearity, and it agrees with previous
numerical predictions [16–21]. We think that the present
contribution, with the result of the existence of bifurcation
trees, may give a substantial advance in the understanding of
the occurrence of quasiclassical chaos for BECs in a tilted
lattice.

This work is partially supported by Gruppo Nazionale per
la Fisica Matematica (GNFM-INdAM). We should be very
grateful to Giuseppe Mazzuoccolo for useful discussions.
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